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1. Introduction

With the rapid growth of multimedia application technologies and network technologies,
especially the proliferation of Web 2.0 and digital cameras, there has been an explosion of
images and videos in the Internet. For example, the volume of videos uploaded to the
YouTube every minute is amounting to 48 hours by May 2011, having doubled in the last two
years. Such huge video collections hold useful yet implicit and nontrivial knowledge about
various domains. To manage and utilize these resources effectively, video concept detection
becomes a very important subject of intensive research by a large research community (Over
et al., 2008). It is an integral part of visual data mining that is automatically extracting such
knowledge from the huge unstructured visual data. It aims to automatically annotate video
shots or keyframes with respect to a semantic concept (Tang et al., 2012). Ranging from
objects like airplane and car to scenes like urban street and sky, semantic concepts serve as
good intermediate semantic features for video content indexing and understanding, and thus,
spurring much research attention (Jiang et al., 2010; Naphade & Smith, 2004; Snoek et al.,
2006; Zheng et al., 2008). Essentially, concept detection is a classification task, in which a
binary classifier is usually learned to predict the presence of a certain concept in a video shot
or keyframe (image). Traditional concept detection methods are mainly global classification:
use supervised machine learning techniques, such as single Support Vector Machine (SVM),
etc., over whole training dataset.

Study on pedestrian classification (Munder & Gavrila, 2006) showed that the benefit of
selecting the best combination of features and pattern classifiers was less pronounced than
the gain obtained by increasing the training set, even though the base training set already
involved many thousands of samples (Enzweiler & Gavrila, 2009). In other words, the
data matters most (Enzweiler & Gavrila, 2009). For visual concept detection, this was
also pointed out in (Huiskes et al., 2010), and made the authors simply use more data
rather than design more intelligent classification algorithms and image representations since
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(a) Single SVM (b) The proposed method

Fig. 1. Illustration of the differences of optimal separating hyperplanes between (a) and (b).
For single SVM, each test instance will use the same holistic complex hyperplane (the blue
curve), while for the proposed method, a test instance will trigger very fewer number of local
classifiers, e.g. 3 green dashed circles in (b), with much simpler hyperplanes (green lines) to
fire.

large-scale data can also directly benefit visual concept detection. Inspired by these studies,
for multimedia data of high dimension and diversified patterns, it is necessary to construct
large scale training dataset to reflect all sorts of patterns as much as possible. However,
there exist some challenges for global classification methods trained on large scale dataset:
huge intra-class variations, low training efficiency, and low testing efficiency resulting from
complex classification hyperplane as shown in Figure 1(a). To address these difficulties, the
focus of this work is to develop an ensemble learning method based on Latent Dirichlet
Allocation (LDA) topic models for large scale concept detection.

Ensemble learning refers to the process of combining multiple classifiers to provide a single
and unified classification decision. Recent research have demonstrated, both theoretically
(Krogh & Vedelsby, 1995) and empirically (Opitz & Shavlik, 1996a;b), that a good ensemble
of localized classifiers can outperform a single (best) classifier learned over the entire dataset.
Furthermore, learning a set of “smaller” localized classifiers usually possesses more efficient
algorithmic complexity than a global classifier. Additionally, the former localized classifiers
are generally more effective since their optimal separating hyper-planes may be much
simpler to discriminate the data as illustrated in Figure 1(b), hence have better generalization
performance than the latter due to the aforementioned problem of the huge intra-class
variation. This motivates us to adopt an ensemble learning approach for concept detection.

There are, in general, two essential ingredients in a good ensemble classifier, which are: (1)
the diversity of classifiers in the ensemble (Kuncheva & Whitaker, 2005), and (2) the fusion of
classifiers (Opitz & Maclin, 1999; Zhang & Zhou, 2011). Diversity means that classifiers in the
ensemble should possess different decision knowledge and make uncorrelated errors. In this
way, the error of individual classifiers will not be the same and propagated to the ensemble,
ensuring that individual classifiers have different “inductive biases”, and thus, complement
each other. The fusion of the classifier in the ensemble, on the other hand, is regarding
how to coordinate individual classifiers for the final classification decision in a unified and
theoretically principled fusion.

The most common way to achieve diversity is to train individual classifiers by using different
training data. For example, the well known Bagging and Boosting (Freund & Schapire, 1997)
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adopt this approach by randomly selecting (via re-sampling) different sets of training data for
each individual classifier. Despite of simplicity, this approach ignores the intrinsic structure of
data exemplars. To achieve classifier diversity, intuitively, similar data exemplars should be
grouped together to train a localized classifier, as the simple subspace complexity usually
leads to more effective localized classifier. The challenge here is how to group the data
effectively. In this chapter, we investigate an instance grouping method via topic modeling.

Topic modeling is a newly emerging approach to analyze large volumes of unlabeled text
(Griffiths & Steyvers, 2004). It specifies a statistical sampling technique to describe how
words in documents are generated based on (a small set of) hidden topics. Particularly, we
investigate the semantic grouping method through estimating the topical structure of large
visual data under the framework of latent Dirichlet allocation (LDA)(Blei et al., 2003).

(a) Car (c) Dog

(b) Car (d) Cat

Fig. 2. Illustration of the insight from psychophysical studies that humans can perform
coarse categorization between left column cars (a, b) and right column animals (c, d) quite
easily and quickly, followed by successive finer but slower discrimination between different
types of cars (a) and (b), or between different kinds of animals (c) dog and (d) cat.

As shown in Figure 2, our proposed solution is motivated by the insight from psychophysical
studies that humans can perform coarse categorization of visual objects quite easily and
quickly, followed by successive finer but slower discrimination (Kuncheva, 2004; S. Thorpe
& Marlot., 1996). Specifically, since all the pictures of the same category often have some local
parts in common, such as all the cars have common wheels and animals have common eyes
and legs as shown in the Figure 2, we propose an ensemble learning with LDA topic models
due to their great advantages in exploiting the co-occurrences of local features or visual words
to discover intrinsic common or similar structures of data. The proposed ensemble learning
can scale up to large data sets through combination of unsupervised semantic grouping
and supervised learning. First, we use generative LDA model (Blei et al., 2003) to mine
the hidden topical structure of large visual data, and then perform coarse categorization by
grouping the large-scale training data set with huge variations into many diversified small
topic localities. Second, we perform the successive finer discrimination by training each topic
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locality to generate multiple small effective classifiers. Thereby, the data exemplars within
one topic are deemed to be similar in part with respect to the hidden topic structure. The
corresponding individual classifier then holds the decision knowledge mostly with respect
to the topic. This ensures that the individual classifiers have reasonable diversity in varying
regions of expertise. More importantly, for the fusion of classifiers, we propose to utilize
the topic mixture coefficients in a generative probabilistic manner. For a given test sample,
we adaptively select the most probable classifiers with large topic mixture coefficients for
detection, which ensures that a sample is projected to only a few topic with top ranked
non-zero coefficients. The resulting ensemble model is, therefore, sparse, in the way that
only a small number of classifiers in the ensemble will fire on a testing sample as illustrated in
Figure 1(b). Consequently, the efficiencies of both training and testing resulting can be greatly
improved.

In summary, the main contribution of this chapter is that we propose a novel ensemble
learning method for video concept detection by LDA topic modeling. Our preliminary results
on the TREC Video Retrieval Evaluation (TRECVid) benchmark can be found in (Tang et al.,
2008), and preliminary results on pornography detection for online videos can be found in
(Tang et al., 2009). This chapter is an extension of both conference papers, and more detailed
results of extensive tests on the TRECVid 08 benchmark and pornography detection will be
provided to show that the proposed approach achieves promising results and outperforms
existing approaches.

In the rest of the chapter, we first review the related work on concept detection, ensemble
learning and LDA topic models in Section 2. Then, we elaborate on the details of the proposed
ensemble learning algorithm in Section 3, which includes ensemble construction with LDA
topic models and coordination of individual classifiers. Two systems based on the proposed
ensemble learning algorithm, TRECVid concept detection system and online pornography
filtering system are introduced in Section 4, and experimental results of the two systems are
also given in Section 4. Finally, we present the conclusive remarks along with discussion for
future work in Section 5.

2. Related work

2.1 Concept detection

Concept detection is a challenging yet useful task that has attracted attentions of many
researchers. Early work on concept detection focuses on concept-specific handcrafted rules
for tailor-made solution (A. Vailaya & Zhang, 1998; Smith & Chang, 1997; Szummer & Picard,
1998; Zhang et al., 1995). Distilling these rules automatically, machine learning approaches
have then become the research focus, wherein a variety of classification techniques are
explored. Majority of existing machine learning approaches are generally composed of five
major steps (Jiang, 2009) as shown in Fig.3:

• Preprocessing: A video consists of a sequence of shots separated by shot boundaries
including cuts and gradual transitions. Since video shots are often the basic unit for
concept detection, videos are segmented into shots based on various shot boundary
detection methods which uses different key frame features such as color histogram
in (Yuan et al., 2007), SIFT in (Chang, Lee, Hong & Archibald, 2008), and similarity
measurements. We refer readers to (Smeaton et al., 2010; Yuan et al., 2007) for a recent
review on the subject. After shot boundary detection, either the middle I-frame or a set of
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Fig. 3. General procedure of concept detection

key frames may be selected from each shot to represent the content for further detection
(Borth et al., 2008).

• Low-level feature extraction: The purpose of feature extraction is to convert the shots
or keyframes into a low dimensional feature vectors. Generally, two types of visual
keyframe features are often used: global and local. Global features include (Chang,
He, Jiang, Khoury, Ngo, Yanagawa & Zavesky, 2008; Ngo et al., 2009): color or edge
histograms, correlograms, grid-based color moment and wavelet texture, histogram of
oriented gradients (HOG) (Dalal & Triggs, 2005), local binary patterns (LBP) (Ojala et al.,
1996), GIST (Siagian & Itti, 2007) and Gabor feature (Zhu et al., 2008), etc. Bag of Visual
Words (BoVW) is the most widely adopted local feature which is based on a vocabulary
of visual words clustered by a set of SIFT features (Lowe, 2004), and weighted by various
schemes such as the traditional TF, TF-IDF, and the soft-weighting scheme which has been
demonstrated to be more effective than the traditional ones (Jiang et al., 2010). Audio
features such as in (Tang et al., 2007) are less frequently used while spatial temporal
features including motion features, such as Space-Time Interest Points (STIP) (Laptev,
2005), are coming into use such as in (Jiang & et al., 2010) despite their expensive extraction.

• Basic concept detection: namely, uni-modality learning with a variety of classification
techniques such as SVM (Cao et al., 2006), Gaussian Mixture Model (Amir et al., 2003),
Hidden Markov Model (Pytlik et al., 2005), graph-based semi-supervised learning (Tang
et al., 2010; 2011; Wang, Hua, Hong, Tang, Qi & Song, 2009), etc. The choice of different
kernel functions for classification of BoW features was studied in (Jiang et al., 2010),
and a novel neighborhood similarity measure beyond traditional distance measurement
was proposed to explore the local sample and label distributions for concept detection in
(Wang, Hua, Tang & Hong, 2009) recently.

• Multiple feature fusion: including both early fusion (i.e., vector concatenation) of multiple
features, and late fusion of multiple classifiers (Snoek et al., 2005). Late fusion is widely
used for efficiency and accuracy, and there are two common approaches to calculate the
weight for each classifier: unsupervised, such as min, max, and average in (Amir et al.,
2003), kernel fusion in (S. Ayache & Gensel, 2007), fusion with membership vector such as
LDA topic mixture coefficients in (Tang et al., 2008), etc., and supervised, such as ordered
weight averaging in (Tang et al., 2007).
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• Concept fusion: Besides the above multi-modality fusion methods based on multiple
features, contextual fusion techniques (Hauptmann et al., 2007; Jiang, 2009; Qi et al., 2007;
Weng & Chuang, 2008) are emerging by exploiting inter-concept relationships, such as
taking into account the detection scores of nearby objects in the scene, to improve the
accuracy of detection.

The major challenge of concept detection lies primarily in the existence of the well-known
semantic gap (Smeulders et al., 2000) between the low level visual features and the users’s
semantic interpretation of visual data, and the fact that different video shots w.r.t a certain
concept often possess huge variations among different visual appearances, camera shooting
and video editing styles, etc. This diversity renders video shots of the same semantic
concept to have varying visual patterns. Therefore, the resultant huge intra-class variation
hinders the performance of most machine learning approaches. Domain change caused by
the mismatch between different domains (genres or sources (Borth et al., 2010)) may worsen
this problem, which raises domain adaptation in concept detection, known as cross-domain
learning techniques (Jiang et al., 2008; Ngo et al., 2009; Snoek et al., 2010), including our recent
concept detection work on pseudo relevance feedback based domain transfer learning (Xu,
Tang, Zhang & Li, 2011) and multi-modality transfer based on multi-graph optimization (Xu,
Tang, Zhang, Li & Zheng, 2011), for transferring detectors trained in source domain to the
target domain. For a comprehensive review on concept detection, refer to (Jiang, 2009; Snoek
& Worring, 2009), and the high level feature extraction (or semantic indexing since the year
2010) task of TRECVid (Smeaton et al., 2006; 2009) as well as its workshop papers (NIST,
2001-2010) since TRECVid provides a large video data collection, uniform evaluation criteria,
a workshop for active participants to discuss their approaches, and hence can be widely
regarded as the actual standard for performance evaluation of concept based video retrieval
systems (Snoek & Worring, 2009).

This chapter is an extension of our previous work (Tang et al., 2008), which attempts the
concept detection in the framework of ensemble learning. In the proposed scheme, the
individual classifiers and their fusion weights are learned in a unified framework without
any additional classifier selection module.

2.2 Ensemble learning

Ensemble learning (Kuncheva, 2004; Rokach, 2010) coordinates the outputs of multiple
classifiers using diversified data to improve the performance. Empirically, ensemble methods
tend to yield better results when there is a significant diversity among the constituent
classifiers (Kuncheva & Whitaker, 2005). The diversity of classifier outputs plays a critical
role on the success of ensemble learning. Existing methods of constructing ensembles include
Bayesian voting, manipulation on the training examples and input features, etc (Dietterich,
2000). Correspondingly, for concept detection in particular, Snoek and Worring (Snoek &
Worring, 2009) identified three common approaches to achieve some form of independence
(diversity) for coordination, which are using (1) separate features, (2) separate classifiers, and
(3) separate set of labeled examples.

This work focuses on the manipulation on the training examples for classifier diversity, which
can be generally classified into two schemes: (1) separate sampling of labeled instances, and
(2) instance space partitioning. As for separate sampling of labeled examples, two most
widely used strategies are Bagging and Boosting:
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• Bootstrap aggregating (Bagging): Bagging (Breiman, 1996) aims at developing
independent classifiers, and the diversity necessary to make the ensemble work is created
by taking bootstrap replicates as the training sets. The samples are pseudo-independent
because they are sampled with replacement from the same development set.

• Boosting and AdaBoost: Boosting (Freund & Schapire, 1997) is a general method for
improving the performance of a weak classifier. Similar to bagging, Boosting develops
the classifiers by resampling the training set, while contrary to bagging, the resampling
mechanism in boosting focus on most useful sample in each consecutive iteration (Rokach,
2010). AdaBoost (Adaptive Boosting) (Y. & E., 1996) is a popular ensemble algorithm that
improves the simple boosting algorithm via an iterative process. The main idea is to give
more focus to patterns that are harder to classify (Rokach, 2010).

Parallel to the above sampling-based partitioning approaches, many space-based partition
approaches have been developed for partitioning the training set into subsets according to
their belonging to some part of the input space (Rokach, 2010). Particularly, inspired by the
idea that similar instances should be assigned to the same subspace, researchers attempt to
use some clustering method as a possible tool for partitioning the instance space recently. Lior
Rokach proposed the naive decomposition method based on K-Means algorithm (Rokach,
2010). SVM-KNN was proposed in (Zhang et al., 2006) to train an SVM improvisedly by
using the K nearest neighbors of the test sample, but for large-scale dataset such as TRECVid,
it is too time-consuming to search for the K nearest neighbors and train an SVM for each
test sample. Furthermore, it is evident that if a test image is only partially similar with the
expected training images, the latter may not fall within the range of the K nearest neighbors
if K is small, which turns in vain the subsequent training and testing. Recently, we proposed
a localized multiple kernel learning method for realistic human action recognition based on
multiple features (Song et al., 2011), and sparse ensemble learning for visual concept detection
(Tang et al., 2012) by exploiting a sparse non-negative matrix factorization process to for
ensemble construction and fusion.

In this chapter, we propose a novel space-based partitioning scheme by exploiting Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) to partition the instance space into small topic
subspaces (Tang et al., 2008).

2.3 LDA topic models

2.3.1 Vector space modeling

The first major progress in text processing was due to the vector space modeling (VSM) (Salton
& McGill, 1986), in which “bag of words (BoW)” has been adopted to represent a document
as a vector of frequency histogram where each dimension is associated with one term of the
vocabulary and each entry is weighted by the term frequency (TF) or term frequency-inverse
document frequency (TF-IDF) to reduce the importance of indiscriminant words that appear
in many documents. Thereby, the whole corpus is represented as term-document matrix
whose rows are indexed by the terms of the vocabulary and whose columns are indexed by
the documents.

2.3.2 Latent Semantic Analysis

To address the inherent drawbacks of the VSM, such as the difficulty of capturing inter- and
intra document statistical structure and the incompact description of the corpus (Alsumait
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et al., 2010), Latent Semantic Analysis (LSA) (Deerwester et al., 1990) has been introduced
to reduce the term-document matrix through singular value decomposition (SVD). However,
the computation of the SVD is expensive, and the reduced feature space is very difficult to
interpret (Alsumait et al., 2010).

2.3.3 Probabilistic Latent Semantic Analysis

To better understand LSA statistically, probabilistic Latent Semantic Analysis (pLSA) was
proposed (Hofmann, 1999) as an alternative to LSA by applying Bayesian methods to
document modeling. The pLSA model is a generative model which uses a probabilistic
sampling process to generate words in documents based on the latent topics. It associates the
documents d with a mixture of latent topics z weighted by the posterior p(z|d), and represents
each topic by a distribution over words w that appear in it p(w|z). The graphical model of
pLSA is shown in Fig.4(a). As shown by the figure, the joint probability of a document d and
a word wdi can be given as:

p(d, wdi) = p(d)p(wdi|d) (1)

Given that the observation pairs (d, wdi) are assumed to be generated independently, the
conditional probability p(wdi|d) can be computed by marginalizing over topics zk. Therefore,
the joint probability p(d, wdi) can be computed as:

p(d, wdi) = p(d)
K

∑
k=1

p(zk|d)p(wdi|zk) (2)

where K is the total number of latent topics, p(zk |d) is the probability of topic zk occurring in
document d, and p(wdi|zk) is the probability of word wdi occurring in a particular topic p(zk).

D
Nd

⑥ ♠ ⑥
d z w

✲ ✲p(z|d) p(w|z)

D
Nd

K

♠ ♠ ♠ ⑥

♠ ♠
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β φ
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✲
❙
❙
❙
❙
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(a) (b)

Fig. 4. A graphical model of pLSA (a) and LDA (b). Nodes are random variables. Darked
ones are observed and other ones are unobserved. The plates indicate repetitions.

Actually, the pLSA is non-parametric pseudo-generative model since the document d is a
dummy random variable indexed by the by the documents in a training set (Alsumait et al.,
2010; Blei et al., 2003), and there is no natural way to use it to assign probability to a new testing
observation (Li & Perona, 2005). Additionally, the model parameters grows linearly with the
number of training examples (Li & Perona, 2005). Consequently, pLSA has the limitation
of overfitting, hence poor generability for unseen documents (Blei et al., 2003). Despite its
limitation, pLSA has invoked a huge amount of work in statistical machine learning and text
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mining, which resulting in a class of probabilistic topic models aiming at discovering these
hidden variables based on hierarchical Bayesian analysis (Alsumait et al., 2010).

2.3.4 LDA

LDA (Blei et al., 2003) is a three-level hierarchical Bayesian network, a truely generative
probabilistic model for a corpus of documents. The basic idea of LDA is that documents
are represented by a mixture of topics where each topic is a latent multinomial variable
characterized by a multinomial distribution over a fixed vocabulary of words (Alsumait
et al., 2010). A graphical model of LDA is shown in Fig.4(b). As shown by the figure,
through introducing Dirichlet priors α on the document distributions over topics and β on
the topic distributions over words, the generative model of LDA is complete and is capable of
generalizing the topic distributions for generating unseen documents (Alsumait et al., 2010).

The generative process of the LDA is described as follows (Blei et al., 2003):

1. Generate K topic multinomials φk over a fixed vocabulary of words from a Dirichlet prior
Dir(φk|β) given by β; (p(φk|β)).

2. Generate D document multinomials θd over K topics from a Dirichlet prior Dir(θd|α) given
by α; (p(θd|α)).

3. For each document d in the corpus, and for each word wdi in the document d:

(a) Sample a topic zdi from the document multinomial θd; (p(zdi|θd)).

(b) Sample a word wdi from the topic multinomial φz; (p(wdi|φzdi
)).

The joint distributions of the LDA model is:

p({wdi}, {zdi}, {φk}, {θd}|α, β) =
K

∏
k=1

p(φk|β)
D

∏
d=1

p(θd|α)
Nd

∏
i=1

p(zdi|θd)p(wdi|φzdi
) (3)

where α and β are hyperparameters of Dirichlet priors, and φk , θd and zdi are hidden variables
to be inferred.

2.3.5 LDA topic models in computer vision

Recently, inspired by its great success in finding useful structures in many kinds of documents
in the field of text processing (Griffiths & Steyvers, 2004), LDA topic model, has been widely
applied to computer vision problems such as object segmentation (Wang & Grimson, 2007),
scene categorization (Li & Perona, 2005), action recognition (Niebles et al., 2008; Wang, 2011;
Wang & Mori, 2009) and event detection(Pan & Mitra, 2011).

Under topic models, analogous to BoW in text processing, “Bag of visual words (BoVW)”
(Jiang et al., 2007; Jurie & Triggs, 2005; Sivic & Zisserman, 2003; Zhang et al., 2007) is usually
used to represent visual contents (such as key frames) as visual words. BoVW has first
been introduced by Sivic in the case of video retrieval (Sivic & Zisserman, 2003) and became
very popular in the fields of image retrieval and categorization due to its efficiency and
effectiveness. After extraction of visual features, such as local features SIFT (Lowe, 2004) or
SURF (Bay et al., 2006), BoVW consists of two main steps: visual vocabulary construction
and feature quantization. Generally, various clustering methods are used to build the visual
vocabulary by clustering features in to visual words (centroids) which are analogous to
stems in text processing. Then, visual features are quantized into visual words and visual
contents are represented as the frequencies of visual words. Topic models will compute
latent concepts by exploring the co-occurrence of visual words to learn the models of different
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patterns without manual annotation of training samples (Wang, 2011). Compared with other
approaches, one of the major advantages of topic models is their unsupervised nature which
is very important for discovering different patterns from large volumes of video data (Wang,
2011).

3. Algorithm

3.1 Preliminaries and problem formulation

In the task of concept detection, a video shot keyframe is processed to detect the presence of a
set of predefined concepts. Let x denote the visual feature for the keyframe.

For each concept, we have a training set X = {xi, i = 1, 2, ..., N} with label Y = {yi ∈ ±1, i =
1, 2, N}. The concept detection is thus naturally formulated as a classification task. Here, we
adopt the binary classification in the framework of SVM (Vapnik, 1995) and aim to learn an
ensemble discriminant function F(xt) for a test sample xt

F(xt) =
K

∑
k=1

Ψk(xt) · (〈ωk, Φ(xt)〉+ bk). (4)

The discriminant function F(xt) is an ensemble of K localized classifiers that are built on
instance localities πk respectively, where Ψk(xt) are the gating functions that governs how
localized classifiers fk(xt) are coordinated for the final classification of test sample xt.

Solving the primal SVM problem, we obtain ω = ∑i βiyiΦ(xi). As plugging ω into Eq.(5), the
ensemble discriminant function F(xt) becomes:

F(xt) =
K

∑
k=1

Ψk(xt) ·

(

∑
i∈πk

βiyi〈Φ(xt), Φ(xi)〉+ bk

)

. (5)

Learning the ensemble discriminant function F(xt) can be decomposed into two steps: (1)
computing the instance locality model and (2) estimating the localized kernel classifier
parameters. The first step learns the instance localities πk and gating function Ψk(xt).

In the next subsections, we describe the proposed data instance partitioning approach based
on LDA topic model , and the coordination of individual classifiers based on LDA coefficients.
Fig.5 shows the overall framework of the proposed ensemble learning method.

3.2 Ensemble construction with LDA topic models

We employ LDA to model the relationship between images to discover the hidden structures
and perform coarse categorization for ensemble construction and fusion.

3.2.1 LDA topic modeling

To construct the ensemble, the first step is learn the instance locality π. Suppose we have
a set of D(d = 1, . . . , D) keyframes (or shots) containing words from a vocabulary of size
V. Each instance (a shot or keyframe) d is represented as a sequence of Nd visual words
w = (w1, . . . , wNd

). We set the number of latent topics K to the number of the above instance
localities, i.e., the number of localized classifiers in the ensemble. Then, the LDA process that
generates each instance d in the corpus is:

1. Choose the number of visual words Nd from Poisson(ξ).
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Fig. 5. The overall framework. The proposed ensemble first exploits LDA to represent data
instances as a mixture of hidden topics and partition the data space into topic localities, and
then coordinates the individual classifiers in each topic locality for final classification based
on the topic mixture of LDA topics which is naturally achieved during LDA inference
without additional classifier selection.

2. Choose the mixing proportions θ of the current instance d over K topics from Dir(α).

3. For each of the Nd visual words wi:

(a) Choose a topic zi from Multinomial(θ).

(b) Choose a visual word wi from the multinomial distribution p(wi|zi, β).

Here, the topic mixture θ is a multinomial distribution which is generated by K-dimensional
Dirichlet distribution parameterized by the Dirichlet priors α. Additionally, the matrix β of
size K × V is the parameter of the distribution of visual words conditioned on each topic
locality, and each element of β corresponds to the probability p(wi|zk).

The joint distributions of the LDA model is:

p(θ, z, w|α, β) = p(θ|α)
Nd

∏
i=1

p(zi|θ)p(wi|zi, β) (6)

where w is the set of words observed in the current instance, and z is their corresponding
topic.

As mentioned in the previous section, under LDA topic models, BoVW feature (Sivic &
Zisserman, 2003) (including other frequency-based features such as color histogram and edge
histogram etc.) is usually used to represent keyframe. Therefore, the vocabulary size V
is equal to the size M of the feature for LDA estimation. In some practice, V = M + 1
since a dummy word irrelevant to all other words should be included in the vocabulary.
Additionally, in our proposed ensemble learning method, LDA is used only for partition
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ensemble construction and individual classifier coordination. The features used for LDA can
be different from the features for SVM.

In the proposed ensemble construction, we need to know how an instance is mixed over K
hidden topic localities. So we must infer the posterior distribution of the hidden variables for
a set of words w observed in the instance (shot or keyframe):

p(θ, z|w, α, β) =
p(θ, z, w|α, β)

p(w|α, β)
(7)

where θ is specific to each instance and represents its latent topics distribution.

Generally, it is computationally intractable to perform above inference and parameter
estimation for the LDA model. Up to now, two main approximation algorithms have been
proposed to solve the problem: (1) variational inference Expectation-Maximization (EM)
adopted in (Blei et al., 2003); and (2) gibbs sampling adopted in (Griffiths & Steyvers, 2004)
which is easier to compute than the former method.

Once the topic mixture θ is inferred, we can know how topic localities are mixed in the current
instance. There for we can exploit it to determine which localities the instance should be
partitioned into as shown in the next subsection.

3.2.2 Adaptive instance-locality assignment

After LDA inference of the topic mixture θ, we can allocate the instance xi to a few L localities,
according to the top L large elements of θ = {θ1, . . . , θK}. The greater the element θi is, the

(a) (b)

(c) (d)

Fig. 6. Illustration of various distributions of topic mixture vector θ. Each bar denotes the
value of one data instance in a topic locality. Intuitively, the data instance should be ideally
assigned to a small number of localities with relatively large values only.
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Algorithm: Adaptive Instance Assignment

Input: Topic mixture θ = θ1, . . . , θK ∈ RK;
Thresholds: Thadj, Thsum ∈ [0, . . . , 1];
Replication parameter: L.

Output: Locality index set: U; Normalized topic mixture: θ.

1: l1-Normalize θ: θi ← θi/ ‖ θ ‖1, i = 1, . . . , K;

2: Sort: [θ, Index] = sort(θ,’descend’);

3: S ← 0, Len ← min(K, L), U ← ∅;

4: U ← U ∪ {Index1};

5: for (i = 1; i < Len; i++ )

6: if (θi+1/θi < Thadj)

7: break;

8: S ← S + θi+1;

9: if (S > Thsum)

10: break;

11: U ← U ∪ {Indexi+1};

12: end for;

13: if (i + 1 < K)

14: reset: θj ← 0, j = i + 2, . . . , K;

15: l1-Normalize θ: θj ← θj/ ‖ θ ‖1, j = 1, . . . , i + 1;

16: Return U, θ.

Fig. 7. Adaptive instance assignment algorithm

more probably the instance is related to the corresponding ith topic locality. Here, L is a
replication parameter to control the maximum number of localities that a data instance can
be assigned. This effectively controls the replication degree of instance.

One challenge here is that the topic mixture value of θi in θ may vary greatly, and it is not
reasonable to assign the data instance to localities with very small values. For example in Fig.6,
the data instance should be ideally assigned to a small number of localities with relatively
large mixture values only. To do so, we leverage an ordered operator to select valid localities
in an adaptive manner.

The main idea is to detect the abrupt decrease in two adjacent elements in the normalized and
sorted (in descending order) topic mixture θ. If the ratio of the mixture value θi+1 to the former
θi is greater than the a given adjacent threshold (Thadj) and the accumulated sum of the vector

values is below a given accumulation threshold (Thsum), then assign the data instance to the
corresponding locality. Finally, we reset all the elements θj after the abrupt decrease in θ the to
zero, and re-normalize the topic mixture vector θ. The adaptive instance-locality assignment
algorithm is shown in Fig.7.

After grouping all the instances in the training set to localities, we finish coarse categorization
by partitioning large-scale training data set into K small topic localities according to topic
mixture θ of instances. Then, we train a linear discriminative classifier for each locality to
learn the instance localities πk. Once all the local classifiers are trained, we finish the ensemble
construction and training process.

187Ensemble Learning with LDA Topic Models for Visual Concept Detection

www.intechopen.com



14 Multimedia / Book 2

Fig. 8. In the probabilistic generative process of LDA, the observed data instances
(documents) are represented as a mixture of hidden topics, and the topic mixture vector θ
determines how an instance x is mixed over K hidden topic localities. Note that after reseting
of θ in the above adaptive instance assignment, most connections between x and z will be of
zero coefficients.

3.3 Coordination of individual classifiers

As shown in Fig.5, after LDA inference of test instances during testing process, we need to
coordinate the learned local classifiers for the final classification.

The coordination of classifiers in the ensemble concerns learning the gating function Ψk(xt) in
the Equation 5 for a test sample xt. As shown in Fig.8, in the probabilistic generative process
of LDA, the observed data instances (documents) are represented as a mixture of hidden
topics, and the topic mixture vector θ determines how an instance x is mixed over K hidden
topic localities. Therefore, in the LDA generative model, the influence of a topic locality zk
on xt is represented by the connection strength θtk. We, therefore, utilize this influence to
coordinate individual classifiers by setting Ψk(xt) = θtk. Note that after resetting of θ in the
above adaptive instance assignment, most weak connections between x and z will be of zero
coefficients. In other words, for a testing sample xt , as only a few number (T ≤ L is the
resultant size of the locality index set U returned by the algorithm) of large topic mixture
coefficients are non-zero which trigger the corresponding number T of local classifiers to fire.

3.4 Analysis and discussion

3.4.1 The number of localities

The optimal tuning of the number of localities K is not necessary, since the instance space
partitioning is a coarse process to group data. K can be roughly determined by the ratio of
total number of training samples N to the desired average size of topic set which should be
generally no more than ten thousands for the consideration of classifier training efficiency.

3.4.2 Computational complexity

The separate training of individual classifiers on each locality gives rise to the parallelism
of SVM training. Assume that each locality possesses O(N · T/K) data instances. Since the
theoretical computational complexity of SVM training (without considering space problem)

is between O(n2) and O(n3) (n denotes the number of training samples) depending on
the value of the hyper-parameter C (Bordes et al., 2005). Then the complexity of learning
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its classifier is between the lower bound O((N · T/K)2) and upper bound O((N · T/K)3).

The total complexity of the ensemble is between K · O((N · T/K)2) = T2

K · O(N2), and

K · O((N · T/K)3) = T3

K2 · O(N3), which is much more efficient than the complexity of the
single SVM that is learned over the entire dataset since T ≤ L ≪ K. Furthermore, if we take
the space problem into consideration, as the number of training instances N grows, the large
kernel matrix cannot be stored in memory and the cost of computing each kernel value is
relatively high because Kernel values must be computed on the fly or retrieved from a cache
of often accessed values (Bordes et al., 2005), which makes single SVM impractical. On the
other hand, it means that the ensemble can scale up to large scale training dataset.

Similarly, the testing speed can be considerably improved since a testing instance belongs
to only a few T localities and invokes the corresponding local classifiers only. The test
complexity of the ensemble is O(Nsv), where Nsv is the number of support vectors (SV) which
is proportional to number of training samples. Assume the testing data instance are assigned
to only T localities as illustrated in Figure 1(b), then the number of training samples in all

firing classifiers can be estimated to be N · T2/K in average. Therefore, the testing efficiency
can be considerably improved. This makes it practical for online detection in spite of large
training data set.

3.4.3 Cross validation for classifier parameter optimization

Cross validation is widely used for parameter optimization of classifiers, such as the cost
parameter C in soft-margin SVMs and the width parameter g of the Gaussian kernel for
SVM classifiers. It has great influence on video classification performance (van Gemert et al.,
2006). However, it is very time consuming for large scale training set. For the individual
SVM classifier training on each locality, we do not adopt SVM cross validation due to the
two facts: (1) the diversity of the ensemble makes uncorrelated decisions for each classifier
thus complement each other, which makes cross validation less important compared with the
case of single SVM training; (2) for the unbalanced data sets such as TRECVid, traditional
accuracy-based SVM cross validation may not be good for model selection. Perhaps AP or
InfAP based cross validation is more preferable.

4. System and evaluation

Based on the proposed LDA ensemble learning method, we developed two systems to test its
effectiveness: (1)TRECVid concept detection system; (2) Online pornography filtering system.
We will introduce them briefly as follows.

4.1 TRECVid concept detection system

To evaluate the performance of our proposed method, we developed a video concept detection
system based on the TRECVid 08 video benchmark collection (Over et al., 2008). The
preliminary results have been reported in our recent papers (Tang et al., 2008).

4.1.1 Datasets and experimental setup

In TRECVid 08, 20 concepts are used for evaluation as listed in Table 1. Its development
set consists of 109-hour documentary videos of 43,616 keyframes(shots), and testing set of
109-hour videos of 35,766 keyframes(shots).

There are two kinds of the annotation efforts for the development set (Snoek & Worring, 2009):
one is our manual annotation (Tang et al., 2008) and the other is collaboration annotation
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ID Concept #Pos #Hit ID Concept #Pos #Hit

1001 Classroom 241 64 1011 Harbor 217 35

1002 Bridge 186 30 1012 Telephone 203 106

1003
Emergency-

Vehicle
103 22 1013 Street 1799 458

1004 Dog 136 94 1014
Demonstration-

Or-Protest
159 87

1005 Kitchen 289 124 1015 Hand 1879 630

1006 Airplane-flying 80 64 1016 Mountain 265 140

1007 Two-people 4140 1090 1017 Nighttime 490 316

1008 Bus 106 47 1018 Boat-Ship 506 210

1009 Driver 302 364 1019 Flower 620 319

1010 Cityscape 331 337 1020 Singing 441 133

Note: The column “#Pos" denotes the number of positive training samples in the development set, and
the column “#Hit" denotes the number of hits in the groundtruth of the test set provided by TRECVid.

Table 1. The list of 20 concepts in TV08.

Proposed (L=1) Proposed (L=6) Single-SVM Bagging

0.116 0.138 0.130 0.132

Table 2. MAP Comparison of the proposed method, Single-SVM and Bagging on TV 08.

launched by Laboratory of Informatics of Grenoble (LIG) (Ayache & Quénot, 2008). In our
experiments, we used the combination of both ours and LIG’s annotation. The number of
positive training samples and number of hits in the groundtruth are also shown in Table 1.
The evaluation criteria used here is the inferred average precision (InfAP) (Yilmaz & Aslam,
2006) or inferred mean average precision (Inf MAP). InfAP is a very good estimate for average
precision (AP). AP is the average of precisions computed at the point of each of the relevant
documents for considering the order in the ranked sequence of documents, and it is one of
the most commonly used system-oriented measures of retrieval effectiveness (Smeaton et al.,
2009). InfAP was adopted to replace AP in TRECVid since 2005 to save large amount of
judging effort as verified by Yilmaz and Aslam (Yilmaz & Aslam, 2006).

4.1.2 Features and ensemble parameters

We use the released VIREO-374 features (Jiang et al., 2010) to train and test our system. The
primary visual feature we adopt is the local BoVW) features, due to its widely reported
effectiveness. The BoVW representation is a histogram based on a visual vocabulary of 500
visual words clustered by a set of about 500,000 SIFT features (Lowe, 2004), and weighted by
a soft-weighting scheme for taking into account the significance of each visual word in the
keyframe, which has been demonstrated to be more effective than the traditional TF/TF-IDF
weighting schemes (Jiang et al., 2010).

There are three principal types of parameters in the LDA ensemble construction and SVM
training phase of the proposed ensemble:

(1) The number of localities K: we set K = 100 empirically;
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Fig. 9. Comparison of AP for each concept on TV 08 by different runs. As shown, the
proposed method outperforms single SVM and Bagging.

(2) Parameters for the adaptive instance-locality assignment, and our recommendation is: the
replication parameter L = 6, and the two thresholds: Thadj = 0.2, Thsum = 0.95. Thadj and

Thadj is not so important since they can be determined empirically;

(3) For the individual SVM classifier of each locality, we utilize the default RBF kernel, and we
do not adopt SVM cross validation according to the aforementioned reasons.

4.1.3 Experimental results

To investigate the effectiveness of the proposed ensemble, we compare its performances with
the widely used single SVM method over the entire data set, and the well known ensemble
learning approach - Bagging by imitating the random generation of K = 100 training subsets
through sampling with replacement from the development set (Efron & Tibshirani, 1993).

The proposed ensemble learning (L = 6) gives rise to an MAP of 0.138, which is 6.2% relatively
higher than the single SVM of MAP 0.130, and 4.5% higher than Bagging of MAP 0.132 as
shown in Table 2. Fig.9 also shows the comparison of AP for each concept. As shown, the
proposed method outperforms single SVM on evidently on 11 out of 20 concepts, which are
object-oriented concepts like “Airplane-flying”, “Bus”, “Telephone”, “Hand”, “Boat-Ship”,
“Flower”. Most of the rest concepts in which single SVM performs better are scene-oriented
concepts like “Cityscape”, “Street” and “Nighttime”. As compared with Bagging, we can also
see that the proposed method are better for object-oriented concepts.

Our conjecture is that the object-oriented concepts have intrinsic structures consisting of
different subcategories (such as different kind of canoes and steamers associated with the
concept “Boat-Ship”) of common objects (such as “wheels” for the concept “Car”), which have
similar local features, and hence makes LDA exhibit obvious advantages in capturing visual
contents by exploiting the co-occurrences of visual words for instance space partitioning

191Ensemble Learning with LDA Topic Models for Visual Concept Detection

www.intechopen.com



18 Multimedia / Book 2

during ensemble construction. On the other hand, scene-oriented concepts are too diversified
to have common parts such as “Street” and “Nighttime”.

Additionally, for the proposed method with the case of L = 1, its performances are greatly
reduced as shown in Fig.9, even worse than the single SVM method. We attribute this to
the insufficient positive training samples in most of topic localities due to the over-partition
without replication of samples.

Besides the better accuracy, the proposed ensemble also enables much more efficient training
than the single SVM. According to the previous computational complexity analysis, the lower

bound complexity of the proposed ensemble (L = 6) is L2

K · O(N2), which is 0.36 of the single
SVM. This is verified from the actual ratio (0.077) of the proposed training time (6.0 hours)
to that of single SVM (78.3 hours), while the actual total number of training samples of the
proposed amounts to about 250,000, approximately L = 6 times as that of single SVM.

4.2 Online pornography filtering system

Due to the explosion of images and videos in the Internet, the chances of individuals
encountering adult-oriented contents such as pornographic images and videos increase
dramatically, which has become a serious global socio-cultural problem. Therefore, it is of
great importance to detect and filter these harmful contents to provide a cleaner internet
environment for the sake of young adolescents’ healthy growth.

Most existing methods for pornography filtering attempt to exploit text contents to classify
web pages (Rowley et al., 2006). However, the textual approaches suffer from significant
limitations such as dependence of languages, and unavailability of texts. Previous work
on pornographic image detection can be divided into two broad categories (Hu et al., 2007;
Rowley et al., 2006): skin-based methods (Zeng et al., 2004; Zheng, 2004) that are based
primarily on skin color or texture, and model-based methods(Forsyth & Fleck, 1999) which
analyze the shapes of skin colored regions to determine their similarity to human figures. Both
categories rely heavily on skin detection which lacks sufficient robustness against significant
variations in races, lighting conditions, textures, sex-positions, and other factors.

Due to the importance of data (Enzweiler & Gavrila, 2009), we first established a large-scale
training image dataset to include all the kinds of possible variations aforementioned as much
as possible. Then, in order to handle large-scale dataset both efficiently and effectively, we
used the proposed LDA ensemble learning framework to develop an online pornography
filtering system for detecting and monitoring images and video keyframes in the Internet,
and the system is being used by governments and companies in real application. The details
of the system are introduced as follows. The preliminary results have been published in our
recent paper (Tang et al., 2009).

4.2.1 Construction of large-scale training dataset

We established a large-scale training image (including key-frames extracted from videos)
dataset for pornography detection. Thanks to the proliferation of digital images and videos, it
was no longer a difficult task to establish a large database with totally 420,615 training image
samples collecting from a wide variety of diverse origins. We collected 1,108 pornographic
videos from off-line VCD sources. We also captured about 20,000 short pornographic video
clips from online media streams by the skin-based detection method (Zheng, 2004) from Dec
2007 to Dec 2008. We downloaded about 65,000 non-pornographic videos from YouTube,
Tudou, YouKu and other websites. The non-pornographic images were mainly from Corel
database while the pornographic images were downloaded from Pinkworld. After collection,
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Samples Images Video Keyframes Total
Positive 21,699 44,128 65,827

Negative 51,680 303,108 354,788

Table 3. Sample distribution of training dataset

we annotated all the images and keyframes after data collection and keyframe extraction.
During annotation, in order to distinguish true pornographic images from non-pornographic
bodies, we regarded only the images with exposed woman breast, anus, genital organs, or
sexual intercourse scenes as positive samples, while others as negative samples regardless
of exposed skin area. Details of the sample distribution are listed in Table 3. Up to now,
few pornographic image detection systems are based on such a large-scale database with

more than 105 images. To our best knowledge, the reported number of pornographic positive

training samples is usually less than 104 images.

4.2.2 Features and ensemble parameters

We extracted the following three kinds of keyframe features in the system:

1. Color Histogram (CH) (Amir et al., 2005): This is a 166-dimensional histogram, a global
representation of keyframe which is based on the distribution of pixels in an uniformly
partitioned HSV color space.

2. Color Moments (CM) (Stricker & Orengo, 1995): To further incorporate spatial relationship
into the color content, a keyframe is partitioned into a 5× 5 grid and each patch is represented
using the first three moments of the color distribution in LAB color space, i.e. the mean,
standard deviation and the third root of the skewness of each color channel. The color
moments for each patch are then concatenated to form a 255-dimensional feature vector. In our
implementation (Chua et al., 2009), we pre-compute the transformation coefficients for color
moment feature extraction which can provide up to five times speed up over the traditional
extraction method.

3. Edge Histogram (EH) (Amir et al., 2005): It is localized edge histograms from a 5-region
layout consisting of four corner regions and a center overlapping region, represented as a
320-dimensional vector with 8 edge direction bins and 8 edge magnitude bins based on a
Sobel filter (64-dimensional) for each grid.

Through our hierarchical combination of unsupervised clustering and supervised learning,
we used CH for LDA categorization at the top layer; and the prior fusion (concatenation) of
the CM and EH for finer discrimination at the bottom layer (CM+EH, 545-dimensional). We
used CH for coarse categorization due to its relatively lower dimension and faster extraction,
while the concatenation of the two sets of features for finer discrimination for further removal
of false detection caused by many existing skin-based methods. To meet the online detection
speed requirements, we did not use the effective bag-of-visual-word features based on local
features such as SIFT. Although there is no special emphasis on detecting skin, skin detection
is actually included in the latent semantic analysis of the color histogram and training of SVM
models with color moment.

We set the number of localities K = 40, the replication parameter L = 1, and the two
thresholds: Thadj = 0.2, Thsum = 0.95. For the individual SVM classifier of each locality,

we utilize the default RBF kernel, and we do not adopt SVM cross validation.
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Fig. 10. Distributions of Negative/Positive samples over the K = 40 topics

4.2.3 Experimental results

After training all the K = 40 individual SVM classifiers, we collected the test image/keyframe
samples from some companies independently. The total 7110 test samples include 1695
pornographic samples and 5415 non-pornographic samples.

Figure 10 show the distributions of the Negative/Positive samples over the K = 40 topics. We
can see that the Negative/Positive ratio varies greatly from 0.29 in the topic 11 to 138.42 in the
largest topic 38, which means there are more pornographic samples than non-pornographic
ones in the topics (1, 10, 11, 21, 30 and 35) where the ratio is less than 1, while there are
relatively much fewer pornographic samples in the topics (such as 38 and 39) where the ratio
is very large. Compared with the nearly uniform distribution of Negative/Positive samples
generated by random sampling, this imbalanced distribution of positive samples over topics
indicates that LDA can mine the hidden structures of images effectively.

For comparison, we implemented the skin-based method in (Zheng, 2004) and used it for
collecting our training database as mention above. We also implemented single SVM method
with the same feature CM+EH over randomly selected 120, 000 samples from our training
data set. We did not use the whole training dataset for single SVM due to the impractical
amount of training computation.

The ROC curves for our proposed ensemble learning (LDA-SVM), SVM, and the skin-based
method are shown in Figure 11, which indicates that the LDA-SVM is much more effective
than other two methods. Particularly, when we set the detection score threshold to 0.95, the
false positive rate can reach as low as 0.11% (only 6 out of 5415 non-pornographic samples
are recognized pornographic ones) while keeping the recall rate still around 50% (840 out of
1695 pornographic samples are correctly recognized). On the other hand, when we set the
detection score threshold to 0.5, the precision and recall rates can reach as high as 95.12%
(corresponding to false positive rate of 4.88%) and 90.09% respectively.

To test the effectiveness of our coordination method with topic mixture θ, we use the average
fusion method for comparison, and its ROC curve is shown in Figure 11 (the cyan one marked
as LDA-SVM(AVG) ). Since all the 40 SVM models is used for average fusion, its test time is
667ms about 13.6 times slower than that (49 ms) of our coordination method. So we can
conclude that using the topic mixture coefficients for adaptive fusion is effective and efficient.
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Fig. 11. ROC Curves for Pornography Detection

Methods SVM LDA-SVM

Training samples 120,000 420,615
Number of SVs 24,112 1,842 per topic

Training time 72 hours 6 hours
Testing time(320×240) 667 ms 49 ms

Table 4. Training & testing time of SVM methods

The training time, testing time and the numbers of samples and SVs of the single SVM method
and LDA-SVM are shown in Table 4, which indicates the high training and testing efficiency
of the proposed method.

5. Conclusion and future work

In this chapter, motivated by the insight from psychophysical studies, we propose a novel
ensemble learning framework in LDA topic models for large scale concept detection through
combination of unsupervised semantic grouping and supervised learning. Classifier diversity
is achieved by digging the intrinsic topic structure of large visual data under the framework of
LDA topic modeling. For the ensemble fusion, the individual classifiers are then coordinated
based on the large LDA topic mixture coefficients in a generative probabilistic manner, which
is naturally achieved without any additional classifier selection module. As the individual
classifiers are often more compact due to their training on the smaller topic localities, and
only a small number of classifiers in the ensemble will fire on a testing sample, the testing
efficiency can be considerably improved. This makes it practical for online concept detection
despite of large training data set. Extensive tests on the TRECVid 08 benchmark and
pornography detection show that the proposed ensemble learning achieves promising results
and outperforms existing approaches.

Several issues are worthy of further investigation. First, optimal feature, kernel selection and
removal of redundant samples along with high-dimensional indexing should be taken into
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consideration to further improve the performance. Then, the individual classifiers trained in
each locality can be further explored for cross-domain concept detection. Finally, it is of great
importance to use tags of web images to avoid laborious annotation of training samples.
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