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 Dept. of Computer Vision and Artificial Intelligence, Optical Division, Leon, 
2Center for Computing Research, National Polytehnical Institute,  

Artificial Inteligence Laboratory,  
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1. Introduction  

Interferometers are used in metrology to measure temperature, displacement, stress and 
other physical variables. A typical interferometer split a laser beam using a beam divisor. 
Beam A is called reference, and is projected directly over a film or a CCD camera using 
mirrors or fiber optic. Beam B interact with the physical phenomenon to be measured. The 
interaction modifies the optic path of beam B; then it is projected over the same film or CCD 
camera that beam A. The total irradiance is modelled on eq. 1.  

         , , , cos ,I x y a x y b x y x y   (1) 

The information about the measure is embodied on an interferogram, that is, a fringe 
pattern image. In optical metrology, a fringe pattern carries information embedded in its 
phase, that represents the difference in optical path between beam A and beam B. ,x y  are 
integer values representing coordinates of the pixel location in the fringe image, ( , )a x y  is 
the background illumination, ( , )b x y  is the amplitude modulation, and ( , )x y  is the phase 
term related to the physical quantity being measured. Figure 1 shows an interferogram and 
its associated phase ( , )x y . 

   
(a) (b)

Fig. 1. Fringe pattern(a) and its phase map (b). 
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The problem is to recover the phase map from the fringe pattern image. The demodulation 
process can be achieved by different methods, depending on the characteristics of the fringe 
pattern. If the fringe pattern, or interferogram has open fringes (see fig. 2c) by adding a 
carrier or tilt onto the phase,  phase is obtained using Takeda’s Fourier Transform method 
(Takeda & Kobayashi, 1982) or the Phase Locked Loop (Servin & Rodriguez Vera, 1993). A 
carrier is a phase that increases or decreases linearly with x  and or y . 

PLL and Fourier methods can not be used if the interferogram has closed fringes or is not 
normalized. A normalized fringe pattern means ( , ) 0a x y   and ( , ) 1b x y   (see fig 3). Many 
methods can be used to normalize a fringe pattern (Quiroga et al, 2001). An interferogram 
can be normalized due to a tilt in the plane waves of beams, defocus, speckle noise, etc. 
 

      
(a) (b) (c)

Fig. 2. Original phase (a),  fringe pattern without carrier; (b), fringe pattern by adding a carrier (c). 

   
(a) (b)

Fig. 3. (a)Non-normalized fringe pattern. ( , ) 0.001a x y y , ( , ) 2b x y x ; (b) Normalized 
fringe pattern. 

If it is possible to take three or more images and add a constant on the phase, a constant shift 
that is different for each fringe pattern (see fig. 4), phase shifting techniques are suitable 
(Malacara et al, 1998). It is not necessary to normalize the fringe pattern, but it is assumed 
that 1 2 3( , ) ( , ) ( , )a x y a x y a x y   and 1 2 3( , ) ( , ) ( , )b x y b x y b x y  .  

A drawback to phase shifted method is the real phase are not obtained, but a mod 2  of the 
phase (fig. 5a). An unwrapping method (Ghiglia & Romero, 1994) is necessary to obtain the 
real phase (fig. 4b). The fringe patterns used on phase shifting should be normalized. 
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(a) (b)  (c)

Fig. 4. (a) Original fringe pattern I; (b) Adding a constant phase of 120 degrees, I2;   
(c) Adding a phase of -120 degrees, I3. 

   
    (a) (b)

Fig. 5. (a) Wrapped phase; (b) Unwrapped phase. 

Methods like the Phase Tracker (Servin et al, 2001a) and the Two-dimensional Hilbert 
Transform (Larkin et al, 2001) are used for closed fringes, normalized images. These 
methods are robust again a large amount of noise, but a subjacent condition is to fulfil 
Nyquist condition. Phase tracker gives an unwrapped phase so there is not necessary to use 
an unwrapping method. The phase tracker and Hilbert transform proposed a cost function 
that depends of some measure of the difference between the real phase and the estimated 
phase. The real phase is unknown so the original interferogram is used and compared to the 
fringe pattern of the proposed phase. More terms are added to introduce restrictions.  

A problem with minimize a cost function is the danger of fall in a local minimum, far away 
from the optimal point. It is also possible to use soft computing algorithms, such as neural 
networks and evolutionary algorithms (EA). In the neural network technique, a multilayer 
neural network (MLNN) is trained by using fringe patterns, and the phase gradients 
associated with them, from calibrated objects (Cuevas et al, 2000); after the training, the 
MLNN can estimate the phase gradient when the fringe pattern is presented in the MLNN 
input. A genetic algorithm (GA) is a particular type of EAs. GA´s are optimization 
algorithms that simulate natural evolution (Holland, 1975), and whereas GAs do not search 
for the best solution to a given problem, they can discover highly precise functional 
solutions and are very useful for nonlinear optimization problems or in the presence of 
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multiple minimums (Goldberg, 1989), where classic techniques like gradient descent, 
deterministic hill climbing or random search (with no heredity) fail.  

Methods using GA (Cuevas et al, 2002), approximate the phase through the estimation of 
parametric functions. The chosen functions could be Bessel in the case of having fringes 
from a vibrating plate experiment, or Zernike polynomials, in the case of an optical testing 
experiment, and when not much information is known about the experiment, a set of low 
degree polynomials ( , , )p x ya  can be used. A complicated pattern is demodulated dividing 
it into a set of partially overlapping windows fitting a low dimensional polynomial function 
in each window, so that no further unwrapping is needed (Cuevas et al, 2006).  

2. Genetic algorithms 

Genetic Algorithms (GAs) (Bäck et al, 2000), are adaptive heuristic search algorithm 
premised on the evolutionary ideas of natural selection and genetic. The basic concept of 
GAs is designed to simulate processes in natural system necessary for evolution, specifically 
those that follow the principles first laid down by Charles Darwin of survival of the fittest. 
As such they represent an intelligent exploitation of a random search within a defined 
search space to solve a problem. 

First pioneered by John Holland in the 60s, Genetic Algorithms has been widely studied, 
experimented and applied in many fields in engineering worlds. Not only does GAs provide 
an alternative method to solving problem, it consistently outperforms other traditional 
methods in most of the problems link. Many of the real world problems involved finding 
optimal parameters, which might prove difficult for traditional methods but ideal for GAs. 
However, because of its outstanding performance in optimization, GAs has been wrongly 
regarded as a function optimizer. In fact, there are many ways to view genetic algorithms. 

In a genetic algorithm, a population of strings (called chromosomes or the genotype of the 
genome, fig. 6), which encode candidate solutions (called individuals, creatures, or 
phenotypes) to an optimization problem, evolves toward better solutions. Traditionally, 
solutions are represented in binary as strings of 0s and 1s, but other encodings are also 
possible. The evolution usually starts from a population of randomly generated individuals 
and happens in generations. In each generation, the fitness of every individual in the 
population is evaluated, multiple individuals are stochastically selected from the current 
population (based on their fitness), and modified (recombined and possibly randomly 
mutated) to form a new population. The new population is then used in the next iteration of 
the algorithm. Commonly, the algorithm terminates when either a maximum number of 
generations has been produced, or a satisfactory fitness level has been reached for the 
population. 

 
Fig. 6. A chromosome. 
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Genetic algorithms find application in bioinformatics, computational science, engineering, 
economics, chemistry, manufacturing, mathematics, physics and other fields. 

A typical genetic algorithm requires: 

1. A genetic representation of the solution domain, see fig. 7. 
2. A fitness function to evaluate the solution domain.  

 
(a) (b)

Fig. 7. (a) Representation of the solution domain; (b) Each gene is codified with a bit string. 

A standard representation of the solution is as an array of bits. Arrays of other types and 
structures can be used in essentially the same way. The main property that makes these 
genetic representations convenient is that their parts are easily aligned due to their fixed 
size, which facilitates simple crossover operations. Variable length representations may also 
be used, but crossover implementation is more complex in this case. 

The fitness function is defined over the genetic representation and measures the quality of 
the represented solution. The fitness function is always problem dependent. In some 
problems, it is hard or even impossible to define the fitness expression; in these cases, 
interactive genetic algorithms are used. 

Once we have the genetic representation and the fitness function defined, GA proceeds to 
initialize a population of solutions randomly. Improve it through repetitive application of 
mutation, crossover, inversion and selection operators. 

2.1 Initialization  

At the first iteration many individual solutions are randomly generated to form the 
population. The population size depends on the nature of the problem, but typically 
contains several hundreds or thousands of possible solutions. Traditionally, the population 
is generated randomly, covering the entire range of possible solutions (the search space). 

2.2 Selection 

During each successive generation, a proportion of the existing population is selected to 
breed a new generation. Individual solutions are selected through a fitness-based process, 
where fitter solutions (as measured by a fitness function) are typically more likely to be 
selected. Certain selection methods rate the fitness of each solution and preferentially select 
the best solutions. Other methods rate only a random sample of the population, as this 
process may be very time-consuming. 
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A generic selection procedure may be implemented as follows: 
1. The fitness function is evaluated for each individual, providing fitness values, which 

are then normalized. Normalization means dividing the fitness value of each individual 
by the sum of all fitness values, so that the sum of all resulting fitness values equals 1. 

2. The population is sorted by descending fitness values. 
3. Accumulated normalized fitness values are computed (the accumulated fitness value of 

an individual is the sum of its own fitness value plus the fitness values of all the 
previous individuals). The accumulated fitness of the last individual should be 1 
(otherwise something went wrong in the normalization step). 

4. A random number R between 0 and 1 is chosen. 
5. The selected individual is the first one whose accumulated normalized value is greater 

than R. 

Retaining the best individuals in a generation unchanged in the next generation, is called 
elitism or elitist selection. It is a successful (slight) variant of the general process of 
constructing a new population. 

2.2.1 Roulette-wheel selection 

Fitness proportionate selection, also known as roulette-wheel selection, is a genetic operator 
used in genetic algorithms for selecting potentially useful solutions for recombination. 

In fitness proportionate selection, as in all selection methods, the fitness function assigns a 
value to possible solutions or chromosomes. This fitness level is used to associate a 
probability of selection with each individual chromosome. If if  is the fitness of individual i  

its probability of being selected is i
i N

j j

f
p

f



, where N  is the number of individuals in the 

population. 

This could be imagined similar to a Roulette wheel in a casino. Usually a proportion of the 
wheel is assigned to each of the possible selection based on their fitness value. This could be 
achieved by dividing the fitness of a selection by the total fitness of all the selections, thereby 
normalizing them to 1. Then a random selection is made similar to how the roulette wheel is 
rotated. 

While candidate solutions with a higher fitness will be less likely to be eliminated, there is still 
a chance that they may be. Contrast this with a less sophisticated selection algorithm, such as 
truncation selection, which will eliminate a fixed percentage of the weakest candidates. With 
fitness proportionate selection there is a chance some weaker solutions may survive the 
selection process; this is an advantage, as though a solution may be weak, it may include some 
component which could prove useful following the recombination process. 

The analogy to a roulette wheel can be envisaged by imagining a roulette wheel in which 
each candidate solution represents a pocket on the wheel; the size of the pockets are 
proportionate to the probability of selection of the solution. Selecting N  chromosomes from 
the population is equivalent to playing N  games on the roulette wheel, as each candidate is 
drawn independently. 
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2.2.2 Stochastic universal sampling 

Stochastic universal sampling (SUS) is a technique used in genetic algorithms for selecting 
potentially useful solutions for recombination. It was introduced by James Baker. 

SUS is a development of fitness proportionate selection which exhibits no bias and minimal 
spread. Where fitness proportionate selection chooses several solutions from the population 
by repeated random sampling, SUS uses a single random value to sample all of the solutions 
by choosing them at evenly spaced intervals. 

While candidate solutions with a higher fitness will be less likely to be eliminated, there is 
still a chance that they may be. Contrast this with a less sophisticated selection algorithm, 
such as truncation selection, which will eliminate a fixed percentage of the weakest 
candidates. With fitness proportionate selection there is a chance some weaker solutions 
may survive the selection process; this is an advantage, as though a solution may be weak, it 
may include some component which could prove useful following the recombination 
process. 

The analogy to a roulette wheel can be envisaged by imagining a roulette wheel in which 
each candidate solution represents a pocket on the wheel; the size of the pockets are 
proportionate to the probability of selection of the solution. Selecting N chromosomes from 
the population is equivalent to playing N games on the roulette wheel, as each candidate is 
drawn independently. 

2.2.3 Tournament selection 

It involves running several "tournaments" among a few individuals chosen at random from 
the population. The winner of each tournament (the one with the best fitness) is selected for 
crossover. Selection pressure is easily adjusted by changing the tournament size; if it is 
larger, weak individuals have a smaller chance to be selected. 

Deterministic tournament selection selects the best individual (when 1p  ) in any 
tournament. A 1-way tournament ( 1k  ) selection is equivalent to random selection. The 
chosen individual can be removed from the population that the selection is made from if it is 
desired, otherwise individuals can be selected more than once for the next generation. 

Tournament selection has several benefits: it is efficient to code, works on parallel 
architectures and allows the selection pressure to be easily adjusted. 

2.3 Crossover 

Crossover is a genetic operator used to vary the programming of a chromosome or 
chromosomes from one generation to the next. It is analogous to reproduction and biological 
crossover, upon which genetic algorithms are based. Cross over is a process of taking more 
than one parent solutions and producing a child solution from them. 

Crossover techniques : 

 One-point crossover (fig. 8a). 
 Two-point crossover (fig. 8b). 
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(a)

 
(b)

 

Fig. 8. (a) One point crossover; (b) Two point crossover. 

2.4 Mutation 

It is a genetic operator used to maintain genetic diversity from one generation of a 
population of algorithm chromosomes to the next. It is analogous to biological mutation. 
Mutation alters one or more gene values in a chromosome from its initial state. In mutation, 
the solution may change entirely from the previous solution. Hence GA can come to better 
solution by using mutation. Mutation occurs during evolution according to a user-definable 
mutation probability. This probability should be set low. If it is set to high, the search will 
turn into a primitive random search. 

The classic example of a mutation operator involves a probability that an arbitrary bit in a 
genetic sequence will be changed from its original state. A common method of 
implementing the mutation operator involves generating a random variable for each bit in a 
sequence. This random variable tells whether or not a particular bit will be modified. This 
mutation procedure, based on the biological point mutation, is called single point mutation. 
Other types are inversion and floating point mutation. When the gene encoding is restrictive 
as in permutation problems, mutations are swaps, inversions and scrambles. 

The purpose of mutation in GAs is preserving and introducing diversity. Mutation should 
allow the algorithm to avoid local minima by preventing the population of chromosomes 
from becoming too similar to each other, thus slowing or even stopping evolution. This 
reasoning also explains the fact that most GA systems avoid only taking the fittest of the 
population in generating the next but rather a random (or semi-random) selection with a 
weighting toward those that are fitter. 

3. Genetic algorithm applied to phase recovery 

The fringe demodulation problem is difficult to solve since many solutions are possible, 
even for a single noiseless fringe pattern.  

The image on a fringe pattern ( , )I x y  does not change if ( , )x y  in Eq.(1) is replaced by 
another phase function ( , )x y  given by: 
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    , , 2 ,x y x y k    
          (2) 

A fringe pattern of RxC pixels dimension is segmented into a window overlapping set of 
sub-images of R1xC1 pixels dimensions, and with origin coordinates at (r,c). The GA is used 
to carry out the optimization process, where a parametric estimation of a non linear function 
is proposed to fit the phase on the sub-images.  

The fitness function is modelled by the next considerations: a) The similarity between the 
original fringe image and the genetic generated fringe image, and b) the smoothness in the 
first and second derivatives of the fitting function.  

The fitting function is chosen depending on prior knowledge of the demodulation problem, 
but when no prior information about the shape of ( , )x y  is known, a polynomial fitting is 
adequate. The adequate dimensionality of the polynomial depends on the interferogram 
complexity, but if we only want to estimate the phase in a small region, the dimensionality 
of the function can be low.  

A  r-degree approximation is used so that the phase data can be modelled like: 

 
  2 2

0 1 2 3 4 5

2 2 3 3
6 7 8 9

, ,
r

q

p x y a a x a y a x a y a xy

a x y a xy a x a y a y

     

     

a

                      (3) 

3.1 Decoding chromosomes 

As it was said earlier, the GA is used to find the function parameters, in this case, vector a . 
If we use this function, the chromosome can be represented by the vector: 

 0 1 qa a a   a                             (4) 

A k-bit long bit-string is used to codify an allele; then, the chromosome has xq k  bits in 
length. We define the search space for these parameters. The bit-string codifies a range 
within the limits of each parameter. The decoded value of the i-th parameter is: 

 
 

,
2 1

U B
iiB

i i ik

L L
a L N


 


                           (5) 

where ia  is the i-th parameter real value, B
iL is the i-th bottom limit, U

iL  is the i-th upper 
limit, and iN  is the decimal basis value of the bit-string .  

B
iL  and U

iL  are redefined for each sub-image. The maximum value for each parameter is 
calculated taking into consideration the maximal phase value on that window. These 
maximum values can be expressed as: 

 0 0andB UL L                           (6) 

 U B
i iL L                (7) 

www.intechopen.com



 
Advanced Topics in Measurements 88

 
4

1 1
U
i m n

i i

F
L

R C


                      (8) 

where F  is twice the maximum fringe number on the window: 

  2 22 max , ,x y x yF F F F F                   (9) 

xF  and yF  are the maximum fringe numbers in the x  and y  directions. m  is the relative 
grade for x  of the i-th term, and n  is the relative grade for y  of the i-th  term. 

For the special case 0a  ( 0i  ), the limits are considered to be between   and  . 0a  is 
eliminated from parameter vector a  to redefine a new vector a : 

 0 1 qa a a    a              (10) 

so, ( , , )p x ya  can be expressed as: 

     0, , , ,p x y p x y a a a                    (11) 

and replacing Eq. 11 into Eq 1: 

         0, , , cos , ,I x y a x y b x y p x y a  a                       (12) 

Additionally, 0a  can be expressed as 0 02a l a   , l  is an integer, and, 0 2a    so Eq. 12 
becomes:       

         0, , , cos , , 2I x y a x y b x y p x y a l   a                           (13) 

The cosine function is periodical with period 2 , so:  

         0, , , cos , ,I x y a x y b x y p x y a   a                 (14) 

Eq. 14 demonstrates that limits for 0a  within a range of 2  are enough to represent the 
phase of the fringe pattern. 

In the next section, it will be seen that 0a  can be separated from a  and calculate it 
independently. Mutation and crossover operators can be applied only over a , and then add  
the calculated value for 0a  to a , and recover  vector a .  

3.2 Fitness function 

The GA, as was described in section 2, is an optimization procedure. Fitness function is 
always positive, and the optimal point is one minimum value. A negative sign transforms a 
problem from minimization to maximization. In a given generation, the maximal and 
minimal values or the fitness values are searched, and they are used to linearly adjust the 
dynamic range from 0 to A. The values are now positive, and are called aptitude. x  and y  
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are the coordinates in the fringe images. ( ,r c ) are the absolute coordinates of the origin 
coordinate of the sub-image, f  is the function that is adjusted in the current window to 
approximate the phase term. 

The fitness function is applied over each window and swept over the entire image. The path 
that the process follows can be an arbitrary choice. It is recommended that the window has 
between 40% and 60% overlapped area with previously demodulated data. This condition is 
required so the new demodulated phase can be coupled to the previously demodulated 
phases. 

 

    
   (a)  (b) 

 

Fig. 9. (a) Fringe pattern subsampled. (b) Demodulated phase. 

A fitness function ( )pU a  for each sub-image is used to obtain the fitness value for the p-th 

chromosome in the population. It form could be diverse, but most of them have a term that 
compares the RMS error between the original fringe pattern and the fringe pattern obtained 
from the estimated phase (similarity): 

       
21 1

, cos , ,
r R c C

p p
N

y r x c

U I x y f x y
 

 

     a a              (15) 

Additional terms are added to the fitness functions to give restrictions on the proposed 
phase. In (Cuevas et al, 2006) fitness function has three criteria: similarity, smoothness and 
overlapped phase similarity with a previously estimated phase. 

  

    
      

    

2

1

1 1 2

2

2

, , , 1 ,

, , , , 1 ,

, , ,

p p

r R c C
p p p

y r x c

p

f x r y c f x r y c

R f x r y c f x r y c m x y

f x r y c x y





 

 

 
      

 
          

 
          

 

a a

a a a

a

    (16) 

( )pR a  is the total amount the restrictions add to the fitness function, for a given window 
whose origin is on ( ,r c ); ( , )m x y  is a mask that indicates where, inside the image, exist the 

www.intechopen.com



 
Advanced Topics in Measurements 90

fringe pattern, ( , )n x y  indicates the overlapping zone between the phase of a given window, 
 , and the total phase,  .  

The third term, associated with 2 , allow the GA to extrapolate the trend of the adjacent  
demodulated regions into the actual window. As a consequence, the GA can demodulate 
interferograms that are noisy and are subsampled. 

In WFPD (Cuevas et al, 2006) the fitness function has three criteria: similarity, smoothness 
and overlapped phase similarity with a previously estimated phase. It is eliminated third 
criterion, this simplified fitness function can make robust the phase retrieval in one window 
from demodulation errors in another window. The phase in different windows can be 
demodulated in parallel. The resulting phase segments are splicing sequentially. Noise 
filtering and fringe normalization are solved using alternative low-pass filtering techniques. 
We suppose a smooth phase with continuity in first and second derivatives. 

A fitness function ( )pU a  for each sub-image is used to obtain the fitness value for the p-th 

chromosome in the population, it can be written as: 

 

      

    
    
    

      
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
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 
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
 



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


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

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 

 a a

a a

a a

a a

a a

  (17) 

where    , ,p pf x y p x ya a , 1  and 2  are the regularization terms used to penalize high 
first and second phase derivatives, and to assure the smoothness of the phase. ( , )m x y  is a 
binary mask which defines the valid and invalid data image area. 1  and 2 values are 
chosen empirically, and are dependent on window size and fringe pattern regional 
frequency contents. Typical values are 0.005 to 0.07 for 1  and 0.00025 to 0.002 for 2  for a 
7x7 , 9x9  or 11x11  size window.  

The following terms were used in the fitness function: 
a. Fringe similarity criterion:  

      2
, cos , ,p

NI x y f x y   
a       (18) 

The fringe pattern is considered to be normalized on the range [-1,1], or a binary version  of 
the original. There are several methods in the literature for the normalizing of binary 
threshold fringe patterns [16]. The normalized genetic fringe image is calculated using the 
cosine of the fitting function. The sum of the squared differences between original fringes 
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and the synthesized fringe pattern is calculated, and those chromosomes that generated a 
more similar fringe pattern to the original, will have a higher probability of being selected.  

As it was said earlier, parameter 0a  can be calculated so that mutation and crossover are 
only applied to a . 0a  is spliced onto a  to recover parameter vector a . 

The missing parameter, 0a , is obtained from the fringe similarity criterion by:  

 

       

   
   
 

 

0 0 0 0
0

sin cos cos 2 sin 2

where

2 , cos ,

2 , sin ,

sin 2 ,

and

cos 2 .

S

N

N

U
A a B a C a D a

a

A I x y

B I x y

C

D


   

















a

a

a

a

 (19) 

A , B , C , and D  are constants for any value given to 0a . 0a  is chosen to be the value that 

makes 
0

0SU

a





 in the domain [ ,   ] . If we define the function: 

  
2

0
0

SU
f a

a

 
 
  

                                          (20) 

the problem is finding the minimum. There are several methods to find it, like the Newton 
method, the Fibonacci search, the steepest descent method, etc. The search domain in Eq. 20 
is well defined and small enough, so an exhaustive search can easily found the desired value 
of 0a  

b. Smoothness criterion:  

 

    
    
    

    

2

1

2

2

2

2

, , , 1,

, , , , 1

, 1, , 1,

, , 1 , , 1

p p

p p

p p

p p

f x y f x y

f x y f x y

f x y f x y

f x y f x y





  
   

   
    

a a

a a

a a

a a

          (21) 

The weighted sum of the discrete approximation (squared differences) of the first and 
second derivatives is calculated. The goal is to achieve smooth solutions in the first and 
second derivatives. This term contributes in a negative way to the maximization fitness 
process, so the chromosome decreases its fitness value.  
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This term is necessary because of the use of a polynomial function. We use a high degree 
polynomial interpolation, and oscillations are present on the estimated phase; they can 
introduce errors into the demodulation process. 1  and 2  are chosen to minimize these 
oscillations.  

3.3 Selection operator 

Chromosomes are evaluated using the fitness function. The result of the evaluation is their 
fitness value. Fitness value of the entire population is stretched in the range 0 to A. In each 
generation, the minimum and maximum fitness values are obtained to produce a 
normalized fitness value: 

           
min

max minC C

A
NFv i FV i i

i i
 


 ,      (22) 

where ( )cNFv i  is the normalized fitness value in the i-th generation for the c-th 
chromosome, and min(i) and max(i) are the minimum and maximum values of ( )cFV i , the 
fitness value for a member in the  i-th generation. 

The normalized fitness value is used to calculate the probability selection sP  of a given 
chromosome. In order to represent a sexual reproduction, pairs of chromosomes are used to 
produce a new population. Two chromosomes are randomly selected with a sP  that is 
proportional to its normalized fitness value.  

For the c-th chromosome, a random number sr  is generated. If s sr P , the chromosome is 
selected. Two chromosomes are picked this way, and the crossover operator is applied over 
them to create two new chromosomes for the new population. 

sP  can be calculated in many ways. The easiest is the Roulette Wheel method, which sP  is 
calculated by: 

  
 
 

S

S
S

S

NFv i
P i

NFv i



                (23) 

The Roulette wheel method has the disadvantage of being able to produce a premature 
convergence, so a Boltzmann selection method was used to avoid this inconvenient: 

  
exp ( ) ( )

exp ( ) ( )
S

S

NFv i T is
P i

NFv i T is

  
  
  
  

,           (24) 

where ( )T i  T(i) is the temperature in the i-th generation. (0)T  is a large value, so sP  is 
similar for all chromosomes in the initial generation. T  is decreased over the generations, so 
the sP  for the best adapted is progressively higher than for the least adapted. In this way, 
there is the opportunity to explore all the space of solution, so the probability of falling into 
a local minimum is lowered. T  is varied by: 
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    exp /oT i T i k                 (25) 

where k  is a constant that indicates in which generation 0( ) /3T i T . The process of 
selection and crossover is repeated until an entire new population is obtained. 

3.4 Crossover operator  

In the GA, a Crossover probability cP  is given to exchange the genetic information between 
two chromosomes, so that if a randomly generated number is smaller than it, the 
chromosomes are mixed to produce two new individuals, and if the number is bigger that 

cP , the two original chromosomes are added to the new population. In the phase recovery 
from a fringe pattern, a two point crossover was used, where two crossover points are 
randomly generated, In this case, it is required to swap the central segments between 
chromosomes. 

3.5 Mutation operator 

Mutation is the best known mechanism to produce variations. Alleles of the chromosomes 
are randomly replaced by others in a random way. Mutation is treated like a background 
operator to ensure variety in the population. 

In GA, a mutation probability mP  is defined. For each position, a random number is 
generated, and if it is smaller than mP , the allele is changed for another. In a binary 
chromosome code, a ‘0’ is changed for ‘1’ and a ‘1’ is changed for ‘0’ .  

3.6 GA convergence 

GA convergence depends mainly on population size. With a large population, convergence 
is achieved in a smaller number of iterations, but the processing time is increased . To stop 
the GA process, different convergence measures can be employed. The maximum number of 
iterations is chosen at B . The algorithm can be stopped when a relative error   is smaller 
than a predefined limit  : 

 
   

 
max max 1

max

i i

i


 
 .           (26) 

3.7 Splicing process 

As it was mentioned before, phase demodulation is achieved through window segmentation 
of the fringe pattern. The GA demodulates the phase inside each window, independently 
from others, so this process can be made in parallel. It is supposed that the demodulated 
phase field in each window is differentiated from the corresponding real phase field only by 
the concavity and the DC bias. Then, a splicing procedure is required to connect different 
GA fitted phase windows and determine the whole phase field ( , )x y . The splicing 
process is carried out in a sequential way (e.g., row by row). 

It is described as follows: 
1. The demodulated phase from the first window is used as the initial reference.  
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2. From the GA current fitted phase window ( , ) ( , , )px y f x y  a , i a second phase field is 
calculated ( , )x y   with a negative concavity) as ( , ) ( , )x y x y    , or ( , ) ( , , )px y f x y  a . 

3. Two DC bias are calculated, one for ( , )x y  and one for ( , )x y   using: 

 

         
, ,

1 2

, , , , , ,

and

p p

x y N x y N

x y x y x y x y

DC DC
A A

 
 

   

 
 a a

, (27) 

where N  is the overlapped neighbourhood region, and A  is the overlapped area (pixel2) of 
N . 

4.  The RMS error for the two alternative phase window fields, ( , )x y  and ( , )x y  , 
compared against ( , )x y  is calculated as:  

         2 2

1 2
, ,

1 2

, , , , , ,

and 

     

 
  p p

x y N x y N

x y x y DC x y x y DC

RMS RMS
A A

a a

 (28) 

5. The phase described by the function with the minimum RMS error value ( 1DC   or 

2DC  ) is spliced onto the demodulated phase field  .  
6.  If there are more windows to splice, the next window in the sequence is labelled as the 

current window and goes to step 2. Otherwise, the splicing process is finished.  

4. Adjustable genetic algorithm 

In previous works, the window has a fixed dimension. The RMS error for a given window 
varies due to frequency content of the image, the window size and the values given in the 
smoothness criterion. High frequency zones are best demodulated using small windows; the 
demodulating process in low frequency zones is better when using a large window. In fact, 
using a small window in low frequency zones introduces unnecessary noise due to the 
splicing process for a certain region. This frequency estimator is used again to determine the 
best demodulation path; beginning in low frequency regions, it develops across increasing 
complexity regions. As a result, regions that are easily demodulated can be used to guide 
the splicing of higher difficulty regions.  

Finally, a modification on the GA is presented to determine the smoothness criterion 
automatically. In a previous work, some values to 1  and 2  were proposed to be used for 
certain window values. In this work, this smoothness criterion is calculated by the GA itself, 
adding two genes to the chromosome; this codifies this criterion in real numbers. As a 
result, the GA calculates the coefficient vector of the polynomial and the smoothness 
parameters needed for the correct estimation of the phase at the same time. This 
modification allows one to have an algorithm that depends less on external characterization. 

4.1 Local frequency estimator 

In this section, a method to classify regions on the image according to their frequency 
content is described. This process is necessary to determine the size of the window needed 
to demodulate a certain region. A given fringe pattern is segmented into two, three or more 
regions. 
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1. From the original image, we obtain the image that shows the gradient. This image is 
obtained by correlating image ( , )I x y  of xR C  dimensions with the Sobel operators. 

 

1 0 1

2 0 2

1 0 1
xS

  
    
   

        (29) 

 

1 2 1

0 0 0

1 2 1
yS

   
   
    

      (30) 

The correlation is defined as: 

      , , ,k k
i j

C x y I i j S x i y j                                 (31) 

At each point, the magnitude of the gradient is obtained: 

 2 2
x yS S S   (32) 

2. A median filter is used to detect the zones where fringe frequency increases. A median 
filter of dimensions xN N  is defined as: 

  
 

/2 /2

/2 /2

,

,
x

N N

i N j N

I x i y j

M x y
N N

 
 


 

                              (33) 

3. The image obtained by means of this process shows brighter zones in the regions with 
high frequency. This image is segmented into three regions of low, medium and high 
frequency content. 

The brightest point, max( M ) , and the darkest point, min( M ) , are located. Their values are 
used to perform the segmentation of image ( , )M x y  using: 

      
   
, min

,
max min

M x y M
F x y

M M

  


     (34) 

( , )F x y  is thresholded in three zones: 

  

   
   

   
   

   
   

, min
0 0.3 0

max min

, min
, 1 0.7 0.3

max min

, min
2 1 0.7

max min

M x y M

M M

M x y M
FT x y

M M

M x y M

M M

     



      

     
 

               (35) 
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Each zone indicates the relative level of frequency content in ( , )I x y . ( , )F x y  and ( , )FT x y  
are used to obtain the demodulation map, and to indicate the window size suited for a 
certain region. 

4.2 Quality map and demodulation path 

The windows where the polynomial is adjusted are extracted from ( , )I x y  following the 
fringes, like in the phase tracker method. To achieve this result, in a previous work a quality 
map is obtained from ( , )I x y  by thresholding it on Q  levels, and using a filling algorithm to 
obtain a continuous path along the fringes.  

In this work, we propose a method to obtain a different quality map. It is desirable that the 
demodulation path fulfils more conditions other than following the fringes. The conditions 
proposed are: 

a. Follow the fringes. 
b. Follow the frequency contents from low frequencies to high frequencies. 
c. Sequentially demodulate regions with increasing levels of difficulty. 

We postulate that criterions b and c are identical, so the problem is reduce to incorporating 
the second criterion into the quality map.  

To achieve this goal, ( , )F x y  is used. ( , )F x y  is added to ( , )I x y , and the new image ( , )IF x y  
is used to obtain the quality map, by thresholding it on Q  levels. 

      , , ,IF x y I x y F x y           (36) 

      
   
, min

,
max min

  


IF x y IF
IFT x y Q

IF IF
     (37) 

IFT is used to generate a new demodulation path that begins on low frequencies and follows 
the fringes until it reaches high frequencies. 

The algorithm used to generate the demodulation path is : 

a. An array with al point labelled with some level (quality map ( , )IFT x y  ) is needed 
b. In the frequency map, ( , )F x y , the minimum frequency area is searched, and the point 

that is min( F ) is chosen.  
c. A matrix ( , )L x y  of xR R  dimensions is defined. All its values are set to ‘0’.  

d. An array of stacks [ 1 2, , , QS S S ] is defined. All stacks have xR C  dimensions. The 
initial point is placed on the stack corresponding to its value. i.e. if ( , ) 1IFT x y  , then 
coordinates ( , )x y  are stored in stack 1S .  

e. An array of coordinates ( )C n  of xR C  dimensions is defined. The coordinates of the first 
point are stored in it. An index n is defined, and its value is set to ‘0’. ( , )L x y   is set to ‘1’: 

    
 

0

,

, 1

n

C n x y

L x y






 (38) 
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f. The points surrounding ( , )x y  are scanned while varying index i  and index j  from -1 
to +1, and their coordinates stored in their corresponding stacks: 

 
 

   ,

if 1, 1 0

,IFT x i y j

L x y

S x i y j 

  

  
         (39) 

g. Beginning on S1, a non-empty stack is searched. The point ( , )x y  on top of that stack iS
is brought out. The next actions are performed: 

    
 

1

,

, 1

n n

C n x y

L x y

 




 (40) 

h. If xn R C  steps ‘f’ and ‘g’ are repeated. Points stored in ( )C n  indicate the 
demodulation path to follow. 

4.3 Genetic algorithms internal parameters automatic adjust 

GAs have great possibilities to develop robust algorithms, varying their internal parameters 
according to the task to be performed. In this paper, we propose using GAs to adjust the 
internal parameters of this algorithm. 

4.3.1 Regularization terms 

The original image is shown in fig. 10. A media filter is applied onto the gradient image, 
yielding high values in regions with high fringe density.  

 
Fig. 10. Original image. 

Maximum and minimum values are localized, and the image is discretized into three main 
regions. A given window size is assigned to each region (Fig 11). 

When the demodulation window is positioned in a given region, the size window is varied 
to obtain a better adjustment. The last stage is to introduce these regions into the 
demodulation process. 

A quality map is used to determine the demodulation path. Low frequency regions are 
demodulated first by adding the discretized map of frequencies to the original image. A 
filling algorithm is used to determine the demodulation path using this quality map. 
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            (a)   (b)                      (c) 

Fig. 11. Gradient (a) smoothed with a 9x9 window (media filter) (b) Classification on high, 
medium and low frequencies. 

   
(a) (b) 

Fig. 12. (a)  Quality map, 15 levels; (b) Demodulation path that follows fringes and increased 
frequency regions. 

5. Results 

The proposed algorithm is used to demodulate a shadow moiré image taken from a 
modeled figure of a dolphin. The noise in the original shadow moiré is filtered through the 
use of a median filter. This filter is used only on an area determined by a mask that indicates 
the allowed area on which to perform the demodulation process. 

   
                 (a)                            (b) 

Fig. 13. (a) Fringe pattern shadow moiré; (b) Mask ( , )m x y . 
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The algorithm needs surfaces that are continuous on the first and second derivatives, so, 
regions in the original dolphin figure that do not fulfill these requirements are cut from the 
mask. 

 
Fig. 14. Image after noise filtering using a median filter. 

   
                (a)                             (b) 

Fig. 15. (a) Result of binarize fig 14; (b) Fringe pattern associated with the demodulated phase. 

   
                    (a)                            (b) 

Fig. 16. (a) Phase demodulated from fig. 15(a); (b) Phase smoothed using a media filter 7x7. 

The resulting image is binarized to reduce noise interference in the demodulation process. 
This binarized image is fed to the algorithm. 

The demodulated phase is smoothed using a 7x7 media filter, after using a contrast 
enhancement and a low pass filter. 
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6. Conclusions 

Computational power has been increased  in the last years. This increased processing power 
allows to develop EA as a practical tool with application in patter recognition, 
computational intelligence, image processing, automatization, and others. EA’s, fuzzy logic 
and neural networks are called soft computing, because they can deal with problems where 
there are not a good knowledge of the problem, information is incomplete or inconsistent, or 
are large amount of noise.  

In this chapter is shown only a single application of EA on fringe pattern demodulation. 
There still a lot of variations that can be explored to improve the performance of actual 
algorithms.  

GA based methods have two advantages over regularized phase tracker: they can work on 
low resolution images and they can follow changes in concavity. These advantages are the 
consequence of taking upper grade terms in the interpolated function. 

The technique showed in (Toledo, Cuevas 2009), called FPIW, is based in two suppositions: 
it is not necessary to know the phase on the neighborhood to estimate the phase in a given 
window, and the estimated phase in a window differ only by its concavity sign and a DC 
bias,  from the real phase in the region framed by the window. As a consequence, the 
overlapped similarity criterion used in the WFPD (Cuevas et al, 2003) method can be 
eliminated from the fitness function in the FPIW method. In exchange, FPIW works  near 
Nyquist, but on sub-Nyquist, WFPD is better. 

The phase in a given window is estimated without known nothing about the phase in other 
windows. It is possible to demodulate simultaneously all windows, that is, FPIW method 
described has implicit parallelism. WFPD demodulate the windows sequentially. 

7. Acknowledgments 

We acknowledge the support of “Consejo Nacional de Ciencia y Tecnologia” of Mexico,  
“Consejo de Ciencia y Tecnología del Estado de Guanajuato,” and “Centro de 
Investigaciones en Optica, A.C.” We also thanks Mario Ruiz Berganza for his aid 
proofreading this paper; and thanks to Guillermo Garnica for his invaluable technical 
support. H. Sossa thanks “Consejo Nacional de Ciencia y Tecnologia” for grant 155014 and 
"SIP-IPN" for grant 20121311. 

8. References 

Bäck T, Fogel DB, Michalewicz Z (2000) Evolutionary computation. Institute of Physics 
Publishing, Bristol. 

Bone, D.J., Fourier fringe analysis: the two dimensional phase unwrapping problem, Appl. Opt, 30, 
3627-3632, 1991, 

Buckland, J.R., Huntley, J.M., and Turner, S.R.E., Unwrapping noisy phase maps by use of a 

minimum-cost-matching algorithm, Appl. Opt., Vol. 34, No. 23 (August 1995) pp  
5100-8. 

www.intechopen.com



 
Fringe Pattern Demodulation Using Evolutionary Algorithms 101 

Cuevas FJ, Servin M, Rodríguez-Vera R (1999) Depth recovery using radial basis functions. Opt 
Communication 163:270–277. 

Cuevas FJ, Servin M, Stavroudis ON, Rodríguez-Vera R (2000). Multi layer neural  

network applied to phase and depth recovery from fringe patterns. Opt Commun 181:239–
259. 

Cuevas F.J., Mendoza F., Servin M., Sossa-Azuela J.H. (2006) Window fringe pattern 

demodulation by multi-functional fitting using a genetic algorithm. Opt. Commun. 
261:231-239. 

Cuevas FJ, Sossa-Azuela JH, Servin M (2002) A parametric method applied to phase recovery from 

a fringe pattern based on a genetic algorithm. Opt Commun 203:213–223. 
Fernández A, Kaufmann GH, Doval AF, Blanco-Garcia J, Fernández JL (1998) Comparison of 

carrier renoval methods in the analysis of TV holography fringes by the Fourier 

transformmethod. Opt Eng 37:2899–2905. 
Ghiglia, D.C., and Romero, L.A., Robust two dimensional weighted and unweighted phase 

unwrapping that uses fast transforms and iterative methods, J. Opt. Soc. Am. A, 11, 107-
117, 1994. 

Goldberg D (1989) Genetic algorithms: search and optimization algorithms. Addison-Wesley, 
Reading, MA. 

Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, 
Michigan. 

Ichioka Y, Inuiya M (1972) Direct phase detecting system. Appl Opt 11:1507–1514. 
Juan Antonio Quiroga, José Antonio Gómez-Pedrero, Ángel Garcı́a-Botella, Algorithm for 

fringe pattern normalization,  Optics Communications, Volume 197, Issues 1-3, 15 
September 2001, Pages 43-51 

Juan Antonio Quiroga, Manuel Servin, Isotropic n-dimensional fringe pattern normalization , 
Optics Communications, Volume 224, Issues 4-6, 1 September 2003, Pages 221- 
227. 

L.E. Toledo & F.J. Cuevas, Optical Metrology by Fringe Processing on Independent  

Windows Using a Genetic Algorithm, Springer Verlag Experimental Mechanics 48, pp  
559-569. 

Larkin KG, Bone DJ, Oldfield MA (2001) Natural demodulation of two-dimensional fringe 

patterns in general background of the spiral phase quadrature transform. J Opt Soc Am A 
18:1862–1870.  

Malacara D, Servin M, Malacara Z (1998) Interferogram analysis for optical testing. Marcel 
Dekker, New York. 

Noé Alcalá Ochoa, A.A. Silva-Moreno, Normalization and noise-reduction algorithm for fringe 

patterns, Optics Communications 270: 161-168. 
Quiroga JA, Gómez-Pedrero JA, García-Botella A (2001) Algorithm for fringe pattern 

normalization. Opt Communications 197:43. 
Servin M, Rodriguez-Vera R (1993) Two dimensional phaselocked loop demodulation of 

interferogram. J Mod Opt 40:2087–2094. 
Servin M, Marroquín JL, Cuevas FJ (2001) Fringe-follower regularized phase tracker for 

demodulation of closed-fringe interferograms. J Opt Soc Am A 18:689–695. 
Servin M, Quiroga JA, Cuevas FJ (2001) Demodulation of carrier fringe pattern by the use of non-

recursive digital phase locked loop. Opt Commun 200:87–97. 

www.intechopen.com



 
Advanced Topics in Measurements 102 

Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for 

computer based topography and interferometry. J Opt Soc Am 72:156. 

www.intechopen.com



Advanced Topics in Measurements

Edited by Prof. Zahurul Haq

ISBN 978-953-51-0128-4

Hard cover, 400 pages

Publisher InTech

Published online 07, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Measurement is a multidisciplinary experimental science. Measurement systems synergistically blend science,

engineering and statistical methods to provide fundamental data for research, design and development,

control of processes and operations, and facilitate safe and economic performance of systems. In recent

years, measuring techniques have expanded rapidly and gained maturity, through extensive research activities

and hardware advancements. With individual chapters authored by eminent professionals in their respective

topics, Advanced Topics in Measurements attempts to provide a comprehensive presentation and in-depth

guidance on some of the key applied and advanced topics in measurements for scientists, engineers and

educators.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

L. E. Toledo, F. J. Cuevas, J.F. Jimenez Vielma and J. H. Sossa (2012). Fringe Pattern Demodulation Using

Evolutionary Algorithms, Advanced Topics in Measurements, Prof. Zahurul Haq (Ed.), ISBN: 978-953-51-0128-

4, InTech, Available from: http://www.intechopen.com/books/advanced-topics-in-measurements/fringe-pattern-

demodulation-using-genetic-algorithms



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


