
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

15

Real-Time Multimedia Stream Data
 Processing in a Supercomputer Environment

Henryk Krawczyk and Jerzy Proficz
Gdansk University of Technology,

Poland

1. Introduction

The recent development of surveillance systems due to the threat of many attack sources,
(including terrorists, organized and ordinary crime) has forced the municipal and state
authorities to provide a wide range of security measures. The appropriate sensors are
installed alongside the city streets and other public utilities providing a huge amount of
incoming data, which needs to be processed and analyzed, either by a human or
automatically by computer software.

The computer centers with high-performance computers seem to be a natural solution for
automatic mass multimedia processing, for which the computational power is a crucial
factor. Moreover, they are usually located near metropolises, which in conjunction with
their usual high-speed network connection, or even their direct placement in the network
hubs makes them well prepared to receive huge data streams gathered by all surveillance
sensors.

A prototype of such an approach being a real proof-of-concept was built and deployed in
the Academic Computational Center and ETI faculty of Gdansk University of Technology in
Poland. The proposed solution is realized as a hardware-software platform: KASKADA
(Polish abbreviation: Context Analysis of Camera Data Streams for Alert Defining
Applications). Its development was performed as a part of the MAYDAY EURO 2012
project. Apart from the platform, three pilot applications were developed: suspicious object
and dangerous events recognition; endoscopy examination and disease identification, and
intellectual property analysis and protection.

Though the proposed platform is a new idea, it can be compare to a the typical
distributed/parallel programming frameworks. In comparison to the typical grid
computing solutions: Globus (Foster & Kesselman, 1997) or Unicore (Breuer et al., 2004), it
provides built in mechanisms for quality of service in the developed services and integrated
approach to data stream computation management. For the more classical high performance
computation architectures, like MPI with some task queue (eg. PBS), the platform provides
service-oriented and real-time features, enabling easy development of the live multimedia
streams services and user applications.

The proposed platform can be also compared to the typical distributed/parallel
programming frameworks, like J2EE or .NET, however they are general purpose solutions

www.intechopen.com

Interactive Multimedia

290

and have only limited support for massive multimedia stream processing. An interesting
platform was proposed in (Yu et al., 2009), in general it is also dedicated for multimedia
real-time processing, however the mechanisms used are different, where the computations
are concentrated in the database layer, while the KASKADA platform is focused in the
middleware.

2. Challenges of the distributed multimedia processing

The typical supercomputer system is designed for the scientific-based simulation-like

computations. It usually works over a distributed operating system under supervision of a

batch-based queuing system, collecting requests as a list of computational tasks. Their

processing is executed off-line without direct communication with the user. The multimedia

processing, related to the video and audio surveillance systems, requires a real-time

environment, supporting the continuous processing of live data streams, which brings new

challenges for system and middleware software.

The first recognized requirement for the computational platform is to provide a proper

concept of service management. We assume a service is a piece of functionality performing

computations on an input multimedia stream, exposed by a well-defined interface to a user

application. Thus, the platform needs to provide support for development, tests, and

execution of such services. The proper tools for stream algorithm implementations, service

creation and composition, are needed. Moreover, the platform needs to provide a standard

service repository for conversions, decoding, encoding, and distribution of video and audio

streams. Another important aspect is runtime management of services, where the proper

mechanisms of resource allocation and monitoring need to be considered, we proposed the

set of algorithms enabling the proper resource management with the optimization of

fragmentation of the cluster (Krawczyk & Proficz, 2010).

Apart from a proper computational model, the proposed solution needs to guarantee an

appropriate level of usability. The applications using the designed platform should provide

a simple and clear user interface; thus, the platform itself should have a set of features

enabling easy service development and composition. The solution should unify the

processing model and be properly tuned for video and audio streams analysis.

Another problem needing to be solved is event management. We assume any working

service performing stream analysis can reach a set of conditions, when the special actions

need to be performed by other services or even outside the platform. Such an event can be

asynchronously delivered using the message-passing mechanisms provided by the

platform. It’s worth noticing that the number of recognized incidents can burst drastically,

causing a high computational and communicational load, which should be properly

handled preserving all required constraints related to event filtering, message distributing

and delivering.

The above requirements demand the usage of high-performance systems, in both
computational and communicational areas. With respect to other aspects, like security or
safety, we decided to build the platform based on the computational cluster located in the
academic computer center. It consists of 1132 computation nodes, each containing two
multicore processors, with 10896 of available cores. The nodes are interconnected by a high

www.intechopen.com

Real-time Multimedia Stream Data Processing in a Supercomputer Environment

291

speed 20-40GB/s Infiniband network. The above configuration gives solid capabilities for
parallel processed services, based on the parallel computations, analyzing hundreds of
multimedia streams.

The specific characteristics of the performed analysis – real-time, security-related services
rely directly on the dependability of the underlying platform – the dedicated platform needs
to provide the ability to replicate the same computations, thus more accurate results can be
obtained. Moreover, the resource allocation algorithms must provide the minimal,
guaranteed level of resources so that the executed analysis is performed smoothly without
delays and data traffic jams. We assumed (the typical) three types of resources to be
managed directly by the platform: CPU load, indicating the complexity of the performed
computations, memory depending mainly on the size of the problem context, which needs
to be maintained during the analysis, and network bandwidth used to provide the flowing
multimedia stream.

The increasing number of the analyzed services, depending directly on the incoming data,

requires the platform to provide a flexible way to extend its computational and

communicational capabilities. Thus the scalability of the proposed solution is a crucial factor

for the final outcome of the executed services. The management procedures need to comply

with the constraints and limitations given by the underlying hardware according to

capability for the extension of its resources. Moreover, even for a single node the increasing

utilization of the resources (cores, memory) used by the executed services needs to conform

with the speedup of their computations.

Finally, taking under consideration performance, dependability, and scalability of the
proposed solution, the proper means for maintaining the required platform state have to be
developed. The monitoring subsystem is responsible for measuring and control of the
cluster nodes and executed services. In case of abuse, such a component needs to be
properly handled, the service needs to be stopped and the node isolated from the cluster.
Moreover the monitor provides the external API for tracing the above measurements by the
utility applications, so as to be able to react flexibly to the occurring problems.

3. Multimedia processing model

Fig. 1 presents a layered processing model for multimedia processing. The whole platform is
deployed in the cluster environment – system infrastructure including a Linux operating
system, computation nodes and the network. On the other side, it serves as a middleware
for user applications, which are directly responsible for the interactions with the users
(Krawczyk & Proficz, 2010b).

Apart from the applications and the infrastructure, the model consists of the following four
layers: (1) complex services, (2) simple services, (3) computational tasks, and (4) processes.
The top layer manages the complex services exposed directly to the user applications, which
are working according to defined scenarios of simple services included in the underlying
layer.

Figure 2 presents an MSP-ML example of a complex service scenario being a part of a video-
surveillance system supporting the monitoring of entrances, with automatic comparison of
the amount of people passing the gates; generating an alert when any gate is overcrowded,

www.intechopen.com

Interactive Multimedia

292

version for 2 gates. Two cameras are used capturing video streams and implementations of
the following algorithms: decoder – unpacking encoded video frames, background remover
– the algorithm detecting moving objects in the video stream and removing the background,
human detector – the algorithm detecting a human silhouette in the incoming images, event
counter – comparing the number of messages with detected events describing incoming
people and signaling large imbalance between them.

Simple services

Computational tasks

Processes

Complex services

System infrastructure

User applications

Fig. 1. KASKADA platform processing layers

 simple service (1) – decoding video stream from gate 1
 simple service (2) – background exclusion on the stream received from task #1
 simple service (3) – human detection on the stream received from task #2
 simple service (4) – decoding video stream from gate 2
 simple service (5) – background exclusion on the stream received from task #4
 simple service (6) – human detection on the stream received from task #5
 simple service (7) – counting and comparison of events from tasks: 4 and 6,with

parameters indicating alert (event) if the number of passing people on any gate is 20%
greater than average

Fig. 2. An example of a complex service scenario in MSP-ML

The complex services layer is responsible for execution of scenarios consisting of complex
and/or simple services according to the following steps:

1. Creation and validation of a service scenario. In the preliminary phase of service execution,
the platform creates a sequence of simple services used by the particular steps of the
scenario. It consists of the vertices representing the services and directed edges
indicating data flow. We assume that such graphs are acyclic – no feedback is allowed.

www.intechopen.com

Real-time Multimedia Stream Data Processing in a Supercomputer Environment

293

The service descriptions are retrieved from the repository of scenarios and their input-
output data types correctness id validated, see figure 3 (a).

2. Algorithms' selection and required resource estimation. In this step, the service scenario is
converted into a new data flow graph including the computational tasks as vertices and
directed edges representing data streams’ flow, see figure 3 (b). This transformation is
dependent on the requested quality parameters, which can have influence on the tasks
algorithm selection as well as on the input data choice, e.g. camera resolution.

t2

t1 t3

t4

n2n1

(c)

t2

t1 t3

t4

s3

s2

s1

s1

s2

s3

(a) (b)

t2

t1 t3

t4

n2n1

(d)

p5-7 p1-4

p9

p8

si – simple service, ti – computation task, ni – computation node, pi – process/thread

Fig. 3. Phases of preparation to service scenario execution: (a) simple services; (b) task graph;

(c) tasks’ assignment to the computation nodes; (d) tasks running as processes and threads.

3. Task assignment to the cluster nodes. In this step, the vertices of the data flow graph, i.e.
computational tasks (derived from the simple services) are assigned to the concrete
cluster nodes, see figure 3 (c). We would like to emphasize that the tasks need to be
executed parallel or concurrently, satisfying requirement for on-line processing and is
more similar to a variable sized bin packing problem. The optimized criteria can be as
follow: minimizing the number of partially used nodes (defragmentation), minimizing
total network load, or the total delay of the scenario processing (Krawczyk & Proficz,
2010a).

4. Scenario startup. In this step, the computational tasks of the respective simple services
are started up on the cluster nodes according to the given assignment. The task
identifiers are generated and distributed. The proper data streams are assigned to the
tasks and the communication is initialized. Each task after initiation consists of one or
more processes/threads, whose execution is managed directly by the operating system
installed on the cluster nodes, see figure 3 (d).

5. Scenario monitoring. During the scenario execution, the platform will monitor the
running tasks and evaluate the following parameters: processor load, memory usage,
multimedia, event and plain data streams' flow. The evaluation procedures are used for
continuous collecting and verification of quality related meta-data describing the
particular services.

6. Scenario termination. In the last step, the platform is responsible for the correct termination
of all computational tasks executed with the scenario. This means that, all related
processes and threads are finished, the associated resources are freed, the multimedia
streams are closed, and the proper information messages are sent to the client.

The next layer of the proposed model, presented in figure 1 is involved in execution of the
simple services, which are responsible for selection of the proper algorithm form alternative
proposition according to the requested quality parameters. Moreover, the multimedia

www.intechopen.com

Interactive Multimedia

294

stream distribution to the computational tasks is established. For the sake of minimizing
network load, the RTSP protocol with the multicast is used.

The next layer corresponds to the computational tasks, which are the implementation of the

concrete stream analysis algorithms. They use the libraries of special functions such as

cooperation with other components of the platform, including storage or an event server. It

perceives the framework as a template, which already includes supporting objects used by

the algorithm implementation, e.g. an image frame iterator for a video stream. This layer is

responsible for task distribution, and requested resource allocation: nodes and processors. It

also uses a typical launcher for these purposes, besides additional qualities of service

policies, e.g. delays to the start of each task are considered.

The process/thread layer enables execution of the computational tasks. They can use typical

mechanisms of concurrency and parallelism. The platform supports POSIX threads and

other similar mechanisms provided by the underlying operating system.

The model described above was implemented in the KASKADA platform, all its layers are

realized and their cooperation is managed by specialized servers. The description of the

platform architecture is shown in section 6.

To create user application we build, we use a suitable application server cooperating with

the KASKADA platform. The main part of the application is a specialized interface which

allows to perform one or more of the possible user scenarios consisting of simple or complex

services running on the KASKADA platform.

4. Development environment for multimedia stream processing

Fig. 4 presents the typical flow of activities leading to building of a complex service scenario.

We start with an idea of multimedia stream processing, for instance identification of well-

known objects or events. Then we can focus on the algorithm described in pseudo-code or

other high level language, eg. flowchart. When that transition appears, we translate them to

the real source code. It is compiled and linked into a computation task executable code.

Having the executable algorithm program we enrich it with the quality and parameters

metadata to obtain a simple service. The platform provides automatic generation of the

WSLD description of this service, which in turn can be used to build more complex

structures. The special language MSP-ML was designed to express the service composition

keeping characteristic stream-processing constraints.

Algorithm
description

Compuataion
task

Simple
service

Scenario
description

source code executable WSDL

MSP-MLidea KASKADA
framework

quality & parameters
metadata

Fig. 4. A typical flow of activities of complex service creation

www.intechopen.com

Real-time Multimedia Stream Data Processing in a Supercomputer Environment

295

4.1 Algorithms to computation tasks

The KASKADA platform supports execution of multimedia stream analysis algorithms as
computation tasks. They can be able to receive an input stream to detect objects and events,
and finally to generate the output stream. Moreover, the tasks can be composed in pipelines
or even more complex structures, so that the results of one task can be used as an input of
the others. For instance we can distinguish a task detecting faces in the monitored video
stream, and then one recognizing specific properties of the face, and a final task checking the
database of persons wanted by the police.

The KASKADA platform provides a dedicated framework supporting implementation of
the analysis algorithms. Every algorithm, embedded in the KASKADA framework, can use
a special API providing the platform functionality: multimedia encoding and decoding,
intermediate results interchange, signaling the events, processing the input parameters, and
stream synchronization. The algorithms are implemented in C++ and together with the
framework create computation tasks (see Fig. 5) under the Linux operating system in the
cluster environment.

algorythm
algorythm

program
program

framework
framework

computation
task

computation
task

implementation

linking

Fig. 5. Development of a computation task

Multimedia streams captured by the cameras or microphones are received under the RTSP
protocol, the framework decodes the flowing video frames or audio probes and forwards
them as input data to the task. Additionally, it can use the metadata related to the received
stream, eg. the currently processed frame timestamp, resolution or video frame rate, or the
audio probing frequency.

Another interesting feature provided by the KASKADA framework is a mechanism
managing input parameters. They are formatted according to the convention used in GNU
GPL license software. The framework recognizes the parameters related to the streams,
filters and interprets them, in order to reconfigure the implemented algorithm. The platform
provides the methods for parameters’ propagation through the platform layers, so they
don’t need to be distributed manually to the destination services or tasks.

From an input data distribution point of view any task can be executed in three different
modes: off-line streaming from a file, off-line streaming from a streaming server, and on-line
directly from the stream source (see Fig. 6 a-c). The first mode enables direct usage of
archived streams using a network file system, that the processing can be even faster than the
recording, eg. for video streams the processing frame rate is limited only by the CPU speed.

The streams transmitted in the off-line streaming server mode are provided in a very similar
fashion to the live streaming, with the exception of the data source, which is located in the
off-line archive. This approach supports the tests using the archived content, but within the

www.intechopen.com

Interactive Multimedia

296

constraints of the live streaming. The later mode is based on the direct connection to the
streaming device, ie. a camera or a microphone enabling their real-time processing.

From the point of view of output data distribution, the algorithm execution and tests can be

performed using archiving or streaming modes (see Fig. 6 d-e). In the first case the

processed output stream is stored into the archive file, and in the latter the results are

transmitted by a streaming server to the client. There is also the possibility to use a hybrid

approach where the data are simultaneously stored in the archive and transmitted after

some transformations to the users (see Fig. 6 f).

file:

rtsp:

(a)

(b)

(c)

file:

rtsp:

rtsp:

rtsp:

file:

(d)

(e)

(f)

input output

Fig. 6. Input/output algorithm modes, for input: (a) off-line from a file; (b) off-line through a

streaming server; (c) on-line from a streaming device; for output: (d) archiving to a file; (e)

transmitting through the streaming server; (f) hybrid.

The above algorithm input/output modes directly implies interaction modes with the

services or even the whole platform. Thus we can distinguish the following interaction

modes:

1. Real-time mode – when the multimedia streams are directly processed and the results

are provided to the user.

2. Off-line mode – when the streams are read directly from the archive and the results are

stored for the user.

3. Real-time simulator mode – when streams are read from the archive, but they are

transmitted to the tasks just like from their original source, and the results are provided

to the user – used for testing purposes.

Apart from the multimedia stream, any running algorithm can send the messages enclosing

the detected objects or events it found during the processing. The KASKADA framework

provides the message passing API, and the platform contains the mechanisms of their

routing, delivering, and monitoring. Fig. 7 presents an example source code for sending the

message, and the screenshot of the web browser with monitored messages containing the

information about reported events.

www.intechopen.com

Real-time Multimedia Stream Data Processing in a Supercomputer Environment

297

Fig. 7. Example of sending and monitoring the messages describing events

4.2 Algorithm to service transformation

The implemented algorithm, after linking with the KASKADA framework libraries and its
preliminary tests, can be used as a base for creation of a simple service, which can be offered
as its remote access. From the point of view of a programmer, the service is an interface
backed up by the task and accessible through the platform.

It is possible to implement a few alternative algorithms realizing the same service, but
providing different levels of processing quality, ie. dependability, performance. On the
other hand, there can exist an algorithm matching two, or even more, services providing
their functionalities. Fig. 8 presents an example of such multiple relations between
algorithms' implementation and services.

human silhouette
identification

face
identification

human silhouette
identification in

the video

algorithms services

human
identification in

the video

face
identification in

the video

Fig. 8. An example of multiple relations between algorithms' implementation and services

The KASKADA platform stores algorithms' metadata, as well as providing the means to
manage them. For this purpose an appropriate user interface was implemented including
such functions as adding, removing and modification of the data: an algorithm's name,
executable file path, input and quality parameters. An exemplary list of algorithms was
presented in Fig. 9.

www.intechopen.com

Interactive Multimedia

298

Fig. 9. An example of implemented algorithms in GUI of the KASAKDA platform

The algorithms, implemented in the KASKADA platform can be based on different

processing paradigms. They vary from the typical high performance numeric computations,

through different heuristics like different classifiers, Haar cascade, to more sophisticated

artificial intelligence solutions like identification of objects by GHM (Gaussian Mixture

Model), Kaman filter and codebook model, or even expert-systems for endoscopies disease

recognition.

Similarly to algorithms, the simple services are described by their metadata, including: a

service name, the description, input and quality parameters. Additionally, the implemented

algorithms realizing the suitable service can be easily point out by simple name selection

from the list. Every selected algorithm can use the service input parameters passed during

its execution, however their handling is optional.

The developer can start the service in two modes: by remote call or using a web browser.

For testing/debugging purposes the latter one is more feasible, when she/he just needs to

introduce the parameter values and click the “start” button. Both modes are provided

automatically by the platform, just after the service definition. Fig. 10 presents the steps for

service definition and execution. After successful initiation, the developer can check the

result data stream and the events in the messages generated by the algorithm and logged in

the special logs.

www.intechopen.com

Real-time Multimedia Stream Data Processing in a Supercomputer Environment

299

(a)

(b)

(c)

Fig. 10. Steps required to add and execute a simple service: (a) service definition, (b) service
selection from the list, (c) entering input parameters

The remote call of a simple service can be realized using HTTP/SOAP protocols. In such a

case the programmer is responsible for a proper implementation of client being part of user

application. To simplify this process, the KASKADA platform provides its own UDDI

registry, where the services are described using always-updated documents in WSDL

format.

4.3 Simple to complex service transformation

Similarly to a simple service solution, the complex services are accessible by a web browser

or through the external interface based on SOAP/HTTP protocol. The choice also depends

on the input and quality parameters, and accept the multimedia streams as an input. They

aggregate simple services within execution scenarios. ie. in more complex structures, which

extends their functionality.

Fig. 11a presents an example of an execution scenario, discussed in section 3. The scenario

can be described by XML language as a set of simple services and input/output data stream

definitions, see Fig. 11b. The document is created by the developer using a typical text

editor, or a specialized language: MSP-ML. Based on this we entered a GUI interface as the

proper form as shown in Fig. 11c.

www.intechopen.com

Interactive Multimedia

300

Every single service needs to have provided input and quality parameters, specific to its
underlying algorithm. They can be introduced in two ways: forwarded from the complex
service description, or fixed during the complex service definition. Using this approach, we
achieve flexibility required for the service execution.

(b)

(c)

(a)

Fig. 11. From complex service scenario definition (a) trough XML document (b) to GUI
service definition (c)

5. Execution environment for multimedia stream processing

We distinguish four domains of the platform management during service execution: (1)
data, (2) computations, (3) communication, and (4) resources. Data as real-time streams of
the incoming multimedia data either video or audio, need to be archived and distributed
among computation tasks. Computation means the stream processing tasks, which are
involved by instructions of program. Communication is understood as message exchange
mechanisms enabling distribution of the events among service components and sending to
the external client. Finally, the cluster resources are engaged in computations and constantly
observed by the monitoring mechanisms, including checking and reacting on the
inappropriate usage of the network, CPU and memory.

5.1 Data – Multimedia stream management

The multimedia data streams are generated by a geographically distributed set of video

cameras and microphones. They need to be delivered to the computation center and

preprocessed for further analysis. The number of streams, and their characteristics, demands

the usage of a high bandwidth optic fiber network.

Fig. 12 shows the view of the multimedia streams in the considered platform regarding the
users, as well as the external applications using the platform functionality. The arriving data

www.intechopen.com

Real-time Multimedia Stream Data Processing in a Supercomputer Environment

301

needs to be received, validated, and archived, due to additional offline analysis and legal
concerns. The above operations are performed by the tasks controlled by the management
server. The server can also cooperate directly with the stream sources. Preprocessing is used
to unpack the stream data from its native protocol, usually RTSP, and forward it to the
proper analysis tasks located on the computational nodes using an Infiniband network. The
higher platform efficiency can be achieved by allocation of tasks with streams to more
cluster nodes. A special set of the cluster’s computational nodes is assigned to perform such
tasks using the high performance network file system LUSTRE. Physically, the data is stored
on a specific data server with high performance 500TB hard drives.

input streams output streams

service
repository

tasks

task
library management

services

SAO applications/users

Fig. 12. Data and user interoperability of the KASKADA

The various algorithms exposed as services can consume incoming streams and produce
messages (as events created during the analysis) as well as new output streams, which should
be delivered to the user. See the next section for more details about the flow of events.

The information about produced output streams are sent back to the stream management
server nodes and they are ready to be delivered to the selected users. It can be done by the
user console module. The stream-related functionalities of the user console cover:

 registration and testing of new multimedia (audio or video) streams,

 configuring the meta-data of the stream, including codec, fps, width, height etc.,

 archive configuration with individual settings of each stream,

 creation (by upload or archive selection) of the test streams used for benchmarking and
testing of the algorithms,

 playing and replaying of the live or archived streams.

5.2 Communication – Event management

An application controlling the processing of the started service can receive the results of the

predicted analysis by means of event processing. An event, as specified in section 1, is

information generated by a task belonging to the service, which is potentially important for

www.intechopen.com

Interactive Multimedia

302

external applications or their users. Such information is expressed by a message transported

in XML document format. The type of the message and its content are determined by the

particular algorithm implemented by the task. It is not compulsory for the task to finish its

work after creating and issuing an event; the multimedia streams can be processed

continuously causing generation of many events for different situations detected in the

streams during their processing. Such series of the events can be conceived as the events

stream or the data stream (Olken & Gruenwald, 2008). The processing of such a data stream

can be focused on the selected events, treating them independently, or as the sequence of

events, where state-aware operations analyze one event after another.

Fig. 13 shows the event processing idea in the KASKADA platform; starting from the event

creation, through event handling and ending with the special message being passed to the

specified destinations.

The tasks belonging to the service searching media streams, with respect to detection of

special object and/or particular situations. The successful detection of such situations causes

generation of an event containing information about its origin and processed media time,

apart from data related to the particular event type. Then, each event is passed to an Event

Handling Module through the message queue maintained by Apache ActiveMQ. The choice

of ActiveMQ as the message queue provider is, among other things, determined by different

technologies, C++ and JEE, being the runtime environments for the event processing flow

elements. The Event Handling Module performs the operations during event processing,

such as save, apply events, create and send message (see Fig. 13).

Operation: Saves the event in repository: each event incoming to the Event Handling

Module is stored for administrative and safety purposes, using the Events Repository

mechanisms. The storage structures associate the event with the data stream related to the

service in order to enable later backtracking of the selected service results. Using the

information about the service-starting details, preserved by the KASKADA platform, and

the archive of media streams, it is possible for the particular event to reconstruct the

conditions which led to such an event generation.

Operation: Applies filters to the event: the user console of the KASKADA platform supports a

choice of filters applicable to the event processing. A filter can be applied to check if particular

properties of the event fulfill criteria defined for that filter. The criteria for a filter can specify a

service or XPath expression. If there is consistency between XML content of the event and the

specified filter settings, the service and the expression, the event becomes active.

Operation: Sends the event message to the channels: the filter applied to the processed event

contains one or more channels. A channel represents a final destination for the information

about processed event. The XML message describing the active event is delivered to the

recipients specified by details of each channel. The information contained in the channel

details is determined by the channel type which represents the transport mechanism used

by the particular channel. The currently-supported channel types are the e-mail type and the

JMS compliant message queue system type. Nevertheless, the KASKADA platform is ready

to support additional types, and also for implementing the transport mechanisms related to

them.

www.intechopen.com

Real-time Multimedia Stream Data Processing in a Supercomputer Environment

303

Fig. 13. Event processing idea in the KASKADA platform

An Event Management Module is a part of the user console of the KASKADA platform; and,
as other modules of the console, is designed to work with an end-user in an interactive
mode. There are a few functionalities supported by the module (apart from the described-
above definition) and management of event filters. The module makes available a real-time
monitoring of incoming events related to the particular service while it is still running. The
console user can inspect the archived event streams, for example searching for particular
circumstances. The module allows replaying the part of the archived media stream related
to the selected event during its examination, adjusting the time frame of the played part if
necessary.

Different types of destination channels open the KASKADA platform to the various
technologies of implementation of the applications receiving the results of calculations of
services. Apart from the technology, there are two typical scenarios of the interoperability of
the user applications and the KASKADA platform. The scenarios can be described as follows:

 The operator of an external, interactive, application starts a service through the
application monitoring mechanisms. Then, the application processes incoming events
and stops the service; for example after receiving a particular event, presenting the
operator with the processing results. The above sequence applies to the processing of a
selected part of the stream, as a result of a more general, continuous, analysis.

 The advanced, distributed, application automatically starts a service with mechanisms
contained in one of its components. The started service, without stopping its work,

www.intechopen.com

Interactive Multimedia

304

generates events which are delivered to another component of the same application, or
even to another application. The scenario separates the management of a service
execution from the pure event processing, allowing the application to be more flexible
and modularized on a high level.

5.3 Computation – Service and task management

As was described in section 1, the complex services are executed as a set of simple services

according to the describing scenario. The simple services are realized by the computation

tasks, which in turn are represented by the processes and threads in the cluster environment

(see Fig. 1 for comparison). The tasks need to be placed in a suitable computation node,

according to the appropriate task schedule achieving the required computation time.

The typical problem of task scheduling is defined as assignment of a set of tasks into the set

of computational nodes in an order to execute them in minimal time. It is proved, the above

problem is NP-hard for the general case, and there exists a polynomial solution for task

scheduling on two computational nodes (El-Rewini & Lewis, 1994).

The proposed architecture assumes that tasks are executed continuously, consuming and

producing data streams. Each of them requires concrete computational power to realize the

provided functionality. We assume that due to the character of multimedia stream

processing, the tasks require real-time execution, and they cannot be queued and started

with delay in the sequence one by one.

We propose a specific a task-to-nodes assignment strategy regarding the above constraints.

The tasks could be assigned to the computational nodes, which are able to execute them

directly. Otherwise, if there no such nodes exist in the cluster, the service scenario

(scheduled tasks) is not executed, its execution is refused and signalized to the user. To

minimize the occurrences of such cases the platform should optimize its selection using the

criteria of minimizing the fragmentation.

In such a way the assignment strategy is quite similar to the well-known bin packing

problem (BPP) (Garey & Johnson, 1979), especially its version with the variable bin sizes

(VBPP) (Haouari & Serairi, 2009). Typical BPP minimizes the number of baskets

(computational nodes in our case) used for packing a set of objects (tasks). The version with

the basket variable sizes introduces additionally a finite set of basket types with different

sizes. An exact algorithm for (V)BPP is NP-hard (Garey & Johnson, 1979).

In the proposed assignment strategy we can use as many baskets of possible type (size) as

we need, but the number of each type is finite. Moreover, the optimisation goals are

different, VBPP minimizes the number of used baskets and our startegy considers the

number of partially used nodes.

The fragmentation factor indicates the number of nodes partially engaged in task

processing. Fig. 14 shows a situation where a new heavy task cannot be assigned to any

node, because all nodes (c1- c4) offer less computation power than it is needed for the task t

(Φ(t)=6). In (Krawczyk & Proficz, 2010a), we proposed a few heuristic algorithms to

minimize the fragmentation what in turn enables execution of more tasks with high load, ie.

Φ(t)=6 in the example.

www.intechopen.com

Real-time Multimedia Stream Data Processing in a Supercomputer Environment

305

t

?

c2

c3

c1

c4

Г(c1)=5

Г(c2)=2

Г(c3)=4

Г(c4)=5

Φ(t) = 6

Fig. 14. Example of the cluster fragmentation preventing a new task assignment

5.4 Resources monitoring

In the case of the KASKADA platform we distinguish three kinds of resource characteristics:

network bandwidth, memory size and CPU load. According to the assumptions described in

the previous section, each computation task needs to have guaranteed the proper amount of

the resources, and the tasks behaving incorrectly have to be deactivated and their service

stopped. Moreover the monitoring information needs to be presented to the external client

using either GUI or by the webservice interface.

The KASKADA platform monitor is responsible for the following functionality:

 managing the services and tasks,

 monitoring the current resources utilization,

 informing the user about the tasks’ errors and exceptions,

 logging the information about the platform, services and tasks behavior,

 checking the computational node states related to network connection and file system

behavior.

Fig. 15. The basic activities for starting a service in the KASKADA platform

www.intechopen.com

Interactive Multimedia

306

The KASKADA monitor consists of two functional components: computation monitor – the
central component keeping the states of the services and their tasks and monitor daemon,
running on every single cluster node, which cooperates directly with the tasks, gathering the
information and executing orders from the computation monitor. Fig. 15 shows an example
diagram of the scheduler and both monitor components when the user starts a service.

6. KASKADA – Architectural design and realization

6.1 Software architecture

The proposed in section 3 processing model was implemented as the KASKADA platform.
Fig. 16 presents the main classes to satisfy functional requirements. From the user’s point of
view the main goal of the platform is to provide the webservices based on SOA architecture.
They will be responsible for execution of the complex service scenarios supported by simple
services. The example sequential diagram of the scenario execution is presented in figure 17.

Both service types, i.e. simple and complex ones, are going to be deployed on the same JEE
application server, we consider using a Tomcat web container for this purpose. They will
utilize SOAP technologies over HTTP(S) protocol, in case of synchronous remote calls, and a
queue system, i.e. ActiveMQ for asynchronous communication within JMS interface. The
result return will be performed in separated objects (and components): Event Handler for
messages and Dispatcher for multimedia streams.

Fig. 16. Domain class diagram of the KASKADA platform

According to the assumed processing model, simple services manage the distribution of the
input and output data streams among computational tasks. The object of classes Dispatcher
and Scheduler support this functionality. Moreover, the responsibility of the Dispatcher
object is the stream recording in the storage and sending them back to the client. The
example sequential diagram of the simple service execution is presented in Fig. 18.

www.intechopen.com

Real-time Multimedia Stream Data Processing in a Supercomputer Environment

307

Fig. 17. A sequence diagram of the complex service execution within the domain model (see
Fig. 16)

Computational tasks – the executable code of the multimedia stream analysis algorithms
embedded in the framework accomplish the appropriate computations. They receive the
multimedia streams generated by a camera, microphone, or other device (e.g. medical
equipment), make the required analysis and transformation and send an output data stream
including discovered events to the proper components, mainly to Event Handler and
Dispatcher, forwarding them through the service layers to the clients – a users or an external
applications (see Fig. 19).

Fig. 18. A sequence diagram of the simple service execution within the domain model (see
Fig. 16)

During the algorithm implementation, the programmer can use software components
provided by the computation cluster environment: POSIX threads and openMP library for
shared memory processing and object serialization (supported by boost library) for object
data exchange between the computational tasks.

www.intechopen.com

Interactive Multimedia

308

Fig. 19. Component diagram of the KASKADA platform

Almost all the above domain classes presented in Fig. 16 can be straightforwardly converted
into the software components of the proposed platform. The only exception is the User
Console component which aggregates Scheduler class as well as manages the other platform
components including operations on the multimedia and other data streams (especially in
off-line mode – using recorded data), security and service configuration and deployment (a
service repository with the WSDL and UDDI support).

User console functionality is provided through a web interface and can be easily accessed
with an Internet browser. For its development, we use JEE standard supported by an
application server, i.e. a Tomcat web-container, including technologies: JSP and AJAX.

6.2 Hardware architecture

To execute computation tasks all software components should be deployed on the
computer cluster. Fig. 20 presents the deployment diagram including hardware nodes with
the assigned software components. The core of the platform is the cluster which consists of
672 two-processor (Intel) nodes connected by the fast Infiniband network, each processor
has 8 cores, which gives in total 5376 cores.

Fig. 20. Deployment diagram of KASKADA platform

www.intechopen.com

Real-time Multimedia Stream Data Processing in a Supercomputer Environment

309

The stream managing sever is responsible for multimedia stream format and

communication protocol conversion, enabling its usage by the computational tasks and

receiving by the clients. It is especially important due to the large number of streams, and

network load minimizing strategy: some cameras or other devices, do not support multicast

data transmission, so it needs to be provided by the platform. The Dispatcher component is

responsible for this functionality, as well as stream recording and archiving.

The process managing server is responsible for direct cooperation with the client software.

Here are deployed services and the User console component. It is prepared for serving a

large number of webservices, the simple ones – which are easily mapped to the

computational tasks – as well as the complex ones, executing the scenarios.

The messaging server supports the Event handler component. It enables receiving, analysis

and former processing of the data (but not multimedia) streams containing discovered

events. It cooperates with the process managing server where the event related services are

deployed.

The data server is used for recorded data storage. We use high performance hard drives

with 500TB capacity and the Lustre file system, the server is going to be connected to the

cluster and other servers by the Infiniband network, for its low delay and high

bandwidth.

7. Applications available in KASKADA platform

The KASKADA platform was heavily tested for two pilot applications, developed as a proof

of concept of the proposed multimedia processing model: identification of dangerous

objects and unusual situations (DOUS) occurring in multimedia streams coming from

cameras located in different places, and medical recommender for endoscopy examinations

(MREE) showing some disease changes in film taken during gastroscopy track. The former

is used for automation of typical video and audio surveillance tasks, like dangerous person

identification or left luggage detection. The latter helps medical staff to quickly find the

possible lesions in the video recorded during endoscopy examinations. Table 1 presents the

usage of the platform features by the applications.

Functional feature DOUS MREE

video processing yes yes

audio processing yes no

real-time analysis yes no

streaming server yes yes

simple services yes yes

complex services with scenarios yes yes

test streams yes yes

Table 1. The main KASKADA platform functional features available for the applications

www.intechopen.com

Interactive Multimedia

310

Quality characteristics are one of the most important features evaluating the whole platform

behavior. During the platform analysis and design, we found out we need to focus on four

key factors: performance, scalability, dependability and security. Performance is crucial for

real-time processing, both processor speed and network bandwidth need to be examined,

for the platform to work in the real environment. The scalability is another important factor,

especially when large numbers of the input streams need to be archived, processed, and

transmitted back to the customer. Moreover, even the high performance solutions can't

provide the satisfactory results until they are dependable (the designed algorithms are

correct and acceptable for various conditions), and finally the character of the processed

streams, including surveillance and medical data, requires high security protecting access

from unauthorized persons. The above applications, especially DOUS, can achieve the

appropriate public security level using strategy illustrated in Fig. 21.

contract negotiations and
process organization

MDS

MS SS

IA

process of security level and monitoring agreement

data stream flow

event message flow

Fig. 21. Public security agreement strategy, MS – monitoring systems, SS – service services,
IA – intermediary agency to provide SLA (service level agreement), MDS – multiple data
sources

8. Conclusion

The KASKADA platform is designed to cooperate with external systems and applications.
We decided to use a typical approach based on the SOA architecture with support for both
synchronous and asynchronous communication, and implement a typical HTTP/SOAP
protocol to start the exposed functionality, and message-passing queue system, supporting
JMS and XMPP protocols to return the results of the long-lasting processing.

www.intechopen.com

Real-time Multimedia Stream Data Processing in a Supercomputer Environment

311

The platform is developed using agile development process principles, so the possible
updates and new features can be added quite quickly, from one iteration to another, with
release of a new version. The platform itself is flexible with easy and extensive configuration
enabling quick adaptation to a new environment, or volume of the problem. With possible
virtualization and cloud computing support.

The KASKADA platform is already developed and deployed in the Academic Computer
Center of Gdansk University of Technology in Poland. The current development is focused
on the quality tests related mostly to the performance and scalability characteristics. The
whole project, including the proposed applications, is going to be finalized in 2012.

In the future we plan to continue development of new applications based on the currently
available services, as well as new algorithms for the various multimedia processing
problems, with a special focus on massive stream processing and various quality
parameters, like dependability and security.

9. Acknowledgment

The work was realized as a part of MAYDAY EURO 2012 project, Operational Program
Innovative Economy 2007-2013, Priority 2 “Infrastructure area R&D”.

10. References

Breuer D., Erwin D., Mallmann D., Menday R., Romberg M., Sander V., Schuller B., Wieder

P. (2004) Scientific Computing with UNICORE, NIC Symposium, ISBN: 3-00-

012372-5, Forschungszentrum Jülich, February 2004

El-Rewini H., Lewis T. G., Ali H. H. (1994) Task Scheduling in Parallel and Distributed

Systems, Prentice-Hall Series In Innovative Technology, ISBN: 978-013-0992-35-2

Foster I., Kesselman C. (1997) Globus: A metacomputing infrastructure toolkit, International

Journal of Supercomputer Applications, Vol. 11, No. 2, (June 1997) pp. 115-128,

ISSN: 1094-3420

Garey M. R., Johnson D. S. (1979) Computer and Intractability: A guide to the Theory of NP-

Completeness, W. H. Freeman, ISBN: 978-071-6710-45-5

Haouari M., Serairi M. (2009) Heuristics for the variable sized bin-packing problem,

Computers & Operational Research, Vol. 36, No. 10, (October 2009), pp. 2877-2884,

ISSN: 0305-0548

Krawczyk H., Proficz J. (2010) The task graph assignment for KASKADA platform,

Proceedings of International Conference on Software and Data Technologies, ISBN:

978-989-8425-22-5, Greece Athens, July 2010

Krawczyk H., Proficz J. (2010b) KASKADA – multimedia processing platform architecture,

Proceedings of Signal Processing and Multimedia Applications, ISBN: 978-989-

8425-19-5, Greece Athens, July 2010

Olken F., Gruenwald L. (2008) Data Stream Management: Aggregation, Classification,

Modeling, and Operator Placement, IEEE Internet Computing, Vol. 12, No. 6,

(November 2008), pp. 9-12, ISSN: 1089-7801

www.intechopen.com

Interactive Multimedia

312

Yu T., Zhou B., Li Q., Liu R., Wang W., Chang Ch. (2009) The Design of Distributed Real-

time Video Analytic System, Proceedings of CloudDB’09, ISBN: 978-160-5588-02-5,

China, Hong Kong, November 2009

www.intechopen.com

Interactive Multimedia

Edited by Dr Ioannis Deliyannis

ISBN 978-953-51-0224-3

Hard cover, 312 pages

Publisher InTech

Published online 07, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Interactive multimedia is clearly a field of fundamental research, social, educational and economical

importance, as it combines multiple disciplines for the development of multimedia systems that are capable to

sense the environment and dynamically process, edit, adjust or generate new content. For this purpose, ideas,

theories, methodologies and inventions are combined in order to form novel applications and systems. This

book presents novel scientific research, proven methodologies and interdisciplinary case studies that exhibit

advances under Interfaces and Interaction, Interactive Multimedia Learning, Teaching and Competence

Diagnosis Systems, Interactive TV, Film and Multimedia Production and Video Processing. The chapters

selected for this volume offer new perspectives in terms of strategies, tested practices and solutions that,

beyond describing the state-of-the-art, may be utilised as a solid basis for the development of new interactive

systems and applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Henryk Krawczyk and Jerzy Proficz (2012). Real-Time Multimedia Stream Data Processing in a

Supercomputer Environment, Interactive Multimedia, Dr Ioannis Deliyannis (Ed.), ISBN: 978-953-51-0224-3,

InTech, Available from: http://www.intechopen.com/books/interactive-multimedia/real-time-multimedia-stream-

data-processing-in-a-supercomputer-environment

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

