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1. Introduction

1.1 Two types of double slit experiments

Quantum statistics play a key role in Quantum Mechanics QM [Feynman et al. (1965,1989);
Penrose (2004)]. Two types of Double Slit Experiment are used to explore the core mysteries of
quantum interactive behaviors. These are standard Double Slit Experiments with correlated
signals and Single Photon Experiments that use ultra low intensity and lengthy exposures
to demonstrate quanta self-interference patterns. The key significance is that intrinsic wave
properties are observed in both environments [Barrow et al. (2004); Hawkingand & Mlodinow
(2010)].

1.2 Two types of probabilities

Multivariate probabilities acting on multinomial distributions occupy a central role in classical
probability theory and its applications. This mechanism has been explored from the early
days in the study of modern probability theories [Ash & Doléans-Dade (2000); Durret (2005)].
Conditional probability is a powerful methodology at the heart of classical Bayesian statistics.
In the history of probability and statistical developments, there have been long-running
debates and a persistent lack of agreement in differentiating between prior distributions and
posterior distributions [Ash & Doléans-Dade (2000); Durret (2005)]. It is worthy of note that
the uniform distributions or normal distributions of conditional probability are always linked
to a relatively large number of probability distributions in non-normal conditions. This points
to practical problems with random distributions.
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2 Measurement Systems

1.3 Advanced single photon experiments

1.3.1 Applying the bohr complementarity principle

The Bohr Complementarity Principle BCP, established back in the 1920s brought us the
foundations of QM [Bohr (1949)]. In Bohr’s statement:"... we are presented with a choice
of either tracing the path of the particle; or observing interference effects ... we have
here to do with a typical example of how the complementary phenomena appear under
mutually exclusive experimental arrangements." It is significant that BCP provided a powerful
intellectual basis for Bohr in key debates in the history of QM and especially in his debates
with Einstein [Jammer (1974)].

1.3.2 Testing bell inequality

To help decide between Bohr and Einstein on their approaches to wave and particle issues,
Bell proposed a set of Bell-Inequations in the 1960s [Bell (1964)]. In 1969, CHSH proposed a
spin measurement approach [Clauser et al. (1969)] and experiments by Aspect in 1982 did not
support local realism [Aspect et al. (1982)].

1.3.3 Afshar’s measurements

In 2001 Afshar set up an experiment to test the BCP [Afshar (2005)]. This experiment
generated strong evidence contradicting the BCP, since both particle and wave distributions
can be observed simultaneously. In Afshar’s experiments, there are four measurements: ψ1

- signals via left path, ψ2 - signals via right path, σ1 - interactive measurements of {ψ1, ψ2}
on the distance of f , and σ2 - separate measurements of {ψ1, ψ2} on the distance of f + d
respectively. In this experiment, a measurement quaternion is

〈ψ1, ψ2, σ1, σ2〉. (1)

1.4 Current situation

From the 1920s through to the start of the 21st century, there was no significant experimental
evidence to show that there were problems with the BCP. However, Afshar’s 2001
experimental results are clearly not consistent with the BCP and further experimental results
have provided solid evidence against the BCP. [Afshar (2005; 2006); Afshar et al. (2007)]. It is
interesting to see that neither local realism nor the BCP are validated by the results of modern
advanced single photon experiments [Afshar et al. (2007); Aspect (2007)]. It will be a major
challenge in this century to redefine the principles on which the quantum approach may now
be safely founded.

1.5 Chapter organization

Following on from multivariate probability models, this chapter focusses on a conditional
approach to illustrate special properties found in conditional probability measurements via
global matrix representations on the variant construction. This chapter is organized into nine
sections addressing as follows:

1. general introduction (above)

2. key historical debates on the foundations of QM

340 Advanced Topics in Measurements
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From Conditional Probability Measurements to Global Matrix Representations on Variant Construction 3

3. analysis of key issues of QM

4. conditional construction proposed

5. exemplar results

6. analysis of visual distributions

7. using the variant solution to resolve longstanding puzzles

8. main results

9. final conclusions

2. Wave and particle debates in QM developments

2.1 Heisenberg uncertain principle

The Heisenberg Uncertainty Principle HUP was established in 1927 [Heisenberg (1930)]. The
HUP represented a milestone in the early development of quantum theory [Jammer (1974)].
It implies that it is impossible to simultaneously measure the present position of a particle
while also determining the future motion of a particle or any system small enough to require
a Quantum mechanical treatment. From a mathematical viewpoint, the HUP arises from an
equation following the methodology of Fourier analysis for the motion [Q, P] = QP − PQ =
ih̄. The later form of HUP is expressed as △p · △q ≈ h.

This equation shows that the non-commutativity implies that the HUP provides a physical
interpretation for the non-commutativity.

2.2 Bohr complementarity principle

The HUP provided Bohr with a new insight into quantum behaviors [Bohr (1958)]. Bohr
established the BCP to extend the idea of complementary variables for the HUP to energy
and time, and also to particle and wave behaviors. One must choose between a particle
model, with localized positions, trajectories and quanta or a wave model, with spreading
wave functions, delocalization and interferences [Jammer (1974)].

Under the BCP, complementary descriptions e.g. wave or particle are mutually exclusive
within the same mathematical framework because each model excludes the other. However,
a conceptual construction allowed the HUP, the BCP and wave functions together with
observed results to be integrated to form the Copenhagen Interpretation of QM. In the context
of double slit experiments, the BCP dictates that the observation of an interference pattern for
waves and the acquisition of directional information for particles are mutually exclusive.

2.3 Bohr-Einstein debates on wave and particle issues

Bohr and Einstein remained lifelong friends despite their differences in opinion regarding QM
[Bohr (1949; 1958)]. In 1926 Born proposed a probability theory for QM without any causal
explanation. Einstein’s reaction is well known from his letter to Born [Born (1971)] in which
he said "I, at any rate, am convinced that HE [God] does not throw dice."

Then in 1927 at the Solvay Conference, Heisenberg and Bohr announced that the QM
revolution was over with nothing further being required. Einstein was dismayed [Bohr (1949);
Bolles (2004)] for he believed that the underlying effects were not yet properly understood.
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4 Measurement Systems

Perhaps in a spirit of compromise, Bohr then proposed his BCP that emphases the role of the
observer over that which is observed. From 1927-1935, Einstein proposed a series of three
intellectual challenges to further explore wave and particle issues [Bohr (1935; 1949); Bolles
(2004)]:

• First, in 1927 Einstein proposed a double slit experiment on interference properties.

• Second, in 1930 at the sixth Solvay Congress, Einstein proposed weighing a box emitting
timed releases of electromagnetic radiation.

• Third, in 1935 the paper "Can Quantum Mechanical Of Description Physical Reality Be
Considered Complete?" [Einstein et al. (1935)] by Einstein, Podolsky and Rosen EPR was
published in Physical Review.

2.4 EPR claims

The key points of the EPR paper are focused on two aspects: either (1) the description of
reality given by the wave function in QM is incomplete or (2); the two quantities P and Q
cannot have simultaneous reality.

Both operations: P and Q are applied PQ − QP = ih̄. Such relationships follow the standard
Quantum expression.

Property PQ − QP �= 0 implies P and Q operations are related without independent
computational properties. Under this condition, it is impossible to execute the two operations
simultaneously under extant QM frameworks. From a parallel processing viewpoint,
Einstein’s view is extremely valuable. As such modern parallel computing theories and
practices were only developed in the 1970s [Valiant (1975)] it is remarkable that Einstein
pioneered such an approach way back in the 1930s. Modern parallel computing theory and
practice support the original EPR paper and the conclusion that a QM description of physical
that is expressed only in terms of wave functions is incomplete.

3. Key issues in QM

3.1 Restriction under HUP

For the HUP, different interpretations originate from the equation [Q, P] = QP − PQ = ih̄,
and the later HUP form △q · △p ≥ h. From a mathematical viewpoint, this type of inequality
implies △q,△p ≥ h too. In other words, a minimal grid of a lattice restricts △q and
△p → 0 actions. From the HUP expression, [Q, P] �= 0 indicates the construction with a
discrete intrinsic limitation. Such structures cannot directly apply to continuous infinitesimal
operations.

Many quantum problems do not extend to the region of Plank constant limitations.
Investigation back in the 1930s tended to rely more on theoretical considerations rather than
actual experimentation [Bohr (1949)]. Consequently many issues had to wait until the 1980s
to become better understood.

Both Q and P are infinite dimensional matrices, the restriction of [Q, P] = ih̄ comes with a
clear meaning today on its discrete properties. We cannot apply a continuous approach to
make [Q, P] = 0. From an operational viewpoint, Einstein correctly identified the root of the
matter. Since Q and P cannot exchange, it is not possible to run a simultaneous process on the
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From Conditional Probability Measurements to Global Matrix Representations on Variant Construction 5

standard wave functions. Simply extending discrete variations using continuous approaches
presents further difficulties for the HUP.

In addition, the following questions need to be addressed in relation to the practical
identification of complementary objects.

• What determines when a pair of objects is indeed a complementary pair?

• Is a pair of complex conjugate objects: a + bi and a − bi, a pair of complementary objects?

• Is a pair of matrices, a hermit matrix H and its complex conjugate matrix H∗, a pair of
complementary objects?

• Why can density matrix operations on infinite dimension be performed without significant
errors while a pair of complementary finite matrices must be restricted by the HUP?

In practice, QM computations are mainly applied to wave functions and [Q, P] = ih̄ formula.
Intellectual debate on the theoretical considerations is particularly relevant to the HUP. In
comparison, the deeper problems of QM cannot be easily explored in the absence of an
experimental approach and a viable alternative theoretical construction [Barrow et al. (2004);
Jammer (1974)].

3.2 Construction of BCP

Inspired by the HUP, Bohr uses a continuous analogy and a classical logical construction to
describe Quantum systems. The BCP extends the HUP to handle different pairs of opposites
and to restrict them with exclusive properties [Bohr (1958)].

As there were no well refined critical experiments in these days, all the debates between
Bohr and Einstein were based on theoretical considerations alone. Compared with Einstein’s
open-minded attitudes to QM [Einstein et al. (1935)], Bohr and others insisted on the
completeness and consistency of the Copenhagen Interpretation on QM [Bohr (1935)]. Such
closed attitudes served to distance Bohr and others of like mind from reasonable suggestions
made by Einstein and those expressed in the EPR paper and to lead them to treat such
suggestions as if they were attacks on their already strongly held views [Bolles (2004)].

The BCP uses a classical logic framework to support dynamic constructions. Underpinned by
the BCP, the HUP and a knowledge of wave functions, the Copenhagen Interpretation played
a dominant role in QM from the 1930s on as it had by then been accepted as the orthodox
point of view [Jammer (1974)].

Meanwhile, the EPR paper emphases that critical evidence must be obtained by real
experiments and measurements. It is in the nature of a priori philosophical considerations
that they will run into difficulties when actual experimental results fail to corresponded with
their expectations.

3.3 EPR construction

The EPR position [Einstein et al. (1935)] can be re-visited in the light of modern advances in
knowledge and computing theory. From a computing viewpoint, simultaneous properties
may be the key with which these long-standing mysteries of QM can at last be unlocked.
Operators P and Q cannot be exchanged, this indicates operational relevances existing in the
lower levels of classical QM construction. In addition, there is a requirement of two systems
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6 Measurement Systems

S1 →

S2 →

Interactive
Measurements IM

IM(S1, S2|t), t ∈ [0, T]
→ {S1, S2, t} →

Separate
Measurements SM
SM(S1, S2|t), t > T

ERP Model = 〈S1, S2, IM(S1, S2|t)t∈[0,T], SM(S1, S2|t)t>T〉

Fig. 1. EPR Measurement Quaternion Model on Einstein’s Experimental Devices

to have interactive properties in t ∈ [0, T] and without interactive properties on t > T. Such
expressions may not be properly formulated by Fourier transformation schemes on wave
functions.

However, after 78 years of development in advanced scienctific and ICT technologies, it is
now possible to use advanced photonic and optical fiber technologies to implement all the
requirements of the experiments proposed by Einstein.

The core EPR model can be shown in Figure 1, listed notations are explained as follows.

Let S1 be System I, S2 be System II, IM(S1, S2|t), t ∈ [0, T] be Interactive Measurements IM
for S1 and S2 on t ∈ [0, T], SM(S1, S2|t), t > T be Separate Measurements SM (non-interactive
measurements) for S1 and S2 on t > T. Einstein’s Experimental devices can be described as
an EPR measurement quaternion:

〈S1, S2, IM(S1, S2|t)t∈[0,T], SM(S1, S2|t)t>T〉. (2)

If an experiment can be expressed in the requisite form for this model, then it can be
legitimately claimed as an EPR experiment.

3.4 Afshar experimental device

Afshar’s experimental results have shown that it is possible to measure both particle and wave
interference properties simultaneously in the same experiment with high accuracy [Afshar
(2005; 2006); Afshar et al. (2007)]. Since this set of experiments has produced results that
challenge the BCP at its very core it is pertinent to analyze and compare the model with the
requirements for valid EPR devices.

In Afshar’s experiments, {ψ1, ψ2} are two signals input through double slits; σ1 is the location
on the distance f to collect interference measurements of {ψ1, ψ2}, and σ2 is the location on
the distance f + d to collect separate measurements of {ψ1, ψ2}. Under this configuration, a
1-1 corresponding map can be established as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ψ1 → S1;
ψ2 → S2;
σ1 → IM(S1, S2|t), t → f ;
σ2 → SM(S1, S2|t), t → f + d.

(3)

Using quaternion structures,

〈ψ1, ψ2, σ1, σ2〉 → 〈S1, S2, IM(S1, S2| f ), SM(S1, S2| f + d)〉. (4)
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From Conditional Probability Measurements to Global Matrix Representations on Variant Construction 7

X ∈ BN
2 →

J ∈ B2n

2 →

Conditional Meta
Measurements

CMM
→ ρ̃ →

Conditional Interactive
Measurements

CIM

→ ũ
→ ṽ

ũ →
ṽ →

∀X ∈ BN
2 →

Statistical
Distribution

SD

→ {PH(ũβ|J)} →
→ {PH(ṽβ|J)} →

∀J ∈ B2n

2 →

Global Matrix
Representations

GMR

→ {M(ũβ)}
→ {M(ṽβ)}

(a) Architecture

ρ̃ → BP
→ ρ̃− →
→ ρ̃+ →

SW
→ ρ̃−, (1 − ρ̃−)/2 →
→ ρ̃+, (1 + ρ̃+)/2 →

IM
→ ũ
→ ṽ

(b) CIM Component

Fig. 2. (a-b) Conditional Variant Simulation and Representation System; (a) System
Architecture; (b) Conditional Interactive Measurement CIM Component

Under this correspondence, Afshar experiments are consistent with the EPR model.

4. Conditional variant simulation and representation system

A comprehensive review of the process of variant construction from conditional probability
measurements through to global matrix representations is described briefly in this section.
It is hoped that this may offer a convenient path for those seeking to devise and carry out
experiments to further explore natural mysteries through the application of sound principles
of logic and measurement.

Using variant principles described in the following subsections, with a N bit 0-1 vector X and
a given logic function f , all N bit vectors are exhausted, variant measures generate two groups
of histograms. The variant simulation and representation system is shown in Fig 2 (a-b). The
detailed principles and methods are described in Sections 4.2-4.7 respectively. For multivariate
probability conditions, please refer to the chapter of "From local interactive measurements to
global matrix representations on variant construction" elsewhere in this book for sample cases
and group distributions in multivariate probability environments.

4.1 Conditional simulation and representation model

The full measurement and representational architecture as shown in Figure 2(a) has four
components: Conditional Meta Measurements CMM, Conditional Interactive Measurements
CIM, Statistical Distributions SD and Global Matrix Representations GMR. The key part of the
system, the CIM component, is shown in Fig 2(b).

4.1.1 Conditional Meta Measurements

The Conditional Meta Measurement (CMM) component uses N bit 0-1 vector X and a given
function J ∈ B2n

2 , CMM transfers N bit 0-1 vector under J(X) to generate four Meta-measures,
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8 Measurement Systems

under a given probability scheme, four conditional probability measurements are generated
and output as a quaternion signal ρ̃.

4.1.2 Conditional Interactive Measurements

The Conditional Interactive Measurement (CIM) component is the key location for conditional
interactions as shown in Figure 2(b) to transfer a quaternion signal ρ̃ under symmetry /
anti-symmetry and synchronous / asynchronous conditions, under four combinations of time
effects namely (Left, Right, Double Particle, Double Wave). Two types of additive operations
are identified. Each {ũ, ṽ} signal is composed of four distinct signals.

4.1.3 Statistical Distributions

The Statistical Distribution (SD) component performs statistical activities on corresponding
signals. It is necessary to exhaust all possible vectors of X with a total of 2N vectors. Under
this construction, each sub-signal of {ũ, ṽ} forms a special histogram with a one dimensional
spectrum to indicate the distribution under function J. A total of eight histograms are
generated in the probability conditions.

4.1.4 Global Matrix Representations

The Global Matrix Representation (GMR) component uses each statistical distribution of the
relevant probability histogram as an element of a matrix composed of a total of 22n

elements
for all possible functions {J}. In this configuration, C code schemes are applied to form a

22n−1
× 22n−1

matrix to show the selected distribution group.

Unlike the other coding schemes (SL, W, F, ...), only C code schemes provide a regular
configuration to clearly differentiate the Left path as exhibiting horizontal actions and the
Right path as exhibiting vertical actions . Such clearly polarized outcomes may have the
potential to help in the understanding of interactive mechanism(s) between double path for
particles and double path for waves properties.

4.2 Variant principle

The variant principle is based on n-variable logic functions [Zheng (2011); Zheng & Zheng
(2010; 2011a;b); Zheng et al. (2011)].

4.2.1 Two sets of states

For any n-variables x = xn−1...xi...x0, 0 ≤ i < n, xi ∈ {0, 1} = B2 let a position j be the
selected bit 0 ≤ j < n, xj be the selected variable. Let output variable y and n-variable
function f , y = f (x), y ∈ B2, x ∈ Bn

2 . For all states of x, a set S(n) composed of the 2n states
can be divided into two sets: S0(n) and S1(n).

⎧

⎨

⎩

S0(n) = {x|xj = 0, ∀x ∈ Bn
2 }

S1(n) = {x|xj = 1, ∀x ∈ Bn
2 }

S(n) = {S0(n), S1(n)}
(5)
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From Conditional Probability Measurements to Global Matrix Representations on Variant Construction 9

4.2.2 Four meta functions

For a given logic function f , input and output pair relationships define four meta logic
functions { f⊥, f+, f−, f⊤}.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f⊥(x) = { f (x)|x ∈ S0(n), y = 0}
f+(x) = { f (x)|x ∈ S0(n), y = 1}
f−(x) = { f (x)|x ∈ S1(n), y = 0}
f⊤(x) = { f (x)|x ∈ S1(n), y = 1}

(6)

4.2.3 Two polarized functions

Considering two standard logic canonical expressions: the AND-OR form is selected from
{ f+(x), f⊤(x)} as y = 1 items, and the OR-AND form is selected from { f−(x), f⊥(x)} as
y = 0 items. Considering { f⊤(x), f⊥(x)}, xj = y items, they are themselves invariant.

To select { f+(x), f−(x)}, xj �= y in forming a variant logic expression. Let f (x) = 〈 f+|x| f−〉
be a variant logic expression. Any logic function can be expressed as a variant logic form.
In 〈 f+|x| f−〉 structure, f+ selected 1 items in S0(n) as the same as the AND-OR standard
expression, and f− selecting relevant parts the same as OR-AND expression 0 items in S1(n).

4.3 Meta measures and conditional probability measurements

Under variant construction, N bits of 0-1 vector X under a function J produce four Meta
measures composed of a measure vector N

(X : J(X)) → (N⊥, N+, N−, N⊤), N0 = N⊥ + N+, N1 = N− + N⊤, N = N0 + N1

Using four Meta measures, relevant probability measurements can be formulated.
ρ̃ = (ρ̃⊥, ρ̃+, ρ̃−, ρ̃⊤) = (N⊥/N0, N+/N0, N−/N1, N⊤/N1), 0 ≤ ρ̃⊥, ρ̃+, ρ̃−, ρ̃⊤ ≤ 1.

4.3.1 Variant measure functions

Let ∆ be the variant measure function

∆ = 〈∆⊥, ∆+, ∆−, ∆⊤〉
∆J(x) = 〈∆⊥ J(x), ∆+ J(x), ∆− J(x), ∆⊤ J(x)〉

∆α J(x) =

{

1, J(x) ∈ Jα(x), α ∈ {⊥,+,−,⊤}
0, others

(7)

For any given n-variable state there is one position in ∆J(x) to be 1 and other 3 positions are
0.

4.3.2 Variant measures on vector

For any N bit 0-1 vector X, X = XN−1...Xj...X0, 0 ≤ j < N, Xj ∈ B2, X ∈ BN
2 under n-variable

function J, n bit 0-1 output vector Y, Y = J(X) = 〈J+|X|J−〉, Y = YN−1...Yj...Y0, 0 ≤ j <

N, Yj ∈ B2, Y ∈ BN
2 . For the j-th position xj = [...Xj...] ∈ Bn

2 to form Yj = J(xj) = 〈J+|xj|J−〉.
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10 Measurement Systems

Let N bit positions be cyclic linked. Variant measures of J(X) can be decomposed

∆(X : Y) = ∆J(X) =
N−1

∑
j=0

∆J(xj) = 〈N⊥, N+, N−, N⊤〉 (8)

as a quaternion 〈N⊥, N+, N−, N⊤〉, N = N⊥ + N+ + N− + N⊤.

4.3.3 Example

E.g. N = 12, given J, Y = J(X).

X = 1 0 1 1 1 0 1 1 1 0 0 1
Y = 0 0 1 0 1 0 1 0 1 1 0 0

∆(X : Y) = − ⊥ ⊤ − ⊤ ⊥ ⊤ − ⊤ + ⊥ −

∆J(X) = 〈N⊥, N+, N−, N⊤〉 = 〈3, 1, 4, 4〉, N = 12.

Input and output pairs are 0-1 variables for only four combinations. For any given function
J, the quantitative relationship of {⊥,+,−,⊤} is directly derived from the input/output
sequences. Four meta measures are determined.

4.4 Four conditional meta measurements

Using variant quaternion, conditional measurements of probability signals are calculated as
four meta conditional measurements by following the given equations. For any N bit 0-1
vector X, function J, under ∆ measurement: ∆J(X) = 〈N⊥, N+, N−, N⊤〉, N0 = N⊥ + N+,
N1 = N− + N⊤, N = N0 + N1 = N⊥ + N+ + N− + N⊤.

Signal ρ̃ is defined by
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ρ̃ = (ρ̃⊥, ρ̃+, ρ̃−, ρ̃⊤)

ρ̃⊥ = N⊥
N0

ρ̃+ = N+
N0

ρ̃− = N−
N1

ρ̃⊤ = N⊤
N1

(9)

4.5 Conditional Interactive Measurements

Conditional Interactive Measurements (CIM) are divided into three stages: BP, SW and SM
respectively. The BP stage selects {ρ̃−, ρ̃+} as sub-signals. The SW component extends two
signals into four signals with different symmetric properties; The SM component merges
different signals to form two sets of eight signals.

Using {ρ̃+, ρ̃−}, a pair of signals {ũ, ṽ} are formulated:

⎧

⎨

⎩

ũ = (ũ+, ũ−, ũ0, ũ1) = {uβ}
ṽ = (ṽ+, ṽ−, ṽ0, ṽ1) = {vβ}

β ∈ {+,−, 0, 1}
(10)
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From Conditional Probability Measurements to Global Matrix Representations on Variant Construction 11

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ũ+ = ρ̃+
ũ− = ρ̃−
ũ0 = ũ+ ⊕ ũ−

ũ1 = (ũ+ + ũ−)/2

ṽ+ =
1+ρ̃+

2

ṽ− =
1−ρ̃−

2
ṽ0 = ṽ+ ⊕ ṽ−
ṽ1 = ṽ+ + ṽ− − 0.5

(11)

where 0 ≤ ũβ, ṽβ ≤ 1, β ∈ {+,−, 0, 1}, ⊕ : Asynchronous addition, + : Synchronous addition.

4.6 Statistical distributions

The SD component provides a statistical means to accumulate all possible vectors of N bits
for a selected signal and generate a histogram. Eight signals correspond to eight histograms
respectively. Among these, four histograms exhibit properties of symmetry and the other four
histograms exhibit properties of anti-symmetry.

4.6.1 Statistical histograms

For a function J, all measurement signals are collected and the relevant histogram represents
a complete statistical distribution.

Using ũ and ṽ signals, each ũβ or ṽβ determines a fixed position in the relevant

histogram to make vector X on a position. After completing 2N data sequences, eight
symmetry/anti-symmetry histograms of {H(ũβ|J)}, {H(ṽβ|J)} are generated.

For a function J, β ∈ {+,−, 0, 1}

{

H(ũβ|J) = ∑∀X∈BN
2

H(ũβ|J(X))

H(ṽβ|J) = ∑∀X∈BN
2

H(ṽβ|J(X)), J ∈ B2n

2
(12)

4.6.2 Normalized probability histograms

Let |H(..)| denote the total number in the histogram H(..), a normalized probability histogram
(PH(..)) can be expressed as

⎧

⎨

⎩

PH(ũβ|J) =
H(ũβ |J)
|H(ũβ |J)|

PH(ṽβ|J) =
H(ṽβ |J)
|H(ṽβ |J)|

, J ∈ B2n

2

(13)

Here, all histograms are restricted in [0, 1]2 areas.

Distributions are dependant on the data set as a whole and are not sensitive to varying under
special sequences. Under this condition, when the data set has been exhaustively listed, then
the same distributions are always linked to the given signal set.

The eight histogram distributions provide invariant spectra to represent properties among
different interactive conditions.
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4.7 Global Matrix Representations

After local interactive measurements and statistical process are undertaken for a given
function J, eight histograms are generated. The Global Matrix Representation GMR
component performs its operations into two stages. In the first stage, exhausting all possible
functions for ∀J ∈ B2n

2 to generate eight sets, each set contains 22n
elements and each element

is a histogram. In the second stage, arranging all 22n
elements generated as a matrix by C code

scheme. Here, we can see Left and Right path reactions polarized into Horizontal and Vertical
relationships respectively.

4.7.1 Matrix and its elements

For a given C scheme, let C(J) = 〈J1|J0〉, each element

⎧

⎪

⎨

⎪

⎩

M〈J1|J0〉(ũβ|J) = PH(ũβ|J)

M〈J1|J0〉(ṽβ|J) = PH(ṽβ|J)

J ∈ B2n

2 ; J1, J0 ∈ B2n−1

2

(14)

4.7.2 Representation patterns of matrices

For example, using n = 2, P = (3102), ∆ = (1111) conditions, a C code case contains sixteen
histograms arranged as a 4 × 4 matrix.

0 4 1 5

2 6 3 7

8 12 9 13

10 14 11 15

(15)

All matrices in this chapter use this configuration for the matrix pattern representing their
elements.

5. Simulation results

For ease of illustration, as different signals have intrinsic random properties, only statistical
distributions and global matrix representations are selected in this section.

5.1 Statistical distributions

The simulation provides a series of output results. In this section, N = {12, 13}, n = 2, {J =
3, J+ = 11, J− = 2} are selected. Corresponding to Left path (Left), Right path (Right),
Double path for Particles (D-P) and Double path for Waves (D-W) under symmetry and
anti-symmetry conditions respectively.

From a given function, a set of histograms can be generated as two groups of eight probability
histograms. To show their refined properties, it is necessary to represent them in both odd and
even numbers. A total of sixteen histograms are required. For convenience of comparison,
sample cases are shown in Figures 3(I-III).
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PH(ũ+|J) PH(ũ−|J)
(a) Left (b) Right

PH(ũ0|J) PH(ũ1|J)
(c) D-P (d) D-W

PH(ṽ+|J) PH(ṽ−|J)
(e) Left (f) Right

PH(ṽ0|J) PH(ṽ1|J)
(g) D-P (h) D-W

(I) Representative patterns of Histograms for function J (a-d) symmetric cases; (e-h)
antisymmetric cases

(a) Left (b) Right

(c) D-P (d) D-W

(e) Left (f) Right

(g) D-P (h) D-W
(II) N = {12}, J = 3 Two groups of results in eight histograms
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(a) Left (b) Right

(c) D-P (d) D-W

(e) Left (f) Right

(g) D-P (h) D-W
(III) N = {13}, J = 3 Two groups of results in eight histograms

Fig. 3. (I-III) N = {12, 13}, J = 3 Simulation results ; (I) Representative Patterns for
PH(ũ+|J) = PH(ũ−|J) and PH(ṽ+|J) = PH(1 − ṽ−|J) conditions; (II) N = {12}, J = 3 Two
groups of eight histograms on conditional probability; (III) N = {13}, J = 3 Two groups of
eight histograms on conditional probability
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Representation patterns are illustrated in Fig 3(I). Eight conditional probability histograms
of PH(ũ+|J) = PH(ũ+|J) are shown in Fig 3(II) for N = 12 to represent four symmetry
groups and another eight conditional probability histograms are shown Fig 3(III) for N = 13
to represent four anti-symmetry groups respectively.

5.2 Global matrix representations

All possible 22n
functions are applied. It is convenient to arrange all the histograms generated

into a matrix and a C code scheme of variant logic is applied to organize a set of 22n
histograms

into a 22n−1
× 22n−1

matrix.

Applying the C code configuration, any given signal of a function determines a matrix element
to represent its histogram. There is one to one correspondence among different configurations.

Using this measurement mechanism, eight types of statistical histograms are systematically
illustrated. Each element in the matrix is numbered to indicate its corresponding function
and the relevant histogram is shown.

For n = 2 cases, sixteen matrices are shown in Figs 5-6 (a-h). Figs 5-6 (a-d) represent
Symmetry groups and Figs 5-6 (e-h) represent Anti-symmetry groups. To show odd and even
number configurations, Fig 5 (a-h) shows N = 12 cases and Fig 6 (a-h) shows N = 13 cases
respectively.

6. Analysis of results

In the previous section, results of different statistical distributions and their global matrix
representations were presented. In this section, plain language is used to explain what various
visual effects might be illustrated and to discuss local and global arrangements.

6.1 Statistical distributions for a given function

It is necessary to analyze the differences among the various statistical distributions for a given
function.

6.1.1 Symmetry groups for a function

For the selected function J = 3, four distributions in symmetry groups are shown in Fig 3
(a-d). (a) PH(ũ+|J) for Left; (b) PH(ũ−|J) for Right; (c) PH(ũ0|J) for D-P; and (d) PH(ũ1|J) for
D-W respectively.

Under Symmetry conditions, PH(ũ+|J) = PH(ũ−|J), both Left and Right distributions are the
same. PH(ũ0|J) generated with both paths open under asynchronous conditions simulates
a D-P. Compared with distributions in (a-b) , it is possible to identify the components from
original inputs.

However, for PH(ũ1|J) under synchronous conditions and with the same Left and Right input
signals, the simulation shows a D-W exhibiting interferences among the output distributions
that are significantly different from the original components.
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6.1.2 Anti-symmetry groups for a function

Four distributions are shown in Fig 3 (e-h) as asymmetry groups. A pair of equations
PH(ṽ+|J) = PH(1− ṽ−|J) shows that one distribution is a mirror image of the other. PH(ṽ+|J)
distribution is shown in Fig 3 (e) for Left signals and PH(ṽ−|J) distribution is shown Fig 3 (f)
for Right signals.

PH(ṽ0|J) is shown in Fig 3 (g) for both paths open under asynchronous conditions to simulate
a D-P. Compared with (e-f) distributions, it is feasible to identify the same components from
the original inputs.

However PH(ṽ1|J) is shown in Fig 3 (h) under synchronous condition with both path signals
as inputs to simulate a D-W exhibiting interferences among the output distributions that are
significantly different from the original components.

To differentiate between even and odd numbers, N = 12 cases are shown in Fig 3 (II, a-h) and
N = 13 cases are shown in Fig 3 (III, a-h) respectively.

6.2 Global matrix representations

Sixteen matrices are represented in Fig 4-5 (a-h) with eight signals generating two sets of 16
groups for N = {12, 13} respectively.

6.2.1 Symmetry cases

Matrices for the Left in Fig 4-5 (a) show elements in a column with the corresponding
histogram showing polarized effects on the vertical.

Matrices for the Right in Fig 4-5 (b) show elements in a row with the corresponding histogram
showing polarized effects on the horizontal.

Matrices for D-P in Fig 4-5 (c) provide asynchronous operations combined with both
distributions from Fig 4-5 (a-b) to form a unified distribution. From each corresponding
position, it is possible to identify each left and right component and the resulting shapes of
the histogram.

Matrices for D-W in Fig 4-5 (d) provide synchronous operations combined with both
distributions from Fig 4 -5 (a-b) for each element.

Compared with Fig 4-5 (c) and Fig 4-5 (d) respectively, distributions in Fig 4-5 (d) are
much simpler with two original distributions especially on the anti-diagonal positions: J ∈
{10, 12, 3, 5}. Only less than half the number of spectrum lines are identified.

6.2.2 Anti-symmetry cases

In a similar manner to the symmetry conditions, four anti-symmetry effects can be identified
in Fig 4-5 (e-h). Matrices in Fig 4-5 (e) are Left operations for different functions; elements
are polarized on the vertical and matrices in Fig 4-5 (f) are Right Operations; elements are
polarized on the horizontal. Spectrum lines in Fig 4-5 (e) appear in the right half and spectrum
lines in Fig 4-5 (f) appear in the Left half respectively.
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Matrices for D-P in Fig 4-5 (g) show additional effects for each distribution according to the
relevant position with components that can be identified as corresponding to identifiable
inputs in many cases. Anti-symmetry signals are generated in merging conditions.

Matrices for D-W in Fig 4-5 (h) show different properties. In general, only one peak can be
observed for each element especially for the J ∈ {10, 12, 3, 5} condition. Spectra appear to
be much simpler than the original distributions in Fig 4-5 (e-f), and significant interference
properties are observed.

6.3 Four symmetry groups

Pairs of relationships can be checked on symmetry matrices in Figs 4-5 (a-d), four groups are
identified.

6.3.1 Left: polarized vertical group

{PH(ũ+|J)} elements in Figs 4-5 (a) show (only) four distinct distributions. Each column
contains only one distribution. Sixteen elements in the matrix can be classified into four
vertical classes: {0, 2, 8, 10}, {4, 6, 12, 14}, {1, 3, 9, 11}, {5, 7, 13, 15} respectively. Four meta
distributions are given as {10, 14, 11, 15}.

6.3.2 Right: polarized horizontal group

{PH(ũ−|J)} elements in Figs 4-5 (b) show (a further) four distinct distributions. Each row
contains only one distribution. Sixteen elements in the matrix can be classified into four
horizontal classes: {0, 4, 1, 5}, {2, 6, 3, 7}, {8, 12, 9, 13}, {10, 14, 11, 15} respectively. Four meta
distributions are given as {0, 2, 8, 10}.

6.3.3 D-P: particle group

{PH(ũ0|J)} elements in Figs 4-5 (c) illustrate symmetry properties. There are six pairs of
symmetry elements: {8 : 14}, {2 : 11}, {0 : 15}, {6 : 9}, {4 : 13}, {1 : 7}. In addition, four
elements on anti-diagonals provide different distributions: {10, 12, 3, 5}. Under this condition,
ten classes of distributions are distinguished.

6.3.4 D-W: wave group

{PH(ũ1|J)} elements in Figs 4-5 (d) illustrate symmetry properties. There are six pairs of
symmetry elements: {8 : 14}, {2 : 11}, {0 : 15}, {6 : 9}, {4 : 13}, {1 : 7}. In addition, four
elements on diagonal positions provide the same distribution: {0, 6, 9, 15}. Two elements on
anti-diagonals: {12, 3} have the same distribution in Fig 4 (d). Under this condition, nine or
ten classes of different distributions can be identified for Fig 4 (d) and Fig 5 (d) respectively.

6.4 Four anti-symmetry groups

Figures 4-5 (e-h) represent anti-symmetry properties, four groups can be identified.
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6.4.1 Left: polarized vertical group

{PH(ṽ+|J)} elements in Figs 4-5 (e) show that (only) four classes can be distinguished.
Elements within these groups members are the same as for symmetry groups in Figs 4-5(a).
Their distributions fall within the region [0.5, 1].

6.4.2 Right: polarized horizontal group

{PH(ṽ−|J)} elements in Figs 4-5 (f) show that (only) four classes can be distinguished.
Elements within these groups are the same as for symmetry groups in Figs 4-5 (b). Their
distributions fall within the region [0, 0.5].

6.4.3 D-P: particle group

{PH(ṽ0|J)} in Figs 4-5 (g) show six pairs of anti-symmetry distributions: {8 ∤ 14}, {2 ∤
11}, {0 ∤ 15}, {6 ∤ 9}, {4 ∤ 13}, {1 ∤ 7} four elements are distinguished on the anti-diagonals:
{10, 12, 3, 5}. Under this condition, ten classes can be identified.

6.4.4 D-W: wave group

{PH(ṽ1|J)} in Figs 4-5 (h) show six pairs of anti-symmetry distributions: {8 ∤ 14}, {2 ∤ 11}, {0 ∤
15}, {6 ∤ 9}, {4 ∤ 13}, {1 ∤ 7} four pairs of symmetry elements: {3 : 5}, {10 : 12}, {2 : 4}, {11 :
13} are distinguished. Under this condition, twelve classes can be identified.

6.5 Odd and even numbers

From a group viewpoint, only D-P and D-W need to be reviewed as different groups in
symmetry conditions. Anti-symmetry conditions are unremarkable.

It is reasonable to suggest that anti-symmetry operations will be much easier to distinguish
under experimental conditions, since sixteen groups in D-P conditions and twelve groups in
D-W conditions will have significant differences. However, under the symmetry conditions
(only) minor differences can be identified.

6.5.1 Single and double peaks

Single and Double peaks can be observed in Fig 4(5) (h): {3, 5} for even and odd numbers
respectively.

For two other members {10, 12}, (only) single pulse distributions are observed in Figs 4-5 (h)
to show the strongest interference results.

6.6 Class numbers in different conditions

To summarize over the different classes, 16 matrices are shown in different numbers of
identified classes as follows:
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Class No. Left Right D-P D-W

SE 4 4 10 10
SO 4 4 10 10
AE 4 4 16 14
AO 4 4 16 14

where Left:Left Path, Right: Right Path, D-P: Double Path for Particles, D-W: Double Path for
Waves; SE: Symmetry for Even number, SO: Symmetry for Odd number, AE: Anti-symmetry
for Even number, AO: Anti-symmetry for Odd number.

6.7 Polarized effects and double path results

In order to contrast the different polarized conditions, it is convenient to compare distributions
{PH(ũ+|J), PH(ũ−|J} and {PH(ṽ+|J), PH(ṽ−|J} arranged according to the corresponding
polarized vertical and horizontal effects. This visual effect is similar to what might be found
when using polarized filters in order to separate complex signals into two channels. Different
distributions can be observed under synchronous and asynchronous conditions.

6.7.1 Particle distributions and representations

For all symmetry or non-symmetry cases under ⊕ asynchronous addition operations,
relevant values meet 0 ≤ ũ0, ṽ0, ũ−, ṽ−, ũ+, ṽ+ ≤ 1. Checking {PH(ũ0|J), PH(ṽ0|J)} series,
{PH(ũ+|J), PH(ũ−|J)} and {PH(ṽ+|J), PH(ṽ−|J)} satisfy following equation.

{

PH(ũ0|J) =
PH(ũ− |J)+PH(ũ+ |J)

2

PH(ṽ0|J) =
PH(ṽ− |J)+PH(ṽ+ |J)

2

(16)

The equation is true for different values of N and n.

6.7.2 Wave distributions and representations

Interference properties are observed in {PH(ũ+|J) = PH(ũ−|J)} conditions. Under +
synchronous addition operations, relevant values meet 0 ≤ ũ1, ṽ1, ũ−, ṽ−, ũ+, ṽ+ ≤ 1.
Checking {PH(ũ1|J), PH(ṽ1|J)} distributions and compared with {PH(ũ+|J), PH(ũ−|J)} and
{PH(ṽ+|J), PH(ṽ−|J)}, non-equations and equations are formulated as follows:

{

PH(ũ1|J) �= PH(ũ0|J)
PH(ṽ1|J) �= PH(ṽ0|J)

(17)

Spectra in different cases illustrate wave interference properties. Single and double peaks are
shown in interference patterns and these are similar to interference effects in classical double
slit experiments.

6.7.3 Non-symmetry and non-anti-symmetry

However, for the {PH(ũ+|J) �= PH(ũ−|J)} non-symmetry cases, there are significant
differences between {PH(ũ0|J), PH(ṽ0|J)} and {PH(ũ1|J), PH(ṽ1|J)}. Such cases have
interference patterns that exhibit greater symmetry than single path and particle distributions.
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Four anti-diagonal positions are linked to symmetry and anti-symmetry pairs, twelve other
pairs of functions belong to non-symmetry and non-anti-symmetry conditions. Their meta
elements can be identified by the relevant variant expressions.

7. Core debated issues under variant construction

7.1 HUP environment

Under the variant construction, variant measurements can be organized into multiple sets of
simultaneous measurements. Each element in a N bit vector provides only a small portion
of information, collected measurements are independent of special positions. Under this
condition, there is no essential HUP environment for the variant construction. 0-1 groups
and their measurements are naturally parallel . They can be processed in simultaneous
conditions. Considering these properties, such group measurements do not correspond with
the requirements of Heisenberg single particle environments. Viewed as a whole, the system
of the variant construction has discrete and separate properties that serve to facilitate complex
local interactions for any selected group.

From a measurement viewpoint, the parallel parameters of the variant measurements enable
them to exist in different interactive models simultaneously. This set of simultaneous
properties exhibits significant differences between the original wave functions and the variant
construction.

7.2 Weakness of BCP

The main weakness of the BCP lies deep in the very logic on which it is founded. In his
approach to QM, Bohr applied then extant classical principles of logic using static YES/NO
approaches to dynamic particle and wave measurements. However, the complex nature
of QM phenomena means that such a classical logic framework cannot fully support this
quaternion organization or fully model the dynamic systems involved. This is the main reason
why the BCP requires the application of exclusive properties to pairs of opposites.

The variant construction provides quaternion measurement groups. This property naturally
supports QM-like structures. Useful configurations can be chosen for further development.

The main experimental evidence following Bohr in rejecting particle models are sets of wave
interference distributions generated in long duration and very low intensity single photon
experiments. These experiments show intrinsic wave interference patterns under many
environments. Understandably, such data have long been held to be strongly indicitive of
wave properties within even single quanta. Consequently, it has been deemed natural and
necessary to apply wave descriptions and analysis tools in the search for QM solutions.

However, evidence residing within the main visual distributions of this chapter, serves to
show that statistical distributions under a conditional probability environment naturally link
to intrinsic wave properties in the majority of situations. Nearly all interesting distributions
show obvious wave properties. Notably, such intrinsic wave distributions may be sufficient to
allow a satisfactory alternative explanation of experimental results generated in long duration
and very low intensity single photon experiments.
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7.3 The BCP for a special subset of QM

We may deduce that there is (only) a special subset of QM for which the BCP is satisfied.
Under the variant construction there are six distinct logical configurations that can be used to
support 0-1 vectors. Of these six, Bohr’s approach is suitable for only the two schemes of pure
static YES or NO. Meanwhile, the other four variant, invariant and mixed configurations lie
outside the BCP framework. From this viewpoint, Bohr offers insight into important special
circumstances of QM rather than provides an all embracing general solution.

Bohr’s QM construction is complete and useful in many theoretical and practical
environments for static and static-like systems. However, the variant construction provides a
more powerful and general mechanism to handle different dynamic systems with variant and
invariant properties.

7.4 The EPR contribution on variant construction

From EPR proposed experiments and other theoretical considerations, Einstein demonstrated
a depth of understanding of weakness inherent in the foundations of the QM approach. He
clearly identified two operators with non-communication properties that failed to support
simultaneous operations and recognized that this type of mechanism was still not explained
in the Copenhagen interpretation.

Using the variant construction, EPR devices have the following correspondence:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

S1 → {uβ, vβ, ũβ, ṽβ...};

S2 → {uβ, vβ, ũβ, ṽβ...};

IM(S1, S2) → {M(u1), M(v1), M(ũ1), M(ṽ1)...};
SM(S1, S2) → {M(u0), M(v0), M(ũ0), M(ṽ0)...}.

(18)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈S1, S2, IM(S1, S2), SM(S1, S2)〉 →
〈{uβ, vβ, ũβ, ṽβ...}, {uβ, vβ, ũβ, ṽβ...},

{M(u1), M(v1), M(ũ1), M(ṽ1)...},
{M(u0), M(v0), M(ũ0), M(ṽ0)...}〉

(19)

From this correspondence, many possible configurations of combinations and their subsets
are available for future theoretical and experimental exploration.

Using the variant construction, rich configurations can be expressed. From such mapping, it
can be seen to be nothing less than astounding that such meta constructions were identified
by Einstein as far back as 1935.

7.5 Afshar’s experiments on variant construction

Afshar’s experiments apply anti-symmetry signals making the following correspondence:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ψ1 → {v+};
ψ2 → {v1};
σ1 → {PH(v1|J)};
σ2 → {PH(v0|J)}.

(20)
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(a) Left

(b) Right
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(c) D-P

(d) D-W
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(e) Left

(f) Right
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(g) D-P

(h) D-W

Fig. 4. (a-h) Even number groups: N = {12}, f ∈ B4
2 Eight Matrices of Global Matrix

Representations. (a) Left; (b) Right; (c) D-P; (d)D-W in symmetry conditions; (e) Left; (f)
Right; (g) D-P; (h)D-W in anti-symmetry conditions.
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(a) Left

(b) Right
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(c) D-P

(d) D-W
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(e) Left

(f) Right
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(g) D-P

(h) D-W

Fig. 5. (a-h) Odd number groups: N = {13}, f ∈ B4
2 Eight Matrices of Global Matrix

Representations. (a) Left; (b) Right; (c) D-P; (d)D-W in symmetry conditions; (e) Left; (f)
Right; (g) D-P; (h)D-W in anti-symmetry conditions.
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Using quaternion structures,

{

〈ψ1, ψ2, σ1, σ2〉 → 〈{v+}, {v1}, {PH(v1|J)}, {PH(v0|J)}〉. (21)

All Afshar’s experiments are a special case of the EPR model.

8. Main results

Presented as predictions and conjectures:

8.1 Predictions

Commensurate with the chapter of local interactive measurements, similar predictions can be
described under conditional probability conditions:

Prediction 1: Left distributions have relationships showing polarized vertical behaviors with
intrinsic wave properties on conditional environments.

Prediction 2: Right distributions have relationships showing polarized horizontal behaviors
with intrinsic wave properties on conditional environments.

Prediction 3: D-P distributions have relationships showing classical particle statistical
behaviors with intrinsic wave properties on conditional environments.

Prediction 4: D-W distributions have relationships showing wave interference statistical
behaviors with strong wave properties on conditional environments.

Prediction 5: Afshar’s experiments are a special case of the EPR model in real photon
experimental environments.

Prediction 6: Distributions on conditional environments provide essential evidence to
support a series of experimental results on quanta self-interference properties.

8.2 Conjectures

Presented in relation to milestones in the historical debate underpinning the foundations of
QM:

Conjecture 1. Einstein may be declared the winner in the Bohr-Einstein debates on QM.

Conjecture 2. EPR construction is a super-powerful model to support different measurements
and simulations of quantum behaviors.

Conjecture 3. The variant construction provides a logical measurement based foundation to
support the simulation and visualization of quantum behaviors.

Conjecture 4. The next generation of fundamental development in QM will grow out of
further theoretical and experimental exploration based on variant construction.

9. Conclusion

Long held views on the wave/particle enigma, especially those investigated through single
photon experiments may be founded on a special case rather than a general explanation.
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Further insight may be found working from conditional probability measurements to global
matrix representation on the variant construction.

Applying conditional probability models on interactive measurements and relevant
statistical processes, two groups of parameters {ũβ, ṽβ} describe left path, right
path, D-P and D-W conditions with distinguishing symmetry and anti-symmetry
properties. {PH(ũβ|J), PH(ṽβ|J)} provide eight groups of distributions under symmetry and
anti-symmetry forms. In addition, {M(ũβ), M(ṽβ)} provide eight matrices to illustrate global
behaviors under conditional environments.

The complexity of n-variable function space has a size of 22n
and exhaustive vector space

has 2N . Overall simulation complexity is determined by O(22n
× 2N) as ultra exponent

productions. How to overcome the limitations imposed by such complexity and how best
to compare and contrast such simulations with real world experimentation will be key issues
in future work.

Six predictions and four conjectures are offered for testing by further theoretical and
experimental work.
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