
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

11

Building Adaptive Rich Interfaces for
Interactive Ubiquitous Applications

Carlos Eduardo Cirilo, Antonio Francisco do Prado,
 Wanderley Lopes de Souza and Luciana Aparecida Martinez Zaina

Federal University of São Carlos (UFSCar),
Brazil

1. Introduction

The emerging of the Web 2.0 (O’Reilly, 2005) has allowed users more interactivity with Web
applications. Among the striking features of Web 2.0 applications, the use of rich interfaces
that afford users a more meaningful experience with these applications stands out. In this
context, the so-called Rich Internet Applications (RIAs) have transposed the boundaries of
simple interfaces built only in HyperText Markup Language (HTML). Through the adoption
of technologies that enable creating more advanced interfaces with interactive resources,
such as asynchronous communication, drag-and-drop components, audio and video
players, among others, RIAs resemble the appearance, behavior and usability of desktop
applications (Deitel & Deitel, 2008).

The miniaturization of computational devices for personal use along with recent advances
in wireless communication technologies and the maturing of Ubiquitous Computing
(Weiser, 1991) have significantly expanded the access possibilities to a wide range of
applications in several fields (Forte et al., 2008; Souza et al., 2011). Until recently, there were
few ways to access online content, among which the main one was through personal
computers. However, this situation has changed quickly. Nowadays, for instance, it is
possible to read e-mails, make financial transactions, share resources (hardware, software
and data), access multimedia content, and enjoy a variety of other applications through a
small cell phone or a sophisticated smartphone, either the user is stationary or moving,
whether at home, on the street or at work. In this scenario the vision of Ubiquitous
Computing, introduced by Mark Weiser about two decades ago, has been driven by new
technological achievements that enable easy access to information anywhere, anytime and
through any device at user’s disposal (Araújo, 2003; Hansmann et al., 2003).

Nevertheless, the dynamic nature of Ubiquitous Computing environments imposes a series
of challenges and additional requirements to software development (Garlan & Schmerl,
2001; Spínola et al., 2007). One of the critical aspects in developing applications for operating
in ubiquitous environments is the premise that they should be able to run and to adapt
themselves to the diversity of users’ computational devices as well as to the environment in
which they are immersed (Gajos & Weld, 2004). Given the diversity of devices, access
networks, environments and contexts, providing applications that meet the peculiarities of
each access device, while one maintains a consistent appearance and coherent behavior in

www.intechopen.com

Interactive Multimedia

192

view of changes occurring in the surrounding environment, has become a difficult task for
software engineers (Eisenstein et al., 2000; Paternò et al., 2008; Singh, 2004). In the case of
interactive Web 2.0 applications, this task becomes even more complex due to the need of
preserving interaction aspects that afford users a richer experience.

In this universe, building and maintaining specific application versions to meet the

particularities of each interaction context have become a challenge to be overcome. Among

other problems, this cross-context design requires high investments, demands large

development efforts, and still can result in inconsistent application versions. Furthermore,

the existence of multiple application versions hinders the maintenance, since modifications

and changes will have to be managed separately (Eisenstein et al., 2000; Singh, 2004). In this

sense, it is important to provide developers with an appropriate software process which can

guide them through the establishment of activities and artifacts that give support in meeting

the adaptation requirements demanded by a ubiquitous environment, considering the

different contexts involved in the application execution (Serral et al., 2010).

Faced with these challenges, a software process named Model Driven RichUbi (Model
Driven Process to Construct Rich Interfaces for Context-Sensitive Ubiquitous Applications)
was proposed (Cirilo et al., 2010a). The process aims at supporting the development of rich
interfaces for interactive ubiquitous applications that adapt themselves when viewed on
different types of devices. Based on the conceptions of Model Driven Development (MDD)
(France & Rumpe, 2007) and Domain-Specific Modeling (DSM) (Kelly & Tolvanen, 2008), the
process defines activities and artifacts that aid the modeling and the partial code generation
of rich interfaces for different platforms. These artifacts include a Rich Interfaces Domain
metamodel which expresses the abstract syntax of a Domain-Specific Language (DSL)
(Sadilek, 2008) to support the rich interfaces modeling, and Model-to-Code transformations
for code generation. Besides, dynamic content adapters that refine the produced interface
versions are also employed in the process, so that the developed interfaces can adapt to the
peculiarities of the access device identified from the interaction context at runtime. The
process’ computational support focused on the Rich Interfaces Domain – a cross-cut domain
to the application domains – enables its reuse on the development of adaptive rich interfaces
for interactive ubiquitous applications of several fields, which contributes to effort reduction
and productivity increasing.

The approach employed in the Model Driven RichUbi to adapt the content of the developed
rich interfaces leaps out. Aiming to overcome the individual shortcomings of the purely
static adaptation strategy (construction of several interface versions at development time)
and the purely dynamic one (adaptation of the whole code at execution time) (Viana &
Andrade, 2008), and to reduce the number of versions to be developed, the process employs
a hybrid adaptation approach (Cirilo et al., 2010b). This approach combines code generation
from modeling at development time (facilitated by the metamodel and transformations
reuse) with code generation at runtime (facilitated by the content adapters reuse). This way,
just a few generic interface versions are built, each one appropriated to a particular group of
devices, instead of a specific device (static adaptation). The dynamic content adapters
supplement the adaptation during the application execution, by repurposing the interface’s
contents – when necessary – according to the peculiarities of the current access device
(dynamic adaptation). Thus, the development becomes simplified, since a smaller number of
versions can be designed and developed.

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

193

Therefore, the purpose of this chapter is to present the Model Driven RichUbi process,

detailing its activities and support mechanisms that simplify the development of adaptive

rich interfaces for interactive ubiquitous applications. Moreover, in order to evaluate the

feasibility of the process, an experimental study, following the experimental methodology

proposed by Wohlin et al. (2000), is also presented. In this study the impact of the Model

Driven RichUbi on the efficiency of teams developing adaptive rich interfaces was

evaluated. The study’s results, even in a university context, highlight the potential of the

process to collaborate for increasing the teams’ efficiency in building adaptive rich interfaces

for interactive ubiquitous applications in terms of spent time and productivity.

The sequence of this chapter is organized as follows: Section 2 provides a theoretical

background on the issues which this work deals with; Section 3 presents the Model Driven

RichUbi process and the mechanisms developed to support it; Section 4 addresses the

process’ evaluation; Section 5 discusses some related work; and Section 6 presents

concluding remarks and further work.

2. Theoretical background

This section introduces the main concepts in which the developed work is based on.
Whereas the proposed process aims at supporting the development of adaptive rich
interfaces for interactive applications, Section 2.1 briefly presents the concepts related to
Web 2.0 and Rich Interfaces. Section 2.2 deals with concepts associated with Model-Based
User Interface Development, employed in the static content adaptation part of the hybrid
adaptation approach applied in the process. Since the dynamic interface adaptation part
relies on contextual information obtained at runtime, Section 2.3 broaches the conceptions
regarding Context-Sensitive Applications.

2.1 Web 2.0 and rich interfaces

The term Web 2.0 has been created to refer to a new generation of Web applications mainly

characterized by providing support for collaboration and sharing of user-generated content

(Norrie, 2008). Usually, companies developing applications for Web 2.0 use the Web as a

platform to create collaborative and community-based websites, such as social networks,

blogs, wikis, and others. The idea is to make the online environment more dynamic, where

users can play a more active role and work together for producing and organizing the

content, unlike the traditional Web (Web 1.0) where users are mostly readers of information.

Besides harnessing collective intelligence, the Web 2.0 encompasses a number of other

principles (O’Reilly, 2005), among which the use of rich interfaces in applications for

allowing a more meaningful user experience stands out. The so-called Rich Internet

Applications (RIAs) have adopted technologies that enable the creation of more attractive

user interfaces, providing the sensitivity, features and functionalities that resemble desktop

applications. Features like asynchronous communication with Asynchronous JavaScript and

XML (AJAX) (Zakas et al., 2007), drag-and-drop components, sliding panels, components to

capture and display videos, maps, online spreadsheets and text editors, are examples of rich

interface components which enable greater interactivity and improve the overall users’

experience (Gaspar et al., 2009).

www.intechopen.com

Interactive Multimedia

194

Another important Web 2.0 principle refers to the multi-device-oriented development
(O’Reilly, 2005). The Web 2.0 is no longer limited to the PC platform, which means these
applications are able to run on different types of device and over any operating system. In
fact, any Web application already meets this requirement, once it just requires one computer
hosting a server and a client equipped with a Web browser regardless the underlying
platform. However, in the context of Web 2.0 this concept goes a step beyond, in the extent
that Web 2.0 applications are not restricted just to the conventional client-server architecture,
but are also capable to run in several other architectures, such as Peer-to-Peer (P2P), or even on
a myriad of distinct hardware platforms, like mobile devices (Gaspar et al., 2009).

2.2 Model-based user interface development

The Model-Based User Interface Development (MB-UID) (Viana & Andrade, 2008) explores
the idea of using declarative interface models, which allows the definition of the different
aspects of a user interface in an abstract way, regardless the implementation platform. This
strategy facilitates the transformation of the abstract interaction components represented in
the models into concrete components of the target-platforms (Vellis, 2009). Thus, developers
can focus on the conceptual definition of interfaces rather than on technical details of
implementation (Bittar et al., 2009).

The approach employed by the MB-UID is known as Model-Driven Development (MDD)

(France & Rumpe, 2007), in which software engineers do not need to interact manually with

the entire application’s source code, but they can concentrate on models of higher

abstraction level. Transformation mechanisms (code generators) are used to generate code

from models. In this scenario, the models not only guide the development and maintenance

tasks, but are also part of the software being developed just as the source code, since they

are used as input by code generation tools to distil part of the application’s code; it, in fact,

contributes to reduce developer’s efforts (Bittar et al., 2009).

In the MB-UID the user interface modeling involves the creation of knowledge bases

expressed in a hierarchy of models that describe the various aspects of the interface, such as

presentation, dialog and user tasks structure (Paternò et al., 2008). The models provide an

infrastructure for building methods and tools for automatic generation of the interface’s

final presentation (Viana & Andrade, 2008). This way, by applying the appropriate Model-

to-Code (M2C) transformations, it is possible to generate the entire or most of the code for

different platforms and implementation technologies in order to obtain the executable

interface with little or no manual change (Cicchetti et al., 2007).

2.2.1 Domain-specific modeling

Following the same direction of MDD and addressing specific problem domains, there is the
Domain-Specific Modeling (DSM) (Kelly & Tolvanen, 2008). In DSM the application’s models
are built by using Domain Specific Languages (DSLs) (Sadilek, 2008), which can be defined
through metamodels that represent the knowledge of a particular domain. The use of DSLs for
modeling, rather than general purpose languages like the Unified Modeling Language (UML),
allows the expression of solutions in the language and abstraction level of the problem
domain. This reduces efforts in translating the concepts of that domain into concepts of the
computational solution (Chavarriaga & Macías, 2009). Thus, in DSM the models become more

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

195

specific and complete, and resources such as frameworks, design patterns and components are
included in the modeling in order to generate more code with better quality.

The use of specific models of the Rich Interface Domain can raise the abstraction level
during application design so that users and developers can clearly see how the application’s
requirements are mapped into interfaces. The interface models are created in a more
intuitive way and are less associated with technical implementation details. This way,
developers can focus on high-level conceptual aspects of the interaction. Moreover, since the
models are not related to a specific platform, it is also possible to reuse the interface’s
specifications in different projects (Bittar et al., 2009).

2.3 Context-sensitive applications

Context sensitivity (or context awareness) is related to the adaptation of an application
according to its location of use, the nearby people or objects, as well as the changes
occurring in the surrounding environment over time (Baldauf et al., 2007). A Context-
Sensitive Application (CSA) is able to adapt its operations without explicit user intervention,
providing information and services that are relevant for users to perform their tasks using
information taken out of the interaction context (Dey, 2001; Serral et al., 2010).

In this sense, context plays a key role to enable applications to refine available information
into relevant one, to choose appropriate actions from a list of possibilities, or to determine
the optimal method of information delivery. Accordingly, context guides the variations in
application’s behavior, enriching the user interaction either by influencing
recommendations or by enabling adaptations of any kind (Vieira et al., 2011).

2.3.1 Computational context

Many definitions for context have been proposed to make it an operational concept (Bazire
& Brézillon, 2005). A widely referenced one states that context is any information that can be
used to characterize the situation of an entity. This entity may be a person, place or an object
that is considered relevant to the interaction between a user and an application, including
themselves (Dey, 2001).

Similarly, Brézillon (1999) considers context as a set of relevant conditions and influences that
make possible the understanding of a situation, where such conditions and influences act
directly on entities of the considered domain. In addition, Brézillon & Pomerol (1999, as cited
in Vieira et al., 2011) introduced the notion of focus, which determines what should be
considered as relevant in a given context. According to this definition, the focus, for instance,
can be a task to be performed, or a step in a problem solving or in a decision making process.

A more recent definition, derived from the previous ones, suggests the explicit distinction
between context – a dynamic concept – and contextual element (CE) – a static concept – in
order to improve developers’ understanding about context and to facilitate its usage in
applications (Vieira et al., 2011). In such definition, a CE is considered as any piece of
information which characterizes an entity in a domain (e.g. device’s screen resolution width,
user’s location). On the other hand, the context of an interaction between an agent (human
or software) and an application, with focus on a task, is stated as the set of instantiated CEs
that are necessary to support the task to be performed (e.g. “300 pixels”, “São Carlos –
Brazil”). This definition makes it easier for a developer to enumerate the context of a certain

www.intechopen.com

Interactive Multimedia

196

application scenario at development time. In this sense, if a given piece of information
characterizing an entity in an interaction is useful to support the task at hand (e.g. content
adaptation), then this information makes up the context of that particular interaction.

3. Model Driven RichUbi process

The Model Driven RichUbi (Cirilo et al., 2010a) is a software process conceived specifically
to support the development of adaptive rich interfaces for ubiquitous applications in the
field of Web 2.0. Considering the ideas from MB-UID and DSM, in the Model Driven
RichUbi the interface modeling is performed from a Rich Interfaces Domain metamodel.
This facilitates the translation of application requirements into interface models, and also
enables code generation for several implementation technologies. Besides, part of interface
adaptation is dynamically performed through the usage of content adapters. In this sense,
the process employs a hybrid adaptation strategy by joining static with dynamic adaptation:
during the development, the application’s requirements are mapped into a few generic
interface versions, each one appropriated for a particular group of devices (static
adaptation); at runtime, the content adapters select the version which best fits the device
profile recovered from context, and adapt the code snippets that need to be refined so as to
meet the access device’s characteristics (dynamic adaptation).

As shown in the Structured Analysis and Design Technique (SADT) diagram (Ross, 1977) in
Figure 1, the process is performed in two main steps: Domain Engineering (DE) and
Application Engineering (AE). The process begins in the DE, where the metamodel to
support the modeling of the applications’ interfaces is built from the requirements of the
Rich Interfaces Domain. The metamodel is built in such a way to allow the reuse of the Rich
Interface Domain knowledge on application projects of several areas, and to provide a
useful infrastructure to automate most of interfaces’ code generation. Also in the DE, based
on the rich interface components represented in the developed metamodel, the M2C
transformations and the dynamic content adapters are built to act as support mechanisms in
the development of rich interfaces in the AE step.

Fig. 1. High-level overview of the Model Driven RichUbi process

The AE, in turn, includes activities for developing applications with reuse of the artifacts
produced in the DE. In such step, the Rich Interfaces Domain metamodel is used to

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

197

instantiate the applications’ interface models to simplify the mapping of requirements into
interface components that fulfill them. Once the models are not associated with a specific
implementation platform, one can generate code for different technologies by applying the
M2C transformations, which reduces efforts in the development of the interface versions for
different groups of devices. The content adapters are used to further refine the interfaces at
runtime according to specific characteristics of the access device dynamically identified. The
activities of the DE and AE are detailed in the following subsections.

3.1 Domain Engineering (DE)

The DE focuses on the development of software artifacts for posterior intensive reuse.
Overall, the DE is a process for identifying and organizing the knowledge about a class of
problems - the problem domain – in order to support its description and solution. The DE’s
goal is to systematize the creation of domain models, architectures and sets of software
artifacts to aid building applications in a particular problem domain (Blois et al., 2005).

Figure 2 shows the SADT diagram detailing the activities defined for the DE in the Model
Driven RichUbi. The activities on the left-hand side correspond to the construction of the
metamodel to support rich interfaces modeling. The activities on the right-hand side refer to
the construction of the M2C transformations for partial generation code (upper activity) and
the content adapters for dynamic adaptation of the developed interfaces (bottom activity).
Since these latter depend on the metamodel’s implementation as input artifact, the activities
for constructing the metamodel must precede all other activities of the Domain Engineering.

Fig. 2. Domain Engineering step

www.intechopen.com

Interactive Multimedia

198

3.1.1 Specify rich interfaces domain metamodel

The goal of this activity is to identify, from the requirements of the Rich Interfaces Domain,
the interface components that are useful for the construction of Web 2.0 ubiquitous
applications. These components are elicited, specified, analyzed and translated into meta-
constructs in a Rich Interfaces Domain metamodel. One means to accomplish such
identification is to study the interface components available on several Web development
environments, like the Adobe Dreamweaver1 and the MS Visual Studio2, along with other
documentation about rich interfaces3, 4, 5. Through these studies, the Domain Engineer can
identify the components commonly used in building rich interfaces and model their
structural and behavioral similarities. The UML is used to support the modeling and
specification of the components.

Figure 3 shows, for example, an excerpt of a class diagram that specifies some interface
components identified from this activity, which range from ordinary form controls
(Button, TextField, and Select) to advanced rich interfaces widgets (TabbedPanel,
AccordionPanel, MessageDialog and DatePicker). During this modeling task, the
Domain Engineer is assisted by the Mutiple-View CASE (MVCASE) (Lucrédio et al., 2003), a
Computer-Aided Software Engineering (CASE) tool currently available as an Eclipse
workbench6 plug-in to support UML modeling.

Fig. 3. Interface components’ specification

The Domain Engineer then specifies the Rich Interfaces Domain metamodel by defining its
metaclasses, meta-attributes and meta-relationships based on the interface components’
specification. In the Model Driven RichUbi, the metamodel is built through the Ecore’s

1 http://www.adobe.com/products/dreamweaver/.
2 http://www.microsoft.com/visualstudio/en-us/.
3 http://www.jboss.org/richfaces/docs.html.
4 http://jqueryui.com/demos/.
5 http://www.asp.net/ajax/AjaxControlToolkit/Samples/.
6 http://www.eclipse.org/.

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

199

metamodeling constructs from the Eclipse Modeling Framework (EMF)7. As illustrated in
the excerpt of the metamodel’s specification in Figure 4, the interface components specified
in the class diagram of Figure 3 were mapped into homonymous metaclasses. The id,

class and label attributes from the FormControl class have been factored, respectively,
into the IdentifiableComponent, ClassifiableComponent and Label metaclasses.
In addition, the FormControl class’ event-handling methods formed the EventType meta-
enumeration and the Event, EventComponent and Script metaclasses. Metaclasses to
address the interface’s data input constraints were also included in the metamodel, such as
the ValueConstraint, NumberValueConstraint, RequiredFieldConstraint and

ValidDateConstraint ones.

Fig. 4. Rich Interfaces Domain metamodel’s specification

3.1.2 Design rich interfaces domain metamodel

The goal of this activity is to define standards, technologies, as well as hardware and
software platforms that enable the construction of the metamodel. Through these design
decisions the Domain Engineer refines the Rich Interfaces Domain metamodel’s
specification produced in previous activity.

For example, Figure 5 shows part of the metamodel refined with the employment of the
Web interfaces design pattern called Portal Site8. This pattern, represented on the right-hand
side of Figure 5, defines the header, navigation, content, search and footer regions of a Web
portal. On the left-hand side, the refined metamodel is shown with the inclusion of new
metaclasses (shaded), whose stereotypes indicate their association with the Web portal’s
regions.

Moreover, metaclasses for suiting the metamodel to the XHTML documents’ structure were
included in the metamodel during the refinements (e.g. Document, Form, and Fieldset).
The definition of compounding relationships between these metaclasses has also been
performed in accordance with the XHTML specification. These refinements allowed
structuring the way in which the rich interface components are arranged and organized in
the interface models which will be instantiated from the metamodel.

7 www.eclipse.org/emf/.
8 http://www.welie.com/patterns/showPattern.php?patternID=portals.

www.intechopen.com

Interactive Multimedia

200

Fig. 5. Refinement of the metamodel by applying the PortalSite pattern

3.1.3 Implement rich interfaces domain metamodel

In this activity the metamodel is implemented from the metamodel’s design resulting from
previous activity. The metamodel’s implementation aims at obtaining software components
which fairly reflect the entities and relationships represented in the metamodel’s design so
that it can be instantiated to create rich interfaces models in the AE step.

In the process, the EMF framework is also employed for implementing the metamodel. It
allows automatically generating the Java code of both the metamodel and an associated
model editor that will assist in the instantiation of the metamodel to create the rich
interfaces models. In the generated editor the instantiated models are persisted in XML
Metadata Interchange (XMI)9 format, which is a standard from Object Management Group
(OMG) used to represent models through eXtensible Markup Language (XML). This format
defines an XML document structure that considers the relationship between the model’s
data and their corresponding metadata, which facilitates mapping models into code for the
definition of M2C transformations.

In this work, the metamodel’s implementation along with the model editor were deployed
as Eclipse plug-ins and integrated into the MVCASE tool in order to support the rich
interfaces modeling in the process’ AE step.

3.1.4 Construct model-to-code transformations

The goal of this activity is to build the transformations to be applied on the interface models
for automated code generation in the Application Engineering’s implementation activity.

Among the techniques for constructing transformations, the use of templates stands out
(Lucrédio, 2009). A template is a text file instrumented with constructs for selecting and
expanding code. These constructs perform queries on a given input (e.g. a XMI file
representing a model) and use the outcome as parameter to produce custom code in any
textual language (Czarnecki & Eisenecker, 2000, as cited in Lucrédio, 2009). So, a template is
usually composed of fixed parts, which always are included in the output code, and variable
parts, which depend on the information contained in the input model to be generated.

9 http://www.omg.org/spec/XMI/2.1.1/

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

201

The proper implementation of transformations relies on the knowledge of the language’s
syntax in which the input models are created, i.e., the metamodel. Hence, the metamodel’s
implementation is used as input in this activity so that the transformations are built in a
compatible way with the developed Rich Interfaces Domain metamodel. In the process, the
transformations are implemented as templates by using the Java Emitter Templates (JET)
framework10, which provides a library of metaprogramming markups that implement
conditional, looping and formatting statements, as well as other useful functions to query
the input rich interfaces models and generating code.

In this work, two types of transformations were built: one that generates XHTML code for
desktops; and another one that generates XHTML code for smartphones by applying static
content adaptation techniques for mobile devices, such as single-column content
presentation and splitting of large forms (Paternò et al., 2008; Viana & Andrade, 2008). In
order to give an initial layout formatting to the generated interfaces, references to
prefabricated style sheets were incorporated into the transformations’ output code. In
addition, aiming at creating advanced rich interface components, the jQuery11 JavaScript
library, which provides reusable functions for rendering such components, has also been
integrated into the output code.

Figure 6 shows a fragment of the JET template which generates the XHTML code of the
tabbed panel component for desktops. This figure also illustrates the template’s execution
process, in which each template’s part is interpreted in order to query the input model (in
XMI format) and then producing its corresponding code. So, whenever the mechanism that
executes transformations (or template processor) finds the node representing the tabbed
panel component in the XMI input model, the template’s execution starts. The template’s
lines 1-12 generate the JavaScript code which invokes the jQuery’s function to render the
tabbed panel on the user’s Web browser. Line 14 produces a <div> markup that makes up
the tabbed panel’s structure. This markup references the style class named demo, which is
defined in the prefabricated style sheet copied into the application’s project during the
template’s execution. In lines 16-19 and 21-28 iterations are made on the panel’s tabs defined
in the model to generate their content in the output code.

To support code generation in the AE step, the developed transformations have also been
deployed as Eclipse plug-ins and integrated into the MVCASE tool. Since the models
instantiated from the metamodel are platform-independent, it is possible to create several
types of transformations for automatically generating code to a plenty of implementation
technologies, such as Wireless Markup Language (WML), Voice XML (VXML), Compact
Hypertext Markup Language (CHTML), and so on. By using this technique, the repetitive
tasks associated with the coding of interfaces for different devices in Ubiquitous Computing
are (semi)automated, which contributes to save development efforts. Therefore, the
transformations along with the metamodel collaborate to simplify the static part of the
interface adaptation in the hybrid approach employed in the process.

3.1.5 Construct content adapters

The goal of this activity is to build the content adapters which will perform the dynamic
part of the interface adaptation considering the access device profile recovered from the

10 http://www.eclipse.org/emft/projects/jet/.
11 http://jqueryui.com/.

www.intechopen.com

Interactive Multimedia

202

interaction context. This activity takes as input the Rich Interfaces Domain metamodel’s
implementation, which contains the definitions of all interface components to be adapted
when rendered on devices with different characteristics.

Fig. 6. Template-based code generation for the tabbed panel component

Before starting the content adapters’ implementation, the Domain Engineer must specify, for
each component represented in the metamodel, the adaptation requirements demanded
when the interface is viewed on devices with distinct configurations. This specification is
not a simple task and requires from the Domain Engineer a good technological vision about
interfaces, devices available in the market and their capabilities that influence the
adaptation. To support the Domain Engineer’s work, the UML is used to specify and to
design the interface adaptation. For example, Figure 7 shows one of the class diagrams for
the content adapters’ specification. Each method of the ContentAdapter class represents
an adapter subroutine which performs the adaptation of a particular rich interface
component represented in the metamodel. The adapt method performs the dynamic

reading of the requested Web document and invokes the suitable ContentAdapter‘s
method to adapt its interface components. The Java API Document Object Model (DOM)12
has been used to implement the dynamic adaptation. This API allows, at runtime,

12 http://download.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html.

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

203

manipulating XML documents that follow the World Wide Web Consortium (W3C)’s DOM
recommendation, such as XHTML and HTML ones. It provides functionalities for reading
and writing these documents in the Web server’s memory by structuring them into a tree of

DOM objects (e.g. Node, Document, Element). This capability makes possible to analyze
and to modify dynamically the document’s interfaces as necessary. In order to work
properly the DOM API requires well-formed XML files as input. However, since many
documents available on the Web do not satisfy this requirement, the TagSoup13 parser was
used to correct features like missing and mismatching tags in order to get the DOM tree of
the corrected document before processing the dynamic interface adaptation.

Fig. 7. Content adapters’ specification

To guide the interface adaptation, the ContentAdapter class consumes contextual
information on the current access device profile and adjusts the document’s interface
according to the device’s peculiarities. As presented in the class diagram in Figure 7, this

information is provided by the ContextManager class, which obtains the device profiles
from the public XML database called Wireless Universal Resource File (WURFL)14 using the

services provided by the WURFLAdapter class. The WURFL stores the profiles of thousands15
of devices from different brands and models and is used by software developers to guide the
creation of appropriate solutions for specific devices. Because it is a public database, the
WURFL receives updates on a daily basis by developers spread around the world interested in
contributing to completeness and correctness of the information contained therein. As it
receives continuous updates from the community development itself, the WURFL was
adopted as the main context source from which the device profiles are acquired in this work.

Some of the content adaptation rules implemented in the content adapters are illustrated in
Figure 8. For example, as in the first rule, the adaptation of the interface’s input text fields
(inputNode) will only occur if their length attribute (size) exceeds the number of visible
columns on the current device’s screen. The second rule states that any image in the

interface (imageNode) should be adapted when its width and height properties exceed
the screen resolution of the user’s current device.

13 http://home.ccil.org/~cowan/XML/tagsoup/.
14 http://wurfl.sourceforge.net/.
15 The last WURFL’s update, available in August 29, 2011, contained about 15,093 device profiles.

www.intechopen.com

Interactive Multimedia

204

Fig. 8. Content adaptation rules

Figure 9 illustrates the operation of the interface adaptation performed by the content

adapters in a hybrid fashion. When a client accesses the application, the HTTP request is

intercepted by an application Servlet16 specifically designed to address the adaptations ().

The Servlet triggers the whole interface adaptation process by invoking the

ContentAdapter’s adapt method (). The ContentAdapter then asks the

ContextManager the access device profile (), which is retrieved from the WURFL

database through the WURFLAdapter class (). Next the static adaptation part is

consummated with the selection and processing of the requested Web page from the most

appropriate interface version, stored in the application’s Web directory, according to the

recovered device profile (). Afterwards, in order to carry out the dynamic adaptation part,

the ContentAdapter creates a DOM tree of the chosen page into the server’s memory,

corrects its ill-written excerpts, and identifies the interface snippets that need to be refined to

meet the current device profile by applying the content adaptation rules implemented in the

content adapters (). The necessary adjustments are then applied, and the DOM tree of the

adapted page is converted back into a Web page (). Then, the page is written in the output

stream of HTTP response by the ContentAdapter (). Finally, the control flow is returned

to the application Servlet () and the adapted page is sent to the user’s device ().

After performing the DE step’s activities, there will be the artifacts that support the

construction of adaptive rich interfaces for interactive ubiquitous applications of different

application projects in the AE step. In the Model Driven RichUbi, the DE is performed

whenever it is necessary to include new rich interface components in the metamodel (e.g.

video display, drag-and-drop components), to build new M2C transformations (e.g.

templates for generating WML code), and to implement new content adapters or to refine

the existing ones.

3.2 Application Engineering (AE)

The main goal of the AE is to build applications of a certain problem domain focusing
primarily on software reuse. In a general way, the AE is dedicated to the study of the best
techniques, processes and methods for building applications based on the reuse of software
artifacts. In this step, software components previously developed in the DE are reused for
the development of applications in the focused problem domain (Griss et al., 1998).

16 http://www.oracle.com/technetwork/java/overview-137084.html.

Rule 1:

 Conditions
 inputNode.size > DEVICE_DISPLAY_COLUMNS_NUMBER

 AND (inputNode.type == “text” OR inputNode.type == “password”)

 Actions

 adaptInput(inputNode)

Rule 2:

 Conditions
 imageNode.height > DEVICE_DISPLAY_RESOLUTION_HEIGHT

 OR imageNode.width > DEVICE_DISPLAY_RESOLUTION_WIDTH

 Actions

 adaptImage(imageNode)

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

205

Fig. 9. Illustration of the hybrid adaptation operation

As shown in the SADT diagram in Figure 10, the activities defined for the AE step in the
Model Driven RichUbi cover the Analysis, Design, Implementation and Testing disciplines
from the software life-cycle. It extends the conventional software development processes by
including the MDD and DSM conceptions, and it is focused on developing rich interfaces for
interactive ubiquitous applications through the reuse of the artifacts produced in the
process’ DE step. The usage of the Rich Interfaces Domain metamodel in this step facilitates
the application’s interface modeling. Besides, the M2C transformations enable automating
most of the interface’s codification, which makes faster the Application Engineer’s tasks. In
addition, the content adapters provide decoupled functionalities for dynamic interface
adaptation, allowing keeping focus on the development of features related to other
application’s functional and nonfunctional requirements.

Fig. 10. Application Engineering step

www.intechopen.com

Interactive Multimedia

206

In order to illustrate the description of each AE’s activities, the Web module of a ubiquitous
application from the Electronic Health Records (EHR) domain has been developed by
reusing the metamodel, the M2C transformations and the content adapters. This application
allows cardiologists and other healthcare professionals to monitor blood pressure data of
their patients from anywhere through both desktops and smartphones (Menezes et al.,
2011). Such an application consists of three distinct parts: the first one, which is installed on
the patients’ mobile devices, records the blood pressure data reported by the patients and
transmits these data to a server; the second one, which runs on the server, handles the sent
data and persists them in a database; and the third one, which also runs on the server, is the
Web module, named WebRES, that provides an rich interface for allowing caregivers to
remotely analyze the blood pressure status of their patients.

The SADT diagram in Figure 10 already reflects the AE step’s instantiation with all
technologies, controls and mechanisms necessary to build the WebRES.

3.2.1 Analyze

In this activity the application is specified according to its requirements. In the process, this

specification can be accomplished by using UML techniques, such as class and use cases

diagrams. For instance, Figure 11(a) shows a stretch of the use cases diagram developed by

the Application Engineer through the MVCASE tool to specify the WebRES’ requirements.

These requirements include the nonfunctional ones, such as user authentication, and also

the functional ones, like recovering the patients’ blood pressure records. Figure 11(b) shows

a class diagram that specifies some of the domain entities associated with the WebRES.

Fig. 11. WebRES’ specification

3.2.2 Design

In this activity, the application’s specification from previous activity is refined with design
decisions, such as the inclusion of low-level details of technologies, and hardware and
software platforms which enable implementing the application (e.g. Java EE17 platform,
JavaServer Faces18 framework). Moreover, based on the specified use cases, the Application
Engineer also performs the application’s interface modeling by instantiating the Rich

17 http://www.oracle.com/technetwork/java/javaee/index.html.
18 http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html.

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

207

Interfaces Domain metamodel. In the models must be included appropriate rich interfaces
components that meet, as much as possible, each of the specification’s use cases.

For example, Figure 12 shows, on the left-hand side, the WebRES’ interfaces model built
through the model editor plug-in integrated into the MVCASE tool. On the right-hand side
there is the components diagram illustrating the corresponding instantiation of the
metamodel. In the editor the interface models are created in the Eclipse’s default EMF tree
view mode. The icons are shown in the model due to a light-weight mechanism for concrete
syntax, which enabled associating one representative icon with each interface component
defined in the underlying metamodel. As shown in the figure, the AuthenticateUser and
RecoverBloodPressureRecords WebRES’s use cases were mapped, respectively, into
an authentication form inside a login page, and a search form inside a tabbed panel in a
page designed for searching blood pressure records.

Fig. 12. WebRES’ interfaces model instantiated from the Rich Interfaces Domain metamodel

3.2.3 Implement and test

In this activity the application’s coding and testing are performed according to the

application’s design, focusing on the implementation of its adaptive rich interfaces.

By using the M2C transformations’ plug-in in the MVCASE tool, the transformations are
executed on the interface models in order to generate the partial code of the application’s
static interface versions. For example, for the WebRES the M2C transformations were used
to partially produce its interfaces versions for desktop and smartphones. Afterwards, the
output code must be manually complemented by the Application Engineer until finishing
the application’s interfaces. This task involves handwriting code of features not covered by

Authenticate
User

Recover
Blood Pressure
Records

www.intechopen.com

Interactive Multimedia

208

the interface models, such as data retrieving from external sources, custom style sheets,
JavaScript functions, business logic routines, navigability, and other necessary features.

Moreover, the dynamic content adapters are incorporated into the application in order to

assign the adaptive behavior to its interfaces versions. Figure 13 shows, for instance, the

code of the WebRES’ Servlet, called ContextServlet, in which the reuse of the content

adapters was accomplished in such application. The doGet method intercepts every HTTP

requests and then invocates the adapt method from the ContentAdapter class in order to

process the hybrid interface adaptation according to the current access device’s capabilities.

Fig. 13. Content adapters reuse in the WebRES’ Servlet

Finally, the tests of the interfaces provide feedback for the previous AE step’s activities.

Figure 14 shows the results of the tests with the WebRES’ interfaces performed on an iPhone

and a desktop. Figure 14(a) shows the execution of the page for searching blood pressure

records on the iPhone emulator, to which the interface version for smartphones adapted in

compliance to the iPhone’s characteristics (e.g. screen width) was delivered. Figure 14(b)

shows the same page viewed on a personal computer, to which the desktop version has

been delivered.

(a) Execution on iPhone

Without adaptation With adaptation
(b) Execution on desktop

Fig. 14. Tests with the WebRES’ interfaces performed on an iPhone and a desktop

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

209

4. Model Driven RichUbi evaluation

In order to assess the proposed process, an experiment was conducted following the
Definition, Planning, Operation, and Analysis experimental phases, as defined in Wohlin et
al. (2000). The experimentation was performed in the second semester of 2010 and consisted
of a comparative study between the use of the Model Driven RichUbi for building adaptive
rich interfaces and the non-use of a model driven process , based on the classic life cycle, for
the same purpose.

To carry out the experiment, a ubiquitous application for tracking people, designed
especially for the execution of the experiment, has been used. In such application, named
TrackMe, the tracking is done based on the location of the Access Points (APs) in which
users have connected recently. It consists of three distributed parts: the first one, running on
the users’ device, performs the users’ registration in the nearest AP; the second one, which
runs on a server, processes the users’ records and stores them in a database; and the last one,
also hosted on the server, is a Web module that provides a rich interface for visualizing the
users’ positions on the map of the locality in which the APs are distributed.

The experiment has been carried out in the Teaching Laboratory of the Computer Science
Department at Federal University of São Carlos – UFSCar (Brazil). It was conducted with 31
volunteer students in 3rd and 4th years from Computer Science and Engineering
undergraduate courses, enrolled in the Topics in Computer Science discipline. These
students were split into 10 homogeneous groups according to their experience levels, so that
each group had, as much as possible, similar experience level averages. The participants’
experience was quantified by the participants’ characterization form – document used to
capture the participants’ expertise with the subjects related to the study (e.g. MDD, Java,
XHTML, CSS). The allocation of the participants in the groups was done in an unbalanced
manner in order to reflect teams with varying numbers of members. The assignment of the
groups to one of the process was accomplished in a completely random way so that the
experiment’s results were not biased.

The participants’ task during the experiment operation was to develop part of the interface
versions of the TrackMe’s Web module, so that it could properly be viewed from both
smartphones and desktops. These versions had been previously specified. This specification
was delivered to the participants carry out the experiment. Moreover, since the focus of the
study was on the application’s presentation layer development, the aplication’s features
related to functional requirements had already been implemented. The groups then received
the partially implemented application’s project, which should be imported to their
development environment for building the missing interfaces. Each group was provided
with a support material with guidelines that aided them during the activities for building
the interfaces.

The groups assigned to apply the Model Driven RichUbi followed the activities of the
process’ Application Engineering step for building the TrackMe’s interfaces, starting from
the Design activity. All the process’ support mechanisms were provided to these groups,
namely: the model editor and the M2C transformations Eclipse plug-ins integrated into the
MVCASE tool, and the java archive of the content adapters for supporting the hybrid
interfaces adaptation. On the other hand, the groups assigned to apply the classic life cycle
performed the traditional Design, Implementation and Testing activities for developing the

www.intechopen.com

Interactive Multimedia

210

interfaces. In order to improve the comparison of the efficiency between the groups from
both processes, the groups which followed the classic life cycle employed a purely static
adaptation strategy to construct the interfaces. For simplicity, these groups should only
develop two specialized interface versions: one for desktops and another one for iPhones.

During the experiment operation, all groups recorded in a form the start and finish times of
each activity performed, and the number of lines of code (LOC) automatically and manually
implemented. Only the code related to the rich interfaces has been considered during the
LOC counting (e.g. XHTML code, JavaScript routines, custom style sheets). In the case of the
groups assigned to the classic life cycle, which did not use transformations for code
generation, it has been considered as automatically generated code the one created by the
development environment itself, such as pre-fabricated Web page templates, standard style
sheets, and others.

4.1 Experiment operation

The groups performed the experiment’s trials as defined in the experimental plan. Table 1
presents the data collected by the groups in operating the experiment. The data are arranged
in two blocks in the table: the upper part lists the data from the groups that have applied the
Model Driven RichUbi process; and the bottom part shows the data from the groups which
performed the classic life cycle. The table’s columns labeled as “Total LOC”, “Total Time
(τ)” and “Productivity (þ)” represent, respectively, the total number of lines of code
produced by the groups, the total time spent by them for constructing the interface versions,
and the groups’ productivity in terms of LOC produced per hour.

The groups were instructed to report technical problems faced during experiment operation.
To this end, in the groups’ data collection forms were placed appropriate fields in which the
groups should fill out with the problems’ description and their corresponding identification
and resolution times. The total time spent by each group to solve problems is summarized
in the “Problems” column in Table 1. This time was not deducted from the groups’ overall
time since technical problems may occur in any development process.

4.2 Results analysis and interpretation

From a preliminary analysis of the data presented in Table 1, some noticeable aspects could
be remarked among the groups which applied both processes. The groups have spent
similar times in designing and testing the developed interface versions. However, one can
observe a significant effort reduction in the implementation for the groups that applied the
Model Driven RichUbi in relation to the groups which followed the classic life cycle. While
the latter spent, on average, 49 minutes for coding the interfaces, the former took, on
average, only 18 minutes to complete that same task (63.3% reduction).

Even though having spent less time for implementing the interfaces, the groups of the
Model Driven RichUbi were more productive (average of 301 LOC per hour) than the ones
of the classic life cycle (average of 104 LOC per hour). The total LOC average of the groups
which applied the Model Driven RichUbi was 277, while the other groups’ was about 156.
This inverse relationship between time spent and total LOC is due to the use of M2C
transformations in the Model Driven RichUbi’s implementation task. The data provide
evidence that development efforts can be significantly reduced without adversely affecting

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

211

Table 1. Experiment’s data

www.intechopen.com

Interactive Multimedia

212

the teams’ productivity, since most of the coding tasks can be encapsulated in the

transformations – which is usual in MDD-based processes. As shown in Table 1, on average,

83% of the code implemented by the groups of Model Driven RichUbi was automatically

generated by the transformations (≈ 230 LOC). On the other hand, the groups of the classic

life cycle, which did not use code generators, had, on average, only 13% of their code

automatically generated by the development environment itself (≈ 20 LOC).

After these initial remarks, the step of obtaining the experimental findings from the research

hypotheses was performed, as described in next subsection.

4.3 Research hypotheses testing

Three hypotheses regarding the effect of the development process on the experiment’s

results were prepared. To formulate these hypotheses, the following metrics were

considered:

 τ – The total time spent by the team for building the adaptive rich interfaces versions;

 þ – The team’s productivity in building the adaptive rich interfaces versions, in terms of

produced LOC per time unit (þ = LOC/τ);
 μτ – The average time spent by the teams for building the adaptive rich interfaces

versions; and

 μþ – The team’s average productivity in building the adaptive rich interfaces versions.

The null hypothesis (the hypothesis that one wants to reject) and its corresponding

alternative ones (the hypotheses that one wants to check) are:

 Null Hypothesis (H0): “In general, there is no difference between teams using the Model

Driven RichUbi process and teams using the process based on the classic life cycle for

building adaptive rich interfaces, with respect to the team’s efficiency (Є)”. H0 can then

be formalized as follows:

H0: ЄRichUbi = ЄClassic ⇒ μτRichUbi = μτClassic e μþRichUbi = μþClassic

 First Alternative Hypothesis (H1): “Teams using the Model Driven RichUbi process for

building adaptive rich interfaces are, in general, more efficient than teams using the

classic life cycle”. It can be formally expressed in the following way:

H1: ЄRichUbi > ЄClassic ⇒ μτRichUbi < μτClassic e μþRichUbi > μþClassic

 Second Alternative Hypothesis (H2): “Teams using the classic life cycle for building

adaptive rich interfaces are, in general, more efficient than teams using the Model

Driven RichUbi process”. It, in turn, can be formalized as follows:

H2: ЄRichUbi < ЄClassic ⇒ μτRichUbi > μτClassic e μþRichUbi < μþClassic

In a preliminary analysis of the data collected in the experiment, one observes that the use of

the Model Driven RichUbi process has apparently contributed for increasing the groups’

efficiency. To demonstrate this effect in a statistical way, the t-test has been applied on the

experiment’s data. This parametric test is used to compare two independent samples by

checking if their averages are statistically different at a given degree of significance. So, the

test’s goal is to verify whether the hypothetical effect can be demonstrated.

In the performed experiment, the samples were composed by the data concerning the

groups’ productivity (þ) as well as the total time (τ) spent by the groups to build the

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

213

interface versions. Therefore, the t-test has been applied on samples’ dataset in two separate

steps. In the first one, the samples related to the groups’ total times were compared. In the

second one, the comparison was performed with the samples regarding the groups’

productivity. The null hypothesis testing was based on the combination of the rejection

criteria of the two test’s steps. This way, H0 would be rejected if, and only if, it could be

rejected according to both total time and productivity criteria.

Test’s 1st step: H0τ: μτRichUbi = μτClassic

By applying the t-test it has been possible to reject the null hypothesis that there is no

difference between the groups’ total times averages with p < 0.05 (p = 0.03758509).

Test’s 2nd step: H0þ: μþRichUbi = μþClassic

By applying the t-test it has been possible to reject the null hypothesis that there is no

difference between the groups’ productivity averages with p < 0.05 (p = 0.02052551).

Since the null hypothesis H0 could be rejected at a lower degree of significance in the two

test’s step, it was possible to draw conclusions about the experiment’s results. The test’s

results demonstrates that the alternative hypothesis H1 can be validated rather the H2, i.e.,

the data provide evidence which enable claiming that teams using the Model Driven

RichUbi process for building adaptive rich interfaces are, in general, more effective than

teams which use the classic life cycle one. This conclusion is in line with initial expectations

about the experiment, although they have not been formally stated in the hypotheses. The

expectations were that the reusable artifacts built in the Model Driven RichUbi’s DE step

(Rich Interfaces Domain metamodel, M2C transformations and content adapters) could

make more agile the developers’ tasks.

Finally, considering that the experiment was performed in-vitro under controlled

conditions, it is important to notice the conclusions about the current results are limited to

the scope of software developers in university environment in which this study was

conducted. In order to expand the generalisability of the observed phenomenon, it is

necessary new experiments to be conducted in other contexts for a more comprehensive

validation of the research hypotheses.

5. Related work

Several works related to the development of adaptive interfaces and context-sensitive
applications have been proposed by academic community, including processes (e.g. Vieira
et al., 2011), tools (e.g. Viana & Andrade, 2008; Paternò et al., 2008; Gajos & Weld, 2004) and
frameworks (e.g. Forte et al. 2008; Woensel et al., 2009).

Contextual Elements Modeling and Management through Incremental Knowledge
Acquisition (CEManTIKA) (Vieira et al., 2011) is a generic approach proposed to support the
design of context-sensitive applications in different domains. This approach has, among
other components, a process that defines Software Engineering activities related to context
specification and the design of context-sensitive applications.

XMobile (Viana & Andrade, 2008) is an environment for generating adaptive interfaces of
form-based applications for mobile devices. It consists of a framework of abstract user

www.intechopen.com

Interactive Multimedia

214

 interface components, which allows modeling the application interfaces, as well as a tool to

support code generation at development time. Semantic Transformer (Paternò et al., 2008) is

a tool used for automatic transformation of Web pages originally designed for desktop

platform into Web pages suitable for mobile devices. This tool acts as a Proxy which detects

HTTP requests originated from mobile devices and processes the requested Web page by

placing it in an adequate format for viewing on mobile devices.

Extended Internet Content Adaptation Framework (EICAF) (Forte et al. 2008) is a

framework for Web applications’ content adaptation. EICAF applies ontologies for

describing the profiles of devices, users and other relevant entities, and employs Web

services for performing content adaptation by combining contextual information from the

profiles.

Semantic Context-aware Ubiquitous Scout (SCOUT) (Woensel et al., 2009) is a framework

for building context-sensitive applications for mobile devices. SCOUT allows mapping real

world entities (e.g., people, places, objects) into virtual entities on the Web, so that the

resources/services provided by these entities become location-specific and accessible when

users are close to them.

The Model Driven RichUbi process presented in this chapter is based on several

characteristics of the work described above. In addition, it has its own contributions through

the evolution and adaptation of the related work’s concepts. CEManTIKA, for instance,

proposes a general-purpose approach, with recommendations for building context-sensitive

applications for any domain. On the other hand, the Model Driven RichUbi focuses on the

needs of a specific domain – the Rich Interfaces one –, providing suitable guidelines and

artifacts closer to that domain’s concepts in order to facilitate the development of adaptive

rich interfaces. Regarding the XMobile and the Semantic Transformer tools, the proposed

process is distinguished by combining the concepts of MB-UID, DSM and context

sensitivity, furnishing support mechanisms that help automating most of the coding tasks

for different technologies through the interfaces’ modeling, and enable to adapt the

interfaces’ code in a hybrid manner. Both EICAF and SCOUT frameworks present

contributions for software reuse in the context-sensitive ubiquitous applications

development. The content adapters, which support the hybrid adaptation employed in the

proposed process, extend these conceptions by adjusting them for the development of

adaptive rich interfaces.

6. Conclusion

Ubiquitous Computing has imposed a series of additional requirements to software

development. Among these requirements there is the need to adapt both application’s

content and behavior to the heterogeneity of users’ computing devices and the environment

in which they are immersed. In view of this, this work has proposed the Model Driven

RichUbi process to address the rich interfaces adaptation issues for interactive ubiquitous

applications. The process, which is based on the MDD and DSM conceptions, defines a

domain metamodel that constitutes a DSL to support the application’s rich interfaces

modeling, and M2C transformations to semi-automate the interfaces’ static coding for

different devices. In addition, the Model Driven RichUbi also provides guidelines for

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

215

building content adapters that will refine the developed interfaces at runtime according to

the access device’s capabilities dynamically retrieved from the interaction context. All of

these artifacts, produced in the process’ Domain Engineering step, can be reused by

application engineers to simplify their development tasks.

Although the focus of this work has been held on the Rich Interfaces Domain, it was noticed

the Model Driven RichUbi process can be generalized to serve other domains. Except for the

Construct Content Adapters activity, the remaining activities of the DE step, if generalized,

can address the development of DSLs and M2C transformations which can be applied to

any application domain.

7. Acknowledgment

The authors are thankful for the scholarships provided by the Brazilian Coordination for the

Improvement of Higher Level Personnel (CAPES) which supported this work. We are also

grateful to the students from the 2010’s class, enrolled in the Topics in Computer discipline

at UFSCar, for participating in the experiment performed in this work. We specially thank to

Mr. Waldomiro Barioni Júnior, statistical researcher at Embrapa – Cattle-Southeast19, and to

Dr. Cecilia Candolo, professor and researcher at the UFSCar’s Statistics Department20, for

their kind support and valuable contributions in the experiment’s data analysis.

8. References

Araújo, R. B. (2003). Ubiquitous Computing: principles, technologies and challenges

(Computação Ubíqua: princípios, tecnologias e desafios), Proceedings of the 21st

Brazilian Symposium on Computer Networks, short-term course: text book, pp. 1-

71

Baldauf, M.; Dustdar, S. & Rosenberg, F. (2007). A survey on context-aware systems, Int. J.

Ad Hoc Ubiquitous Comput., Vol. 2, No. 4, pp. 263-277

Bazire, M. & Brézillon, P. (2005). Understanding context before using it, Proceedingos of the

5th Int. and Interdisciplinary Conference on Modeling and Using Context, pp. 29-

40

Bittar, T. J. ; Fortes, R. P. ; Lobato, L. L. & Watanabe, W. M. (2009). Web communication and

interaction modeling using model-driven development, Proceedings of the 27th

ACM international Conference on Design of Communication, pp. 193-198

Blois, A. P.; Werner, C. M. L. & Becker, K. (2005). Towards a components grouping

technique within a Domain Engineering process, Proceedings of the 31st

EUROMICRO Conference on Software Engineering and Advanced Applications,

pp. 18-25.

Brézillon, P. (1999). Context in problem solving: a survey, Knowl. Eng. Rev., Vol. 14, No. 1,

pp. 47-80

Chavarriaga, E. & Macías, J. A. (2009). A model-driven approach to building modern

Semantic Web-Based User Interfaces, Adv. Eng. Softw, Vol. 40, No. 12, Dec. 2009,

pp. 1329-1334

19 http://www.cppse.embrapa.br/English.
20 http://www.des.ufscar.br/.

www.intechopen.com

Interactive Multimedia

216

Cicchetti, A. ; Di Ruscio, D. & Di Salle, A. (2007). Software customization in model driven

development of web applications, Proceedings of the 2007 ACM Symposium on

Applied Comput, pp. 1025-1030

Cirilo, C. E.; Prado, A. F.; Souza, W. L. & Zaina, L. A. M. (2010a). Model Driven RichUbi A

Model Driven Process for Building Rich Interfaces of Context-Sensitive Ubiquitous

Applications, Proceedings of the 28th ACM International Conference on Design of

Communication, pp. 207-214

Cirilo, C. E.; Prado, A. F.; Souza, W. L. & Zaina, L. A. M. (2010b). A Hybrid Approach for

Adapting Web Graphical User Interfaces to Multiple Devices using Information

Retrieved from Context, Proceedings of the 16th International Conference on

Distributed Multimedia Systems - Globalization and Personalization, pp. 168-173.

Deitel, P. J. & Deitel, H. M. (2008). AJAX, Rich Internet Applications, and Web Development

for Programmers, Prentice Hall PTR

Dey, A. K. (2001). Understanding and using context, Personal Ubiquitous Comput, Vol. 5,

No. 1, pp. 4-7

Eisenstein, J.; Vanderdonckt, J. & Puerta, A. (2000). Adapting to mobile contexts with user-

interface modeling, Proceedings of the IEEE Workshop on Mobile Computing

Systems and Applications, pp. 83-92

France, R. & Rumpe, B. (2007). Model-driven development of complex software: a research

roadmap, Proceedings of the 29th International Conference on Software

Engineering - Future of Software Engineering, pp. 37-54

Forte, M.; Souza, W. L. & Prado, A. F. (2008). Using ontologies and Web services for content

adaptation in Ubiquitous Computing, Journal of Systems and Software, Vol. 81,

No. 3, March 2008, pp. 368-381

Gajos, K. & Weld, D. S. (2004). SUPPLE: automatically generating user interfaces,

Proceedings of the 9th International Conference on Intelligent User Interfaces, pp.

93-100

Garlan, D. & Schmerl, B. (2001). Component-based software engineering in pervasive

computing environments, Proceedings of the ICSE Workshop on Component-

Based Software Engineering, Comp. Certification and Syst. Prediction, pp. 1-4

Gaspar, T. C. ; Yaguinuma, C. A. & Prado, A. F. (2009). Development of synchronous

collaborative applications in the Web 2.0 (Desenvolvimento de aplicações

colaborativas síncronas na Web 2.0), Proceedingos of the 15th Brazilian Symposium

on Multimedia Systems and Web, short-term course: text book, pp. 168-207

Griss, M. L.; Favaro, J. & Alessandro, M. d. (1998). Integrating feature modeling with the

RSEB, Proceedings of the 5th international Conference on Software Reuse, pp. 76-85

Hansmann, U.; Merk, L.; Nicklous, M. S. & Stober, T. (2003). Pervasive Computing.

Springer-Verlag, Germany

Kelly, S. & Tolvanen, J. (2008). Domain-Specific Modeling: Enabling Full Code Generation.

Wiley-IEEE Computer Society Press

Lucrédio, D. ; Alvaro, A. ; Almeida, E. S. & Prado, A. F. (2003). MVCASE Tool – Working

with Design Patterns, Proceedings of the 3rd Latin American Conference on Pattern

Languages of Programming

www.intechopen.com

Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications

217

Lucrédio, D. (2009). A model-based approache for software reuse (Uma abordagem

orientada a modelos para reutilização de software), PhD Thesis, Universidade de

São Paulo, Instituto de Ciências Matemáticas e de Computação, São Carlos, Brazil

Menezes, A. L. ; Cirilo, C. E. ; Moraes, J. L. C., Souza, W. L. & Prado, A. F. (2010). Using

Archetypes and Domain Specific Languages on Development of Ubiquitous

Applications to Pervasive Healthcare, Proceedings of the 23rd IEEE International

Symposium on Computer-Based Medical Systems, pp. 395–400

Norrie, M. C. (2008). PIM Meets Web 2.0, Proceedings of the 27th International Conference

on Conceptual Modeling, pp. 15-25

O’Reilly, T. (2005). What is Web 2.0: Design Patterns and Business Models for the Next

Generation of Software, http://oreilly.com/web2/archive/what-is-web-20.html

Paternò, F.; Santoro, C. & Scorcia, A. (2008). Automatically adapting web sites for mobile

access through logical descriptions and dynamic analysis of interaction resources,

Proceedings of the Working Conference on Advanced Visual interfaces, pp. 260-267

Ross, D. T. (1977). Structured Analysis (SA): A Language for Communicating Ideas, IEEE

Trans. Softw. Eng.. Vol. 3, No. 1, January 1977, pp. 16-34

Sadilek, D. A. (2008) Prototyping domain-specific language semantics, Proceedings of the

23rd Companion to the ACM SIGPLAN Conference on Object-Oriented

Programming Systems Languages and Applications, pp. 895-896

Serral, E.; Valderas, P. & Pelechano, V. (2010). Towards the model driven development of

context-aware pervasive systems, Pervasive Mobile Comp., Vol. 6, No. 2, pp. 254-

280

Singh, G. (2004). Guest editor’s introduction: content repurposing, IEEE Multimedia, Vol. 11,

No. 1, pp. 20-21, January 2004

Souza, W. L.; Prado, A. F.; Forte, M. & Cirilo, C. E. (2011). Content Adaptation in Ubiquitous

Computing, Ubiquitous Computing, Eduard Babkin (Ed.), ISBN: 978-953-307-409-2,

InTech, http://www.intechopen.com/articles/show/title/content-adaptation-in-

ubiquitous-computing

Spínola, R. O.; Silva, J. L. M. & Travassos, G. H. (2007). Checklist to characterize ubiquitous

software projects, Proceedings of the 21st Brazilian Symposium on Software

Engineering, pp. 39-55

Vellis, G. (2009). Model-based development of synchronous collaborative user interfaces,

Proceedings of the 1st ACM SIGCHI Symposium on Engineering interactive

Comput. Systems, pp. 309-312

Viana, W. & Andrade, R. M. C. (2008). XMobile: a MB-UID environment for semi-automatic

generation of adaptive applications for mobile devices, Journal of Systems and

Software, Vol. 81, No. 3, pp. 382-394, March 2008

Vieira, V. ; Tedesco, P. & Salgado, A. C. (2011). Designing context-sensitive systems: An

integrated approach, Expert Syst. Appl., Vol. 38, No. 2, pp. 1119-1138

Weiser, M. (1991). The Computer for the 21st Century, Scientific American, Vol. 265, No. 3,

September 1991, pp. 66-75

Woensel, W. ; Casteleyn, S. & Troyer, O. (2009). A Framework for Decentralized, Context-

Aware Mobile Applications Using Semantic Web Technology, Proceedings of the

Confederated int. Workshops and Posters on on the Move To Meaningful internet

Systems, pp. 88-97.

www.intechopen.com

Interactive Multimedia

218

Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.; Regnell, B. & Wesslén, A. (2000).

Experimentation in Software Engineering: an introduction. Kluwer Academic

Publishers, USA

Zakas, N. C.; McPeak, J. & Fawcett, J. (2007). Professional AJAX, Wrox

www.intechopen.com

Interactive Multimedia

Edited by Dr Ioannis Deliyannis

ISBN 978-953-51-0224-3

Hard cover, 312 pages

Publisher InTech

Published online 07, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Interactive multimedia is clearly a field of fundamental research, social, educational and economical

importance, as it combines multiple disciplines for the development of multimedia systems that are capable to

sense the environment and dynamically process, edit, adjust or generate new content. For this purpose, ideas,

theories, methodologies and inventions are combined in order to form novel applications and systems. This

book presents novel scientific research, proven methodologies and interdisciplinary case studies that exhibit

advances under Interfaces and Interaction, Interactive Multimedia Learning, Teaching and Competence

Diagnosis Systems, Interactive TV, Film and Multimedia Production and Video Processing. The chapters

selected for this volume offer new perspectives in terms of strategies, tested practices and solutions that,

beyond describing the state-of-the-art, may be utilised as a solid basis for the development of new interactive

systems and applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Carlos Eduardo Cirilo, Antonio Francisco do Prado, Wanderley Lopes de Souza and Luciana Aparecida

Martinez Zaina (2012). Building Adaptive Rich Interfaces for Interactive Ubiquitous Applications, Interactive

Multimedia, Dr Ioannis Deliyannis (Ed.), ISBN: 978-953-51-0224-3, InTech, Available from:

http://www.intechopen.com/books/interactive-multimedia/building-adaptive-rich-interfaces-for-interactive-

ubiquitous-applications

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

