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Stoichiometric Ratio in Calixarene Complexes 

Flor de María Ramírez and Irma García-Sosa 
Instituto Nacional de Investigaciones Nucleares  

México 

1. Introduction  

Stoichiometry is a fundamental concept in chemistry that refers to the ratios of products and 

reactants in any chemical reaction. It is an important concept in both chemical reactions and 

biochemical processes. A stoichiometric ratio represents the relationship among the 

elements or molecules present in an equation. Using the correct stoichiometric amount of 

reactant will yield the maximum amount of product under the proper thermodynamic and 

kinetic conditions.  

This chapter will be focused on the latest research, from our and other labs, on the 

determination of stoichiometric ratios for complexed species formed between substrates and 

calixarene receptors, the influence of size, conformation and functionalization site of 

calixarenes on the stoichiometry, as well as solvent effects and the stability of the complexes 

in the liquid and solid states. No formation (stability) constants will be discussed, although 

in some cases these could be mentioned.  

Particular attention will be paid to the experimental methods used for stoichiometry 

determination. Furthermore, complexed calixarene molecules in 1:1, 1:2 and 2:1 

(Substrate:Calixarene) stoichiometries calculated by Augmented MM3 and CONFLEX 

semiempirical procedures, and other computational calculations will be included.  

The enormous number of sophisticated functionalized calixarenes published so far, forced 

us to be selective. Therefore, our attention will be devoted to the stoichiometry of complexes 

formed with parent calixarenes (Gutsche, 1989, 1998, Mandolini & Ungaro 2000) 

functionalized at the lower and upper rims, with linear arms, that were first reported 

between 1999 and 2011. 

2. A brief overview of calixarenes 

Calixarenes are an important group of macrocycles, considered the third best host 

(receptors) molecules after cyclodextrins and crown ethers (Shinkai, 1993). They are 

prepared by condensation reactions between para-substituted phenols and formaldehyde 

(Gutsche, 1989). Here, we focus on conventional endo-calixarenes, which have a lipophilic 

cavity and two rims: the polar lower rim and the apolar upper rim that provides an unusual 

flexibility to the calixarene that can be modulated by adjusting cavity size and the rim 

substituents size. Its basket-like structure, with a lipophilic cavity made up of aromatic 
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nuclei and easily modified rims, has attracted the attention of many theoretical and 

experimental researchers.  

With exceptions, macrocycle flexibility, i.e. conformational movement, increases with 

size. Calix[n]arenes (where n stands for the number of aryl groups in the macrocycle) 

with n = 4 to 20 have been synthesized (Gutsche, 1998), but only the smaller cycles  

(n = 4, 6 and 8) have been thoroughly studied. Calixarenes are versatile macrocycles 

with almost unlimited properties (Böhmer, 1995); they are excellent scaffolds since their 

conformation can be adapted to potential guests, and they can be selectively 

functionalized at three sites (Asfari et al., 2001; Mandolini & Ungaro, 2000). Most 

commonly, specific groups or substituents called pendant arms are added to the rims to 

impart a specific function.  

Calixarenes are very attractive to researchers from numerous science and technology fields 

(Fig. 1). A vast array of functionalized calixarenes have been reported over the last decade 

(Alexandratos and Natesan, 2000; Gutsche, 1998; Lumetta et al., 2000; Mandolini and 

Ungaro, 2000; Mokhtari et al., 2011a, 2011b; Sliwa, 2002; Sliwa & Girck, 2010; Talanova, 

2000). The challenge is to quickly synthesize suitable calixarenes on a large scale with 

minimal workup.  

 

Fig. 1. Applications for calixarenes in science and technology. 

In Fig. 2, a selection of recently reported calixarenes are presented.  
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Fig. 2. Some interesting calixarene molecules built with ChemDraw Ultra 10.0 software. a) 

Zheng et al. (2010), b) Liang et al. (2007), c) Leydier et al. (2008), d) Bew et al. (2010), e) 

Snejdarkova et al. (2010), f) Sliwa& Deska, (2008), g) Sliwka-Kaszynska et al. (2009), articles 

cited by Mokhtari et al., 2011b. 

3. Finding the stoichiometric ratio 

The method of continuous variation involves a series of isomolar solutions of two reactants. 

It is one commonly used experimental mixing technique for determining formula and 

formation constants of complexes. The method is also known as Job’s method, for his 

general development of spectrophotometric measurement techniques (Gil & Oliveira, 1990). 

However, it was Ostromisslensky in 1911 who (Hill & MacCarthy, 1986; Likussar & Boltz, 

1971) first employed the method to establish the 1:1 stoichiometry of the adduct formed 

between nitrobenzene and aniline. Other methods, such as molar ratios and titration in a 

single flask, are also currently used to investigate the stoichiometry of complexes. 

3.1 Job’s method 

Job’s method is carried out in a batch mode (series of solutions) by mixing aliquots of two 
equimolecular stock solutions of two components (metal and ligand, or organic substrate 
and organic receptor) and diluting to a constant volume to get solutions with identical total 
molar concentrations but different mole fractions. The sum of the two components analytical 
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concentration is constant while the Component 1:Component 2 ratio varies from flask to 
flask. Job’s method is based on plotting measured absorbance (corrected for reactants 
absorbance) against the mole fraction of one single component. For stable complexes, the 
plot is a triangle, with the apex indicating the complex composition. For a moderately stable 
complex, the stoichiometry can be obtained from the intersection point of the curve 
tangents, this approximation being valid only for symmetrical plots (e.g. 1:1; 2:2). Weak 
complexes generally show a very curved plot. 

This method works well for reactions where a single equilibrium, or simple equilibriums 
exist uninfluenced by ionic strength; no more than three species (two reactants and the 
product) can be present in solution and their complexes have to be very stable. Job's 
method may be applied to stoichiometric determination in two ways. The Standard 
Method was described above. The modified Limiting Reagent Method uses a series of 
solutions with a fixed “moles A” and a varying ”moles B,” such that the ratio moles 
B:moles A, goes from 0 to a value known to be larger than x (x equal to moles of B at 
intersection/(total moles of A plus B minus moles of B at intersection). The amount of 
product in each solution is then measured. Once the amount of B exceeds the 
stoichiometrically required amount, A becomes the limiting reagent and the amount of 
the formed product remains constant.  

According to stoichiometric theory, the limiting reagent controls the yield, and the greatest 
yield is always produced at the stoichiometric equivalence point. The maximum amount of 
product should occur at the stoichiometric ratio that can be justified both intuitively and 
mathematically. For both methods, 8-15 experimental data points are required to determine 
the stoichiometry. The method can be applied to parameters obtained from techniques other 
than typical spectrophotometry, e.g. luminescence, nuclear magnetic resonance, calorimetry, 
conductometry. 

Job’s method has serious limitations for complex reactions systems where the number of 
species is larger than three. In these cases, two or more complexed species with different 
stoichiometries are formed, and/or the stability of the complexes is moderate. Moreover, the 
method fails when the formed complexes are only weakly stable. A simulation program (Gil 
& Oliveira, 1990) for reaction equilibriums has improved application of Job’s method to 
more complicated systems.  

3.2 Spectrophotometric titration 

There are several experimental methods to determine stoichiometries for systems with 
multiple complex species in solution. Spectrophotometric titration monitored by UV/Vis is 
largely used because UV/Vis spectrophotometers are widely available and inexpensive. The 
radiant energy absorption of a solution is measured spectrophotometrically after each 
increment of titrant, but the evaluation is somewhat limited by the solubility of the reactants 
(but not the products) in water and/or organic solvent.  

In macrocyclic coordination chemistry equimolar solutions of the reactants in the same 
solvent with the same ionic strength are prepared, and two titrations are carried out, 
titrating the receptor with the substrate and the substrate with the receptor, respectively. In 
the former, a fixed volume of the receptor solution is titrated by adding varying volumes of 
the substrate solution. After each addition the UV/Vis spectrum is recorded. The titrant is 
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added until the absorbance at the analyzed wavelength does not change, or until a new 
band appears. Approximately 30 spectra are required, or enough data collected until a 
molar ratio [S]/[R]≥ 4 is reached. Specfit or Hyperquad software is used for stoichiometry 
evaluation.  

Spectra, solution concentrations, initial volume, aliquot number and volumes, and the total 

final volume are fed into the Specfit software. Factor analysis reveals the number of 

absorbing species, and the data are fitted to models to obtain the stoichiometry of the 

species and their stability constants. The same steps are followed if a fixed volume of the 

substrate solution is titrated with a variable volume of the receptor solution. 

In the case of calixarene complexes, the titration can be followed by analyzing changes in the 

physicochemical properties of the receptor or the substrate as the complex is formed (e.g. 

absorbance, luminescence, NMR chemical shifts, calorimetric changes). 

4. Spectroscopic techniques 

UV/Vis, 1H’NMR, MS (mass spectrometry) and luminescence are the spectroscopic 

techniques that are most used for the elucidation of stoichiometry in calixarene complexes 

with organic or metallic substrates. In general, spectroscopic techniques are complementary, 

but if the solution contains only one complex species data from a single technique analyzed 

by Job or/and molar ratio methods may be sufficient. In these cases sometimes only 8 

experimental points are required for a Job plot. However, if the solution contains more than 

two complex species, at least two different techniques and software packages are needed; in 

some cases the evaluation of stability constants is required to confirm the existence of a 

complex species in the determined stoichiometry.  

The stoichiometry of isolated calixarene complexes in the solid state can be elucidated by 

microelemental analysis or, if possible, by its X-ray structure. If the complexes dissolve 

without decomposition, NMR and MS measurements are extremely useful for confirming 

stoichiometry. 

5. Calixarene complexation 

Calixarenes can interact with neutral, cationic and anionic organic substrates as well as 

metal ions; they are sometimes called “molecular baskets” because of this diverse capacity. 

Calixarenes are neutral but can act as cationic and anionic receptors if adequately 

functionalized (Asfari et al., 2001; Lumetta et al., 2000; Mandolini & Ungaro, 2000; Mokhtari 

et al., 2011a, 2011b; Sliwa & Girck, 2010). The calixarene-substrate interaction is illustrated in 

Fig. 3. Molecular recognition, the strength of the interaction between calixarenes and their 

substrates and thermodynamic and kinetic factors rule the complexes formation. It is 

important to keep in mind that the donating ability of solvents plays an import role (Asfari 

et al., 2001; Mandolini & Ungaro, 2000) in complex stability. 

In organic-calixarene complexes (Fig. 3, top right ), noncovalent interactions such as 

hydrogen bonds, π- hydrogen bonds, hydrophobic interactions, and cation-π and CH-π 

interactions are the main driving forces that allow stable complexes to form in the liquid and 

solid states (Asfari et al., 2001; García-Sosa & Ramírez, 2010; Mandolini & Ungaro, 2000). 

www.intechopen.com



 
Stoichiometry and Research – The Importance of Quantity in Biomedicine 

 

8 

In metal-calixarene complexes (Fig. 3, bottom right), the coordination ability of the 

calixarene toward the metal ion determines complex formation. Ionic and covalent 

interactions dominate complex formation and define calixarene complex properties 

including stoichiometry.  

 

Fig. 3. Schematic representation of calixarene complexation with neutral and cationic 

substrates.  

5.1 Stoichiometry in calixarene complexes with organic substrates in solution 

There are a great number of calixarene complexes that are formed from functionalized 

calixarenes and organic substrates. Investigations into receptor-substrate recognition in 

solution afford fundamental knowledge and describe environmental, biological and medical 
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applications. However, to the best of our knowledge, little work has been done related to 

stoichiometric studies of calixarene complexes for biomedical applications.  

Here, we discuss some illustrative investigations. 

5.1.1 Stoichiometric ratio with neutral calixarenes  

Mohammed-Ziegler et al. (2003) investigated complex formation between chromogenic 

capped calix[4]arene derivatives comprising indophenol indicator group(s) and aliphatic 

amines in ethanol using UV/Vis spectroscopy. Job’s method was applied to quantify the 

spectral changes using various molar amine/calixarene ligand ratios by maintaining a 

constant ligand concentration (λmax = 520–534 nm) and varying the amine concentration. A 

new band emerged at 652–667 nm indicating complexation and adducts with a 1:1 

stoichiometry were determined. The study indicated the formation of strong polar 

supramolecular complexes of calix[4]arenes capped by diamide bridges with the amines, 

stabilized by various types of host–guest interactions and by steric effects. 

Zielenkiewicz et al. (2005) have thoroughly studied the complexation of isoleucine by 

phosphorylated calix[4]arene in methanol. Calorimetry, NMR and UV/Vis (Job’s method) 

spectroscopy, as well as molecular modeling methods, were used. In methanol, amino acids 

occur primarily in the form of zwitterions [H3N+CH(R)CO2-], with a protonated amino acid 

and a dissociated carboxylic group. The association constants determined by spectroscopy 

agree with data obtained by calorimetry: 25,000 for a 1:1 complex and 1700 for 1:2 

isoleucine:calixarene complexes, respectively. The formation of the former is driven by 

favorable changes both in enthalpy and entropy during complexation while the 1:2 complex 

is of entropic origin. 

The 1:2 complex is the result of inclusion of the amino acid’s alkyl chain into the cavity of 

one calixarene molecule and interaction of the amino acid amino group with the phosphoryl 

group of a second calixarene. The more stable 1:1 complex points to electrostatic interactions 

between the positively charged ammonium cations of the amino acid and the phosphoryl 

groups of the calixarene. The phosphoryl groups appear to serve as the anchoring points for 

the positively charged ammonium cations of the amino acid, thus leading to a more stable 

inclusion complex. Complexation of isoleucine also takes place through insertion of the 

aliphatic moiety of the substrate molecule into the calixarene cavity. Electrostatic 

interactions are the dominant forces in the complexation process. Molecular modeling 

results fit extraordinary well with experimental values, corroborating the 1:1 and 1:2: 

isoleucine:calixarene(s) stoichiometries.  

Halder et al. (2010) investigated the effective and selective noncovalent interactions between 

fullerenes (C60 and C70) and para-tert-butylcalix[6]arene in toluene by UV/Vis and NMR 

methods. Both C60 and C70 form ground state noncovalent complexes with the calixarene; 

according to UV/Vis measurements, the complexation process is initiated by charge transfer 

transition. From Job’s method, it was observed that both C60 and C70 form stable complexes 

with the calixarene ligand in a 1:1 stoichiometry. According to the binding constants, the 

calixarene bound strongly and selectively to C70, compared with C60, K = 110,000 and 32,400 

dm3 mol-1, respectively. Proton NMR measurements support a strong complexation between 

C70 and the calixarene ligand. 
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5.1.2 Stoichiometric ratio with charged calixarenes  

Kunsági-Máté et al. (2004) investigated complex formation between C60 fullerene (dissolved 

in toluene) and water-soluble hexasulfonated calix[6]arenes functionalized with sulfonates 

in the upper rim. Photoluminescence (PL) measurements and Job’s method were used for 

this investigation. The stoichiometry of the complex was 1:1, and related quantum chemical 

calculations demonstrated that the C60 fullerene is located deep within the cavity of the 

calixarene. This observation makes this calixarene a promising candidate for overcoming the 

natural water-repulsive character of C60 fullerene and could improve the application of 

fullerenes to biochemical processes. 

Zhou et al. (2008) used spectrofluorometric titrations to investigate the inclusion behavior of 

p-(p-carboxyl benzeneazo) calix[4]arene with norfloxacin (fungicide) in sodium acetate-

acetic acid buffer solution. The fluorescence results indicated a 1:1 complex stoichiometry. 

Stoichiometry was also evaluated by applying Job’s method to fluorescence measurements 

to verify the 1:1 inclusion complex. Hydrogen bonding and structural matching effects were 

proposed to play important roles in the formation of the calixarene–norfloxacin complex in 

water. Furthermore, various factors affecting the inclusion process, such as pH value, ionic 

strength and surfactants, were examined in detail; the results corroborated the formation of 

this inclusion complex. The nature of the fungicide-calixarene interaction was mainly 

electrostatic. This investigation is crucial, since norfloxacin is a third-generation synthetic 

antibacterial fluoroquinolone agent that is used in the treatment of urinary and respiratory 

tract infections and gastro-intestinal and sexually transmitted diseases. Therefore, 

azocalix[n]arenes and its inclusion compounds may have potential biological and medical 

applications.   

The effect of adding a macrocycle such as para-sulfonatocalix[6]arene on the fluorescence of 

benzoimidazolic fungicides such as Benomyl (BY) and Carbendazim (CZ) has been studied 

by Pacioni et al. (2008) using spectrofluorimetric titrations. Benomyl (BY) and Carbendazim 

(CZ) interact with para-sulfonatocalix[6]arene to form complexes. Calixarene enhanced the 

fluorescence of BY in water at pH 1.000 and 25o C. An inclusion complex with 1:1 

stoichiometry was formed with the pesticide. The nature of the interactions was mainly 

electrostatic, i.e. cation–π and ion–ion interactions between the cationic BY and sulfonate 

groups. The use of macrocyclic nanocavities, compared with other methods, is a very good 

alternative to determine BY residues in water and fruit samples at low levels, with better or 

in the same order. The complexation of the neutral CZ occurs at pH 6.994. Two complexes 

with 1:1 and 1:2 stoichiometries were formed; the latter complex was less fluorescent than 

the free CZ. π-π stacking and hydrogen bonding are the main driving forces for the 1:1 and 

1:2 complexes.  

Organic quaternary ammonium ions have been of great interest in molecular recognition 

studies; paraquat (1,1’-dimethyl-4,4’-bipyridinium dichloride) is an example. Pierro et al. 

(2009) investigated the conformation fitting of tetramethoxy-para-carboxylatocalix[4]arene 

and tetrapropiloxi-para-carboxylatocalix[4]arene to paraquat in a CDCl3/CD3OD mixture 

using NMR measurements. This study demonstrated that tetrapropiloxi-para-

carboxylatocalix[4]arene and paraquat formed a stable complex with a 1:1 stoichiometry, as 

estimated by a Job plot. NMR measurements indicated that upon complexation the C2v 

www.intechopen.com



 
Stoichiometric Ratio in Calixarene Complexes 

 

11 

structure of the free calixarene switches to an opposite C2v pinched-cone conformation, with 

the two carboxylato-bearing rings pointing inward the calixarene cavity to maximize 

electrostatic and van der Waals interactions with the cationic paraquat. These adaptive 

conformational changes were fully confirmed by molecular modeling. The complexation of 

paraquat with tetrametoxi- para-carboxylatocalix[4]arene was also monitored with 

Diffusion-Ordered Spectroscopy (DOSY) NMR. DOSY has been particularly used in the 

characterization of host–guest systems in solution. The results indicated the formation of a 

complex in a 1:1 stoichiometry; in this complex, the calixarene was in the cone conformation 

while the free calixarene was predominantly in the partial-cone conformation.  

Methiocarb [3,5-dimethyl-4-(methylthio) phenyl methylcarbamate] is one of the mostly 

important N-methylcarbamate pesticides, used worldwide in agriculture and health 

programs. Ding et al. (2011) investigated the complexation between tetrabutyl ether 

derivatives of p-sulfonatocalix[4]arene (SC4Bu) and methiocarb by fluorescence 

spectrometry in a mixture of water and DMSO. It was observed that upon the addition of 

methiocarb, the fluorescence intensity of SC4Bu was quenched and a slight red shift was 

observed for the maximum emission peak, which is indicative of a calixarene-methiocarb 

interaction. The results indicated that the SC4Bu-methiocarb complex was formed in a 1:1 

mole ratio and that the electrostatic effect is not the main driving force. Using a modeling 

package it was proposed that complexation was an “external” inclusion process and that the 

hydrogen bonding between the methyl H atom of methiocarb and the sulfonate of SC4Bu 

facilitates the formation of this SC4Bu–methiocarb complex in a 1:1 stoichiometry. This 

study provides useful information for applying calixarenes to pesticide detection. 

5.2 Stoichiometry in calixarene complexes formed with organic substrates in solid 
state 

For years, organic frameworks have been suggested as promising gas storage substrates, but 

purely organic molecular crystals have received little attention. Atwood et al. (2005) studied 

the absorption of methane in p-tert-butylcalix[4]arene at room temperature and pressures of 

one atmosphere and lower. The results, supported by purely size–shape considerations, 

suggest that it is possible to accommodate at least two CH4 molecules within each dimeric 

capsule (i.e., calixarene:substrate = 1:1). On the basis of this assumption, preliminary results 

indicate that on average, at 0.54 atm, 14% of capsules are occupied by two molecules of 

methane. The results demonstrate that low-density organic systems do indeed deserve 

consideration as potential sorbants for volatile gases, and that such sorption processes can 

occur under desirable conditions close to standard temperature and pressure. 

Ferreira et al. (2010) studied the inclusion of biacetyl within p-tert-butylcalix[n=4,6]arenes in 

powdered solid samples using luminescence and diffuse reflectance. Lifetime distribution 

analysis of the phosphorescence of both complexes suggested endo-inclusion calixarene 

complexes with p-tert-butylcalix[n=4]arene, and exo-inclusion calixarene complexes with p-

tert-butylcalix[n=6]arene. Although it is not explicit, the stoichiometry of the inclusion 

complexes seems to be 1:1. 

Table 1 summarizes the stoichiometric ratio of some of the discussed organic complexes in 

solution and in the solid state. 
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Organic Substrate/calixarene Technique Method/ 
stoichiometry (M:L) 

References 

Aliphatic amines 
/chromogenic capped 
calix[4]arene derivatives 

UV/Vis titration 
in ethanol 

Job’s Method/(1:1) Mohammed-
Ziegler, et al. 
(2003) 

Isoleucine(peptide)/ 
phosporylated calix[4]arene. 

Insight II 
package 

Molecular 
Modeling /(1:1) 

Zielenkiewicz 
et al. (2005) 

Calorimetry; 
NMR titration 
Methanol  

Job’s Method/ 
(1:1, 1:2 2:1; 1:1) 
/Modeling 

Norfloxacin/p-(p-carboxyl 
benzene-azo) calix[4]arene  

Fluorescence 
titration 

Job’s Method /(1:1) Zhou et al. 
(2008). 

C60 fullerene /  
sulfonated calixarene  

Fluorescence 
titration  

Job’s Method /(1:1) Kunsági-
Máté et al. 
(2004) 

Adenine, guanine, cytosine, 
thymine /calixarene- 
D2EHPA 

Liquid-liquid 
extraction  

Job’s Method/(1:1)  Shimojo & 
Goto (2005). 

fullerenes (C60 and C70) 
/para-tert-butylcalix[6]arene  

UV/Vis titration 
toluene  

Job’s Method (1:1) Halder et al. 
(2010) 

Benomyl (BY) and 
Carbendazim (CZ)/ 
para-sulfonatocalix[6]arene. 

fluorescence 
titration 

Job’s Method / 
BY(1:1), CZ(1:1, 1:2) 

Pacioni, et al.  
(2008). 

Methane/calixarene  X-ray diffraction 1:1 also modeled Atwood et al. 
(2005)  

paraquat / tetraalquiloxi- 
para-carboxylatocalix[4]arene  

NMR titration/ 
CDCl3/CD3OD 

Job’s Method(1:1) Pierro et al. 
(2009) 

N-methylcarbamate/para-
sulfonatocalix[4]arene 

Fluorescence 
titration/ 
H2O-DMSO 

Molecular 
Modeling (1:1) 

Ding et al. 
(2011)  

Table 1. Stoichiometry of organic calixarene species, in solution and in the solid state, and 
the used techniques for their identification and determination. 

Garcia-Sosa & Ramírez (2010) found that para-tert-butylcalix[6]arene and para-tert-
butylcalix[8]arene form stable 1:1 complexes with paraquat dichloride (PQ) in the solid state 
(the complexes were studied in liquid and solid states). The biexponential decay of 
luminescence and lifetimes proved that the quaternary ammoniums (quats) of the paraquat 
were not in the same environment for both complexes. This fact correlated with molecular 
models, since two de-excitation pathways were present with very different lifetimes; the 
longer lifetime was associated with one methyl-pyridinium head closer to the aryl rings, and 
the shorter lifetime was associated with the methyl-pyridinium head far from the aryl ring. 
The former ring is more shielded than the latter. Solution studies (UV/Vis, luminescence) 
and molecular modeling suggested that the calixarenes interact with the herbicide through 
cation-π interactions. Paraquat is included in the para-tert-butylcalix[8]arene cavity, but 
only partially included in the para-tert-butylcalix[6]arene cavity. The theoretical results, in 
particular using MOPAC procedures, were in good agreement with experimental findings.  

www.intechopen.com



 
Stoichiometric Ratio in Calixarene Complexes 

 

13 

The preliminary test in water suggests that the stability of the PQ-para-tert-
butylcalix[8]arene complex does not depend on the pH while that of PQ-para-tert-
butylcalix[6]arene does. Being the former complex much more stable than the latter in 
aqueous media, we envision that para-tert-butylcalix[8]arene could be useful in stabilizing 
paraquat dichloride in solid, organic or water solutions to deposit/de-activate it as waste. 

5.3 Stoichiometry of extracted species formed with organic substrates and 
calixarenes 

Calixarenes have been used to separate organic pesticides, pharmaceuticals and dyes that 
pollute water. However, little attention has been dedicated to the stoichiometric ratio of the 
extracted species. Here, two examples are presented. 

Shimojo & Goto (2005) studied the synergistic extraction of nucleobases by a combination of 

calixarene and D2EHPA ligands. Liquid-liquid extraction of various nucleobases with a 

para-tert-octylcalix[6]arene carboxylic acid derivative was carried out to elucidate its 

molecular recognition properties. Bis-(2-ethylhexyl)phosphoric acid (D2EHPA) was tested 

as a synergistic reagent to improve the extraction capability of the calixarene toward 

nucleobases (in buffered water). The efficiency of adenine and cytosine extraction increased 

drastically in the presence of both extractant ligands dissolved in isooctane. Neither 

calix[6]arene nor D2EHPA were very effective at nucleobase extraction. According to Job’s 

method, the stoichiometry of the extracted stable species in the case of the better-extracted 

adenine was 1 adenine:1 calix[6]arene:2 D2EHPA. The authors proposed that D2EHPA is 

involved in the secondary coordination sphere of the calixarene-adenine complex and that 

its highly hydrophobic nature enhances the distribution of the complex into isooctane. 

Recovery of adenine from the organic phase to the aqueous receiving phase is readily 

achieved under acidic conditions. These results highlight the great potential of macrocyclic 

ligand calixarenes as extractants for bioproducts.  

As seen above, calixarenes are relevant to the removal of biological or pharmaceutical 
compounds from wastewater. Elsellami et al. (2009) implemented a coupling process 
between solid–liquid extraction and photocatalytic degradation for the selective separation 
of amino acids from water by calix[n]arene carboxylic acid derivatives and degradation by 
activation of a photocatalyst (TiO2) under UV light. The advantage of this liquid-solid 
extraction is that it selectively preconcentrates pollutants (tryptophan, phenyalanine and 
histidine). Apparently, the extracted complex was stabilized in a stoichiometric ratio of 1 
calixarene:1 amino acid. The photodegradation followed a first-order kinetic, and the rate 
constant increased with amino acid concentration. Clearly, solid–liquid extraction is a 
simple, useful method, and the reagents are recyclable. Although these results are only 
preliminary, they suggest further possibilities for optimal extraction of amino acids and 
other pharmaceuticals. 

5.4 Stoichiometry in calixarene complexes formed with metallic substrates in solution 

Several books and reviews on calixarenes have been dedicated to the coordination chemistry 
of calixarenes with most of the metal elements of the periodic table (Alexandratos & 
Natesan, 2000; Lumetta et al., 2000; Mandolini and Ungaro, 2000; Mokhtari et al., 2011a, 
2011b; Sliwa, 2002; Sliwa & Girck, 2010; Talanova, 2000). The most important feature of 
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functionalized calixarenes for coordination with metal ions is that metal complexation 
properties depend not only on the nature of the binding groups grafted to the calixarene 
platform but also on their stereochemical arrangement, determined by the calixarene 
conformation and regulated by its size. The coordination ability of the calixarene can be 
completely changed, when functionalized by the same groups, by simply changing the rim 
these groups are attached to; the stability, selectivity and stoichiometric ratio of the metal 
calixarene complexes will be consequently altered. Metal ions can be highly toxic pollutants, 
pesticides, radionuclides, materials, nanomaterials, oligoelements, and motivate the current 
interest in synthesizing calixarenes with enhanced selectivity in the liquid and solid states. 

5.4.1 Stoichiometric ratio with alkali and earth alkaline and metal transition ions 

Joseph et al. (2009) synthesized an amide-linked lower rim 1,3-bis(2-picolyl)amine 
calix[4]arene derivative. Binding properties of this ligand toward ten different biologically 
relevant metal ions (Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Cu2+, Na+, K+, Ca2+, and Mg2+) have been 
studied by fluorescence and absorption spectroscopy in methanol and aqueous methanol. 
This ligand is a highly discriminating fluorescence sensor that selectively detects Cu2+ down 
to a concentration of 196 and 341 ppb in methanol and 1:1 aqueous methanol, respectively, 
even if other metal ions are present. Based on competitive metal ion titration studies, Cu2+ 
can be sensed even in the presence of other biologically relevant ions in aqueous solution. 
Both the calix[4]arene platform and the pyridyl binding core are required for selective 
recognition of Cu2+, as established by comparison of results obtained with the relevant 
control molecules e.g. the upper-rim-based quinoline derivative. The stoichiometry of the 
complex was 1:1, as calculated by a Job plot and confirmed by ESI MS. The computationally 
obtained structure for the Cu2+ complex exhibited a tetracoordinate geometry that is also 
seen in the blue copper protein, i.e. plastocyanin.  

Dendrimers and hyperbranched molecules special properties come from their very peculiar 
molecular structures. Their structures have been accurately defined, and are prepared by 
established reactions and chosen pathways. In preliminary work, Mahouachi et al. (2006) 
investigated the extraction of solid zinc(2+) picrate hydrate into CDCl3 solutions (10-3 M) by 
a linear dendrimer composed of six para-tertbutylcalix[4]arene linked together by amide-
ethylene-amine and amide-ethylene chains. 1H NMR spectra of the resulting solutions 
remained unchanged after 24 hours, indicating a stable complex. The integration ratio 
between the singlet of the picrate at 8.52 ppm and the aromatic protons of the linear 
dendrimer indicates that the stoichiometry of the complex is 2:1 (metal:ligand). However, 
the spectrum of the complex was broad, and the signal patterns could not be interpreted. 
The authors proposed that this broadening was due to metal coordination site exchange, 
since the ligand has three potential Zn(2+)-coordination sites, delineated by the amide 
functions and/or from a mixture of different arrangements of trinuclear complexes. 

Sahin & Yilmaz (2011) synthesized a new fluorogenic calixarene bearing two pyrene amine 
groups; the ligand shows selectivity for Cu2+ and Pb2+ due to a conformational change upon 
chelation of the ions. Absorption (1x10-4 M) and fluorescence (1x10-6 M) spectra of ligands in 
CH3CN/CH2Cl2 solutions containing 10 mol equivalents of the appropriate metal 
perchlorate salt were recorded. The Job method was applied to determine the stoichiometry 
of the complexes, and the stability constants and quenching constants were determined by 
fluorimetric titration. When Cu2+and Pb2+ are bound to the calixarene, the pyrene monomer 
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and excimer decreased in a ratiometric manner. This ratiometric change is attributable to a 
combination of heavy metal ion effects, reverse-PET (photoinduced electron transfer) and 
conformational changes of the pyrene during the chelation of Cu2+and Pb2+ to form the 1:1 
complex. The authors conclude that this calixarene acts as a selective sensor of Cu2+ and Pb2+ 
ions. Cu2+ is both a pollutant and an essential trace element, while elevated levels of Pb2+ in 
the environment cause anemia, kidney damage, blood disorders, memory loss, muscle 
paralysis and mental retardation by lead poisoning. 

Arena et al. (2003) functionalized the 1- and 3- positions of a calix[4]arene with two 
dipyridyl pendants to create a ligand that complexes Cu(2+) and Co(2+). The new ligand, 
fixed in its 1,3-alternate conformation, forms stable complexes with both Co(2+) and Cu(2+), 
as shown by UV/Vis titrations carried out in acetonitrile. The stoichiometry of the main Co 
and Cu -calixarene species was determined by molar ratio and Job plot methods. Both 
methods indicated a single complex species with a 1:1 stoichiometry for Co2+, and two 
complex species for Cu2+ in 1:1 and 2:1 (metal:ligand) stoichiometry. In the case of Cu2+, 
speciation was confirmed by the multivariate and multiwavelength treatment of the data 
(60-70 points) using two different software packages (Specfit and Hyperquad). The existence 
of two complexes with the above-mentioned stoichiometry was confirmed. The authors 
conclude that the new ligand efficiently targets ions, and proposed that the cobalt complex 
is a good candidate as di-oxygen carrier, while the two copper complexes are good low 
molecular weight model systems for the study of copper enzyme catalytic activity in 
nonaqueous environments. The extracted complex species with 1:1 stoichiometry is a good 
candidate for nanoswitches; cyclic voltammetry studies showed reversible 
oxidation/reduction behavior.  

Kumar et al. (2010) reported fluorescent sensors based on (N-(pyrenyl-1-methylimine)-
derivatized calix[4]arenes and investigated their metal-ion binding (Li+, Na+, K+, Pb2+, Zn2+, 
Hg2+ and Ag+) by UV and fluorescence spectroscopy in CH2Cl2/CH3CN. Two of these 
receptors in a cone conformation showed ratiometric sensing while the third receptor in a 
1,3 alternate conformation showed ‘On–Off’ signaling for Pb2+. The stoichiometry of Pb2+ 
with the three ligands was 1:1 as established by a Job’s plot of fluorescence titrations. The 
cation binding properties of the ligands were examined by 1H’ NMR for Pb2+ in CDCl3 
/CD3CN (1:9 v/v). The significant downfield shift of the imino protons (>1.5 ppm) 
indicated strong complexation between imino nitrogen atoms and Pb2+ ions. Fitting the 
changes to the ligands fluorescence spectra with other metal ions using the nonlinear 
regression analysis program SPECFIT gave good fit with a 1:1 (metal:ligand) stoichiometry. 
The stability constant data indicated that these ligands bind strongly to Pb2+ ions. Ag+ is 
bound to ligands more weakly than Pb2+, but more strongly than Li+. 

Bayrakcı et al. (2009) synthesized several dinitro-substituted calix[4]arene-based receptors 
for extracting chromate and arsenate anions. Chromate and arsenate anions are important 
because of their high toxicity and presence in soil and water. Humans are sensitive to 
arsenic carcinogenesis; prolonged exposure to arsenic damages the central nervous system 
and results in liver, lung, bladder, and skin cancers.  

Chromium(6+) can be toxic, as it can diffuse as Cr2O72- or HCr2O7- through cell membranes 

to oxidize biological molecules. Therefore, the treatment of waste water containing Cr(6+) 

prior to discharge is essential. The upper and lower rims of para-tert-butylcalix[4]arene (L) 

were modified in order to create binding sites for the recognition of arsenate and dichromate 
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anions. Protonated alkylammonium forms of the ionophores showed high affinity toward 

dichromate and arsenate anions. Both oxyanions were extracted; extraction of the 

dichromate ions from water into dichloromethane follows a linear relationship between log 

D versus log [L] at different concentrations of L, with the slope ≈ 1 at pH=1.5, suggesting 

that two calixarenes form 1:1 complexes with the extracted dichromate anion. 

Table 2 summarizes the stoichiometric ratio of some of the discussed metal complexes in 
solution. 

Substrate Techniques/Solvent Methods/ 
Stoichiometry(M:L) 

References 

Cu2+/amide linked lower 
rim 1,3-bis(2-picolyl)amine 
calix[4] 

Fluorescence, 
UV/Vis; CH3OH; 
CH3OH-H2O

Job plot/ ESI-MS 
/(1:1) 

Joseph et al., 
2009 

Cu2+ and Pb2+/ pyrene-
armed calix[4]arene 
derivatives  

Fluorescence titration 
/CH2Cl2/CH3CN 

Job plot/ (1:1) Sahin & 
Yilmaz, 2011  

Co2+and Cu2+/ 1,3-
calix[4]arene with two 
dipyridyl pendants

UV/Vis titration/
CH3CN 

Job plot/ Specfit / 
Hyperquad/Co2+1 
(1:1)Cu2+(1:1, 2:1)

Arena et al., 
2003  

Li1+,Na1+,K1+,Pb2+,Zn2+,
Hg2+,Ag2+/(N-(pyrenyl 
methylimine)calix[4] 

Fluorescence titration 
/CH2Cl2/CH3CN 

Job plot/Specfit/ 
(1:1)  

Kumar et al., 
2010  

Cromate; Arsenate
anions/ dinitro –
substituted calix[4]arene

UV/Vis , Atomic 
absorption 

Liquid-liquid 
extraction / (1:1) 

Bayrakcı et 
al., 2009  

Ln/tetraphosphinoylated 
paratertbutylcalix[4]arene

UV/Vis, NMR,ES-MS 
titrations/CH3CN

Specfit/ (1:1, 1:2) Le Saulnier 
et al., 1999 

Ln/ tetra-ether-amide-
paratertbutylcalix[4]arene  

NMR titration/ 
CH3CN 

MINEQL+

program/(1:1) 
Ramirez et 
al., 2001 

Ln/ hexaphosphinoylated 
paratertbutylcalix[6]arene

UV/Vis titration/ 
CH3CN

Specfit/ (1:1, 1:2) Ramirez et 
al., 2002 

Ln/octaphosphinoylated 
paratertbutylcalix[8]arene 

MS,UV/Vis, NMR 
titrations/CH3CN 

Specfit/ (1:1, 2:1) Puntus et al., 
2007 

An/hexaphosphinoylated
paratertbutylcalix[6]arene 
An, Ln/ B6bL6 

UV/Vis titration/ 
CH3CN 
UV/Vis

Specfit/ (1:1, 1:2)
Liquid-liquid 
extraction/(1:1)

Ramírez et 
al., 2008 

An, Ln/ phosphorylated 
calixarenes (upper rim) 
Ln,An/ phosphorylated 
calixarenes (lower rim) 
 
An, Ln/ phosphorylated 
calixarenes (lower and 
upper rims) 

Microcalorimetric, 
UV/Vis titrations/ 
CH3CN, CH3OH 
 
 
UV/Vis 

(1:1, 1:2)
(1:1, 1:2 or 2:1) 
 
 
Liquid-liquid 
extraction (1:1, 1:2)  

Karavan et 
al., 2010 

Table 2. Stoichiometry of metal calixarene species, in solution, and the used techniques for 
their identification and determination. 
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5.4.2 Stoichiometric ratio with lanthanide and actinide ions in liquid and solid states 

In the last decade, many functionalized calixarenes have been used as lanthanide ion 
(Ln(3+)) receptors, either to improve their photophysical properties by the antenna effect of 
the calixarene, or as selective extractants of Ln and actinides (An).  

Le Saulnier et al. (1999) investigated the coordination chemistry of a tetraphosphinoylated 
para-tertbutylcalix[4]arene (B4bL4) with lanthanides, Ln, (Ln(3+) = La, Eu and Tb) and their 
luminescence. The stoichiometry of the complexes, both in solution and in the solid state, 
was 1:1 and 1:2 (M: B4bL4), as demonstrated by UV/Vis, NMR and ES-MS titrations and by 
applying Specfit software to UV/Vis data to determine speciation and stability constants in 
acetonitrile. Although the isolated complexes were very stable, the calixarene did not 
sensitize the Eu and Tb luminescence of the complexes. 

Ramírez et al. (2001) prepared a tetra-ether-amide-para-tertbutylcalix[4]arene (L= A4bL4) 
and studied its coordination ability toward Ln(3+) = Eu, Gd, Tb, and Lu. The stoichiometry 
of the complex species in acetonitrile solution was demonstrated to be 1:1 (M:L) by 1H’- 13C-
NMR and ES-MS titrations. The stability constants of the 1:1 species were estimated using 
the MINEQL+ program. A4bL4 reacted with Ln(3+) in acetonitrile to yield a 1:1 complex. The 
crystal structure of the lutetium complex [Lu(A4bL4)(H2O)](CF3SO3)3 2Et2O corroborated the 
1:1 stoichiometry and showed the metal ion encapsulated in the cavity formed by the four 
arms. Lu was 9-coordinate, bound to the four ether and four carbonyl functions and a water 
molecule that was itself H-bonded to the phenolic ether functions, rigidifying the cavity 
formed by the pendant arms. Additionally, an ether molecule is inserted into the 
hydrophobic cavity defined by the aromatic rings. Both NMR (La, Lu) and luminescence 
(Eu, Tb) data pointed to high local symmetry at the metal center while lifetime 
determinations were consistent with the coordination of an inner-sphere water molecule.  

Although the calixarene sensitized the luminescence of the Tb ion, the quantum yield 
measured in acetonitrile was relatively low (Qabs = 5.8%, τF = 1.42 ms), particularly for Eu 
(Qabs = 2.0%, τF = 0.73 ms). This is most likely due to the presence of a ligand metal charge 
transfer (LMCT) state that severely limits such a process. This study demonstrated once 
more the calixarene platform potentiality to simultaneously complex inorganic and organic 
guests. This finding might be helpful for modeling and designing extraction processes. 

A hexaphosphinoylated para-tertbutyl calix[6]arene (B6bL6) was synthesized by Ramírez et 
al. (2002). Temperature-dependent 1H and 31P NMR studies indicate a mixture of conformers 
with a time-averaged C6v symmetry at 405 K in dmso-d6; ΔG≠ values for conformational inter 
conversion processes were equal to 68(1) and 75(2) kJ mol-1 and reveal a semi-flexible 
macrocycle with alternate in-out cone conformation in DMSO and CHCl3 solutions, 
confirmed by molecular mechanics and dynamics calculations. B6bL6 crystallized as a dimer, 
where the two calixarenes are linked through hydrogen bonding and surrounded by water 
and toluene molecules in the lattice. UV/Vis spectrophotometric titration of B6bL6 with 
La(3+) in acetonitrile yielded stability constants of log β1 = 9.8 and log β2 = 19.6 for the 1 : 1 
and 1 : 2 (Ln : B6bL6) species, respectively. 

Complexes with La, Eu, Gd and Tb in 1:1 and 1:2 (M:calixarene) stoichiometries were isolated 
and characterized. Lifetime determinations of the Eu(3+) and Tb(3+) complexes in acetonitrile 
solution were consistent with no, or little, interaction of water molecules in the inner co-
ordination sphere. The B6bL6 sensitized the luminescence of Tb(3+) (Qabs = 4.8%, τf = 2.1 ms, 1 : 
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1 complex) and Eu(3+) (Qabs = 2.5%, τ = 2.0 ms, 1 : 2 complex) reasonably well in comparison 
with B4bL4. Molecular modeling calculations confirmed that the structure observed in the solid 
state, with phosphoryl groups interacting with water molecules, is a good model for the 
solution structure. The stability constants for the complexes with La(3+) were either smaller 
(1:1 complex) or equal (1:2) to the ones found for the corresponding B4bL4, in view of the larger 
flexibility of the calix[6]arene macrocycle. Photophysical properties were enhanced with 
respect to the smaller calix[4]arene, which opens the way for sensitive luminescence detection 
of these complexes, a definite advantage for quantifying extraction processes.  

The coordination ability of the B6bL6 calixarene toward actinides was established by Ramírez 
et al. (2008). Spectrophotometric titration of uranyl with B6bL6 in CH3CN yielded log  
β11 = 7.1 and log β12 = 12.5 for the 1:1 and 1:2 (UO22+: B6bL6) species, respectively. UO22+ and 
Th(IV) complexes with 1:1 and 1:2 (M:L) stoichiometries were isolated and characterized. 
Uranyl compounds only fulfilled their CN=8 with B6bL6, while thorium compounds 
required coordinated nitrates and/or water molecules. The luminescence spectra, 
photophysical parameters and luminescence lifetimes of the uranyl complexes permitted an 
understanding of the coordination chemistry of these actinide calixarene complexes.  

Energy transfer from the B6bL6 ligand to the uranyl ion was relevant in the 1:1 complex, with 
Qabs = 2.0%. The uranyl complex emission revealed biexponential decay for both complexes. 
The conclusion that we drew from this luminescence study and comparison with the 
emission spectra of uranyl nitrate recorded under various experimental conditions is that 
coordination of uranyl to the calixarene results in stabilization of its triplet state (heavy atom 
effect). This coordination promotes efficient energy transfer, although incomplete in the case 
of the 1:2 complex. Additionally, the macrocyclic molecule(s) provide(s) a protective 
environment, minimizing nonradiative deactivation processes. 

A de-tert-butylated calix[6]arene (A6L6) fitted with six ether-amide pendant arms in the 
lower rim was synthesized and characterized in solution (Ramírez et al., 2004). NMR 
spectroscopic data point to the six phenoxide units adopting an average D6h conformation 
on the NMR time scale (1,2,3-alternate conformation). According to Augmented MM3 
molecular mechanics and MOPAC quantum mechanical calculations, A6L6 is a ditopic 
ligand featuring two nonadentate coordination sites, each built from three pendant arms, 
and extending in opposite directions, with one arm above and the other below the main 
ring. A6L6 reacted with Ln ions (Ln(3+) = La, Eu) in acetonitrile to successively form 1:1 and 
2:1 complexes. The isolated Eu 2:1 complex was luminescent (Qabs = 2.5% in acetonitrile, 
upon ligand excitation), with bi-exponential luminescent decay, pointing to the presence of 
two differently coordinated metal ions, one with no bound water molecules, and the other 
one with two molecules bound.  

According to molecular mechanics calculations, the more stable isomer was indeed 
asymmetric, with two nine-coordinate metal ions. Both Eu ions are bound to three bidentate 
arms and one monodentate triflate anion, but one metal ion completes its coordination 
sphere with two phenoxide oxygen atoms while the other uses two water molecules, which 
is consistent with IR spectroscopic and luminescence data. The two metal ion sites became 
equivalent in acetonitrile, and the relatively long lifetime (1.35 ms) indicates a coordination 
environment free of water molecules. The absence of substituents on the narrower rim of 
H6L6 (calix[6]arene) allows easy interconversion between different conformers, through 
either the ‘‘tert-butyl through the annulus’’ or ‘‘narrower rim through the annulus’’ 
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pathways that facilitate 2:1 complex formation. This work demonstrated that the 
stoichiometry of lanthanide complexes with calixarenes can be tuned by a narrow and/or 
wide rim substituents suitable choice. 

Puntus et al. (2007) synthesized an octa-phosphinoylated para-tertbutylcalix[8]arene (B8bL8), 
and its structure was studied in solution. According to temperature-dependent 1H and 31P 
NMR spectroscopic data, the calix[8]arene adopts a so-called in–out cone conformation. Its 
coordination ability toward Ln (Ln (3+) = La, Eu, Tb, Lu) was probed by MS, UV/Vis and 
NMR spectroscopic titrations. Although both 1:1 (in the presence of triflate) and 2:1 (in the 
presence of nitrate) Ln:B8bL8 complexes could be isolated in the solid state, it was clear from 
the titration results that the major species present in methanol (solubility problems 
prevented the study in acetonitrile) had a 1:1 stoichiometry (irrespective of the anion), and 
the minor species a 2:1 stoichiometry. Observation of the 2:1 species was consistent with the 
bimetallic complexes usually isolated with calix[8]arenes, but only in the presence of a 
nitrate counterion as a result of its bidentate chelating mode. 

NMR spectroscopic data indicated a common conformation for the 1:1 complexes in solution. 
Ln ions were coordinated by four of the eight phosphinoyl arms, with a coordination sphere 
completed by methanol molecules or nitrate ions, as ascertained by IR and MS spectra. B8bL8 
displayed a weak absorption at 360 nm that can be assigned to an intraligand charge-transfer 
(ILCT) state that is very sensitive to coordination. Photophysical data for the Eu 2:1 complex 
pointed to similar chemical environments provided by the metal ion sites and no coordinated 
water, contrary to what is observed in the 1:1 complex. In this work, optical electronegativity 
predicted the energy of the charge-transfer states in the lanthanide systems with inequivalent 
ligands, and extensive analysis of the vibronic satellites of the Eu(5D0→7FJ) transitions allowed 
the authors to draw conclusions about Eu(III) coordination. 

Karavan et al. (2010) investigated the binding properties of three series of phosphorylated 
calixarene derivatives (bearing phosphine oxide or phosphonate groups either at the wide 
or the narrow rims) toward some representative lanthanide and actinide ions in solution. 
Complexation was studied in single media (methanol and acetonitrile) followed by UV 
spectrophotometric and isoperibolic (micro)calorimetric titrations (ITC). Using upper rim 
phosphorylated calixarenes, it was found that the solvating ability of methanol and 
acetonitrile influences stoichiometry, number and constant stability of the europium 
complex species (1:1 and/or 2:1 M: L species). In a single solvent, the major influence on the 
stoichiometry of a complex is the length of the substituents bound to the OP groups. 

No influence of calixarene size or substituent type in the upper rim was observed in the 
stoichiometry of uranyl calixarene species (1:1) when lower-rim-phosphorylated calixarenes 
were used in methanol, while in acetonitrile, a 2:1 species was found with the de-
tertbutylated tetramer derivative. Similar stoichiometries were determined for europium 
complex species using the tertbutylated tetramer in methanol, where a 1:2 complex species 
formation was also observed. 

Calorimetry was very useful for the determination of stoichiometries, particularly when 
complexation did not induce significant spectral changes. It also provided full 
thermodynamic characterization of the complex species in organic solution. The influence of 
some structural features of the ligands on the nature of the substituents as well as the 
condensation degree of the calixarene moiety on the complexation thermodynamic 
parameters were thus established. It is clear that wide rim and narrow rim phosphine oxide 
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derivatives formed 1:1 complexes with europium and uranyl, accompanied in some cases 
with 2:1 complexes or 1:2 species with europium.  

The stabilization origin of the complexes is quite different for the two cations and depends 
on the solvent. Whereas entropy terms are generally favorable in methanol for europium 
complexes, the entropy contributions appear to be very negative and hence unfavorable in 
acetonitrile. This finding indicates the importance of solvation/desolvation in the 
complexation process. In contrast, the stabilization of the uranyl complexes is mostly 
enthalpy-driven in both solvents. 

5.4.3 Stoichiometric ratio in extracted species formed with lanthanide and actinides 
ions 

Studies of metal ion separations using liquid-liquid and liquid-solid extraction systems and 
the evaluation of their experimental parameters—extraction percentage, distribution 
(coefficients) ratios, loading capacity and the stoichiometry of the extracted species among 
others— allow for gaining a complete physicochemical understanding of the extraction 
system and its applications.  

Long-lived radionuclides, actinides in particular, are the most hazardous components of 
nuclear waste. The recovery of these elements from waste mass, alone or combined with 
other elements like lanthanides before disposal or reprocessing, would significantly enhance 
the ecological safety and efficiency of the nuclear fuel cycle. Phosphorylated calixarenes 
offer numerous possibilities for selective complexation of metal ions and will likely be 
essential in the treatment of nuclear waste.  

Here, we focus on the Ln and An extracted species with phosphinoylated (phosphorylated) 
calixarenes from aqueous media to organic media. The usefulness of this type of calixarene 
for Ln/An separation with high efficiency was proved several years ago (Lumetta et al., 
2000). The stoichiometry of extracted species with a certain calixarene is not necessarily in 
agreement with that of its complex species. Furthermore, a functionalized calixarene with 
the same phosphinoylated arms in the lower rim or in the upper rim does not extract a 
species with the same stoichiometry (Arnaud-Neu et al., 2000; Karavan et al., 2010).  

Solvent can influence the conformational arrangement of the calixarene and thus the 
stabilization of certain complex species. It can also compete for metal ions, affecting the 
M:calixarene stoichiometric ratio. Experiments were conducted on the B6bL6 calixarene 
functionalized in the lower rim mentioned above (Ramírez et al., 2008) in a liquid-liquid 
extraction system of metal salt/1 M HNO3/3.5 M NaNO3-calixarene in chloroform. A 1:1 
stoichiometry was found for the Eu(3+), UO22+ and Th(4+) extracted species while the 
complexation study in acetonitrile demonstrated 1:1 and 1:2 complexes in the solution and 
solid state.  

Karavan et al. (2010) found that for liquid–liquid extraction from nitric acid to m-
nitrobenzotrifluoride uranyl extracted species were in a 1:2 stoichiometry using a pentamer 
functionalized on the lower rim while in methanol and in acetonitrile the uranyl complex 
species were in 1:1 stoichiometry. However, europium extracted species kept the same 
stoichiometry. In contrast, upper-rim functionalized calixarenes using the same extraction 
system formed 1:1 uranyl extracted species and europium in 1:1 and 1:2 stoichiometries. 
Thus, the size, conformation, choice of rim (upper or lower), and length and isomeric nature 
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of the aliphatic substituents, notwithstanding solvent effects, are all factors that define the 
stoichiometry of extracted species. 

6. Molecular modeling 

Jean Marie Lehn (Lehn, 1990) established that molecular recognition is key not only to 
biological macromolecules but also to macrocyclic complexation. Experimental results are 
sometimes not sufficient to elucidate how recognition occurs, which sites coordinate, how 
the stereochemical arrangement influences stabilization of the complex molecule, or why the 
substrate physicochemical properties drastically change after interaction with a certain 
macrocycle. Since suitable single crystals of macrocycle complexes are difficult to obtain, 
simulation of complexes with molecular modeling has become extremely useful. New 
molecular receptors can also be designed, built and optimized with the same software, 
although successful prediction depends on the molecule and the calculation approach used.  

Molecular modeling is mostly useful when the molecule is based on experimental data. It 
has to be used with a great care to avoid meaningless results. The more complicated the 
molecule, the less likely the model is to represent the real complex. Before 1999, only 
empirical calculations were used for calixarene complexes, but over the last decade, ab initio 
and semi-empirical calculations have been successfully attempted. 

Kunsági-Máté et al. (2004) used the HYPERCHEM Professional 7 and related quantum-
chemical calculations to elucidate the inclusion of C60 fullerene in the hexasulfonated 
calix[6]arene functionalized at the upper rim. The calculation showed that C60 lies deep in 
the cavity of the calixarene. 

Zielenkiewicz et al. (2005) used INSIGHT II to show that a phosphorylated calix[4]arene 
effectively bound for the amino acid isoleucine. Based on the calculation results for 1:1 and 
1:2 (isoleucine: calixarene) complexes, the inclusion of the isoleucine into the calixarene 
cavity stabilizes the macrocyclic skeleton in the regular cone conformation. Strong electrostatic 
interactions between the phosphoryl group of the calixarene and the positively charged amino 
group of the amino acid played an important role in the complexation process. 

Atwood et al. (2005) visualized purely size–shape considerations with X-SEED to determine 
whether two CH4 molecules could fit within each dimeric capsule. The calculation 
illustrated the capsules’ excellent size–shape compatibility. 

To understand the structural features of the 1:1 complex formed between an amide-linked 
lower rim 1,3-bis(2-picolyl)amine derivative of calix[4]arene and Cu2+, Joseph et al. (2009) 
calculated the complex using GAUSSIAN 03 and DFT calculations. The calculated structure 
for the Cu2+ complex exhibited a tetracoordinate geometry, where all four pyridyl moieties 
were involved in binding and the coordination of Cu2+ center was a highly distorted 
tetrahedral. 

Ding et al. (2011) calculated the most stable structures of the complex (the lowest energy 
was 0 kcal/mol) formed between tetrabutyl ether derivatives of p-sulfonatocalix[4]arene 
(SC4Bu) and the methiocarb pesticide using GAUSSIAN 03. The complexation was an 
“external” inclusion process, and hydrogen bonding between the methyl H atom of 
methiocarb and the sulfonate of SC4Bu facilitated the formation of this SC4Bu–methiocarb 
complex. 
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We have used molecular modeling in our current work with calixarenes and calixarene 
complexes. Structures have been built, and their minimum energies calculated, using the 
CAChe WorkSystem Pro 5.02 for Windows®. Free calixarenes (Ramírez et al., 2004;  
Ramírez et al., 2008; García-Sosa & Ramírez, 2010) and calixarenes complexed with organic 
substrates (García-Sosa & Ramírez, 2010) have been simulated by sequential application  
of Augmented MM3/CONFLEX/Augmented MM3/ MOPAC/PM5 or PM3/ 
MOPAC/PM5 or PM3/COSMO procedures.  

MOPAC/PM5 or PM3/COSMO procedures calculate the most stable molecules under 
aqueous solvent effects and the heat formation of the most stable molecule (given in kcal.mol-1).  

The calixarene complexes formed with lanthanide and actinide ions were calculated by 
sequential application of Augmented MM3/CONFLEX procedures (Ramírez et al., 2004; 
Ramírez et al., 2008). Augmented MM3 yielded the optimum structure, and CONFLEX 
yielded the most stable conformers (kcal.mol-1).  

Fig. 4 shows the modeled structure of the de-tert-butylated calix[6]arene fitted with six ether 
amide pendant arms, A6L6 (Fig. 4, left) and its europium complex in a 2:1 (metal: ligand) 
stoichiometry (Fig. 4, right). The modeling shows that the free calixarene is a ditopic ligand 
featuring two nonadentate coordination sites; each is built from three pendant arms and 
extends in opposite directions, one site above, and the other under the main ring. The 
modeled structure of the dimetallic complex is a stable asymmetric isomer with two nine-
coordinate metal ions.  

 

Fig. 4. Molecular modeling of A6L6 calixarene (left) and optimized geometry of the Eu (3+) 
2:1 complex with A6L6 (right), as determined by MM3 Augmented and Conflex CAChe 
procedures (Ramírez et al., 2004). 

Both Eu (3+) ions are bound to three bidentate arms and one monodentate triflate anion, but 
one of the metal ion completes its coordination sphere with two phenoxide oxygen atoms 
whereas the other uses two water molecules. These computational results are consistent 
with IR and luminescence data (Ramírez et al., 2004) and elucidate the luminescence 
behavior of the complex in solid and in solution. 
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7. Conclusions 

The aim of this chapter was to establish the relevance of stoichiometric studies in 
understanding complexes formed, either in solution or in the solid state, between calixarene 
receptors and organic or metal substrates. Spectroscopic techniques are highly useful in 
investigating the stoichiometry of calixarene complexes. Nevertheless, many stoichiometric 
studies require more than one technique, or one that affords thermodynamic parameters. 
Computational calculations have gained an important place in determining the 
stoichiometry of calixarene complexes. Visualizing the structural arrangement of a 
calixarene complex with a particular stoichiometry can help elucidate how the platform of a 
conformational functionalized calixarene at the upper or lower rim can drastically change 
the physical, chemical or physicochemical properties of the complexed substrate. Great care 
must be taken in experimentally determining stoichiometry and in correlating these ratios 
with molecular modeling to avoid incorrect conclusions. 

In this chapter we have focused our attention on investigations linking basic research to real 
problems, from pollution and water treatment, to nuclear waste treatment, fuel storage and 
luminescent materials. The presented examples were carefully chosen to provide sufficient 
knowledge of stoichiometric studies from the experimental, theoretical and applications 
point of view. Furthermore, these examples afford an understanding of the physical, 
chemical and stereochemical parameters that are responsible for the stoichiometry and 
structure of an organic calixarene complex or of a metal calixarene complex.  

The relevancy of stoichiometry and structure of the discussed examples for their future 
applications is undoubted. 

The increasingly interest in calixarenes resides in their versatile intrinsic properties allowing 
them to be functionalized and to envision their potential applications in different fields of 
science and technology. Particular attention has to be paid to the use of functionalized 
calixarenes in biomedical studies, particularly on the stoichiometry and structure of organic 
and/ or metal complexes with potential biomedical applications.  
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