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1. Introduction 

From a rheological point of view, nematic liquid crystals are interesting because they exhibit 
unique flow properties. Although some of these properties have been known for a long 
time, they continue to attract the attention and interest of the scientists. As a result, a large 
amount of theoretical, numerical, and experimental work has been produced in recent years. 
In particular, a number of publications treat the behavior of nematic liquid crystals in shear 
and Poiseuille flow fields (Denniston, Orlandini, and Yeomans 2001, Vicente Alonso, 
Wheeler, and Sluckin 2003, Marenduzzo, Orlandini, and Yeomans 2003, Marenduzzo, 
Orlandini, and Yeomans 2004, Guillen and Mendoza 2007, Medina and Mendoza 2008, 
Mendoza, Corella-Madueño, and Reyes 2008, Reyes, Corella-Madueño, and Mendoza 2008, 
Zakharov and Vakulenko, 2010). 

On the other hand, it has been shown that the influence of an electric field strongly modifies 
the rheology of liquid crystals. This has considerable interest due to its possible application 
in microsystems since homogeneous fluids, like liquid crystals, present some advantages 
over conventional electrorheological fluids. This is mainly due to the fact that liquid crystals, 
in contrast to other active fluids, do not contain suspended particles, which is of particular 
importance for microsystems since small channels are easily obstructed by suspended 
particles. Also, they prevent agglomeration, sedimentation and abrasion problems (de 
Volder, Yoshida, Yokota, and Reynaerts 2006). 

In this chapter we review recent theoretical results on the rheology of systems consisting of 
a flow-aligning nematic contained in cells and capillaries under a variety of different flow 
conditions and under the action of applied electric fields. In particular, we revise steady-
state flows and the behavior of viscometric quantities like the local and apparent viscosities 
and the first normal stress differences. Among the important issues that were recently 
studied by us and by others is the possibility of multiple steady state solutions due to the 
competition between shear flow and electric field that give rise to a complex non-Newtonian 
response with regions of shear thickening and thinning. From these results one can 
construct a phase diagram in the electric field vs. shear flow space that displays regions for 
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which the system may have different steady-state configurations of the director’s field. The 
selection of a given steady-state configuration depends on the history of the sample. 
Interestingly, as a consequence of the hysteresis of the system, this response may be 
asymmetric with respect to the direction of the shear flow. Possible applications of these 
phenomena are also discussed together with future research. 

2. Fundamentals  

Liquid crystal systems (De Gennes P.G. and Prost J. 1993) are well defined and specific 
phases of matter (mesophases) characterized by a noticeable anisotropy in many of their 
physical properties as solid crystals do, although they are able to flow. Liquid crystal phases 
that undergo a phase transition as a function of temperature (thermotropics), exist in 
relatively small intervals of temperature lying between solid crystals and isotropic liquids. 

Liquid crystals are synthesized from organic molecules, some of which are elongated and 
uniaxial, so they can be represented as rigid rods; others are formed by disc-like molecules 
(Chandrasekhar S. 1992). This molecular anisotropy in shape is manifested macroscopically 
through the anisotropy of the mechanical, optical and transport properties of these substances. 

Liquid crystals are classified by symmetry. As it is well known, isotropic liquids with 
spherically symmetric molecules are invariant under rotational, O(3), and translational, T(3), 
transformations. Thus, the group of symmetries of an isotropic liquid is O(3)×T(3). 
However, by decreasing the temperature of these liquids, the translational symmetry T(3) is 
usually broken corresponding to the isotropic liquid-solid transition. In contrast, for a liquid 
formed by anisotropic molecules, by diminishing the temperature the rotational symmetry 
is broken O(3) instead, which leads to the appearance of a liquid crystal. The mesophase for 
which only the rotational invariance has been broken is called nematic. The centers of mass 
of the molecules of a nematic have arbitrary positions whereas the principal axes of their 
molecules are spontaneously oriented along a preferred direction n, as shown in Fig. 1. If the 
temperature decreases even more, the symmetry T(3) is also partially broken. The 
mesophases exhibiting the translational symmetry T(2) are called smectics (see Fig. 1), and 
those having the symmetry T(1) are called columnar phases (not shown). 

The elastic properties of liquid crystals determine their behavior in the presence of external 

fields and play an essential role in characterizing many of the electro-optical and magneto-

optical effects occurring in them. In this work we shall adopt a phenomenological approach 

to describe these elastic and viscous properties. A liquid crystal will be considered as a 

continuum, so that its detailed molecular structure will be ignored. This approach is feasible 

because all the deformations observed experimentally have a minimum spatial extent that 

greatly exceed the dimensions of a nematic molecule. The macroscopic description of the 

Van der Waals forces between the liquid crystal molecules is given in terms of the following 

formula (Frank F. C. 1958) for the elastic contribution to the free-energy density: 

 ( )2 2 2
11 22 33

1
ˆ ˆ ˆ ˆ ˆ( ) ( )

2
el

V

F dV K n K n n K n n = ∇ ⋅ + ⋅∇ × + ⋅∇ ×  . (1) 

Here the unit vector n is the director, the elastic moduli KΌΌ, K΍΍, and KΎΎ describe, 

respectively, transverse bending (splay), torsion (twist), and longitudinal bending (bend) 

www.intechopen.com



Influence of Electric Fields and Boundary 
Conditions on the Flow Properties of Nematic-Filled Cells and Capillaries 

 

297 

deformations. The free energy of the LC cylinder has, in addition to the above elastic part, also 

an electromagnetic part due to the applied electrostatic field. As we have already discussed, 

the first contribution is given by Eq. (1). The electromagnetic free energy density, in MKS units, 

 * *1
E

2
em v

F dV D B H = ⋅ + ⋅ 
   

      (2) 

where the displacement field D and the magnetic flux vector B are related to the electric 
field E and magnetic field H by means of the constitutive relations 

 0 0, ,D E B Hε ε µ µ= ⋅ = ⋅
   

   (4) 

characterized specifically by dielectric and magnetic tensors (DeGennes P. G. and Prost. J. 
1993) 

 
ij ij a i j

ij ij

n nε ε δ ε

µ δ
⊥= +

=
 (5) 

Here ijδ  is the Kronecker delta, aε ε ε⊥= −  is the dielectric anisotropy of the LC, ε⊥ and ε  

represent the dielectric constants perpendicular and parallel to the director. Also, ǆ΋ and Ǎ΋ 
are the dielectric permittivity and magnetic permeability constants in vacuum. 

 

Fig. 1. Schematics of thermotropic liquid crystal phases in between the isotropic fluid and 
the crystal, arranged from left to right in order of increasing order and decreasing 
temperature. 

3. Nematodynamics 

The hydrodynamic description of complex condensed matter systems like superfluids, 
ferromagnets, polymeric solutions, etc. has been possible thanks to the deep understanding 
of the role played by the symmetries and thermodynamic properties of the system 
(Kadanoff and Martin P.C. 1963, Hohenberg and Matin P.C., Kalatnikov I. M. 1965). The 
extension of this linear hydrodynamic to liquid crystals has been started in the seventies, 
(Parodi O. 1970, Forster D. 1975), and in recent years it has been generalized to the nonlinear 
case and to more complex liquid crystal phases (Brand H. R. &  Pleiner H. J. 1980). 
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The key idea of the hydrodynamic formalism is based on the observation that for most 
complex condensed matter systems in the limit of very large temporal and spatial scales, 
only a very small number of slow processes, compared with the enormous number of 
microscopic degrees of freedom, survives. The evolution of these processes is described by 
the evolution of the corresponding hydrodynamic variables that describe cooperative 
phenomena that are not to be relaxed in a finite time for a spatially homogeneous system. 
That is to say, the hydrodynamic variables are such that their Fourier transform satisfy the 
relation: ω(k→0)→0. Moreover the hydrodynamic variables can be identified uniquely by 
utilizing conservation laws (global symmetries) and symmetry breaking assumptions, for 
spatio-temporal scales such that the microscopic degrees of freedom have already been 
relaxed. For these scales, the description of the systems is exact. When the microscopic 
degrees of freedom reach thermodynamic equilibrium (local equilibrium) one can use 
thermodynamics to follow the evolution of the slow variables. Thus, one has to consider a 
thermodynamic potential, for instance, the internal energy as a function of the system 
variables (Pleiner H. 1986, Pleiner H. 1988). In a second step we obtain the dynamics of the 
system by expressing the currents or thermodynamic fluxes in terms of their corresponding 
thermodynamic forces, which are the gradients of the conjugated thermodynamic variables, 
and performing a series expansion of the fluxes in powers of the forces. This expansion will 
be expressed in terms of dynamical phenomenological coefficients (transport coefficients) 
which can be determined only from an experiment or a microscopic theory. Then, we 
separate the fluxes in those for which the entropy is conserved (reversible part) and those 
that make the entropy to increase (irreversible part) and use classical thermodynamic laws 
to find the evolution equations for the hydrodynamic variables. After obtaining these 
equations for the liquid crystal, it is possible to include the effects of external fields like 
electromagnetic fields, stresses, thermal gradients, etc. 

In what follows we sketch the steps of this theoretical formalism for nematics. The first class 
of hydrodynamic variables is associated with local conservation laws which express the fact 
that quantities like mass, momentum or energy cannot be locally destroyed or created and 

can only be transported. If ρ(r,t), g=ρv(r,t) and ǆ(r,t), where v is the hydrodynamic velocity, 
denote respectively, the density of these quantities, the corresponding conservation 
equations are ((Landau L.D. and Lifshitz E. 1964). 

 / 0i id dt vρ ρ+ ∇ =  (6) 

 / / 0i j ijdv dt σ ρ+ ∇ =  (7) 

 ( )/ / / 0e
i id e dt jρ ρ+ ∇ = .  (8) 

Here / / i id dt t v= ∂ ∂ + ∇  denotes the hydrodynamic velocity, ijσ is the nematic's stress and 
e
ij  is the energy flow. 

When a phase transition to the liquid crystal state occurs after reducing the temperature, the 

rotational symmetry O(3) is broken spontaneously and the number of hydrodynamic variables 

increase. Any rotation around an axis different from n


 transforms the system to a different 

and distinguishable state form that without rotation. This rotational symmetry broken is called 

spontaneous since the energy is a rotational invariant and there is no energy that favors one 
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orientation of n


 with respect to any other. This is equivalent to say that the state of the system 

becomes infinitely degenerate. Under these conditions, one soft variation of the degeneracy 

parameter is related to a slow relaxation of the system that increases as q→0. This type of 

behavior is the basic content of the Goldstone Theorem (Forster D. 1975). Therefore, the 

degeneracy parameter is related to the order parameter of the liquid crystal and adopts 

different structures for different mesophases. For a nematic phase the order parameter has the 

following form ( / 3),ij i j ijQ S n n δ= −  where S is the degree of order, i. e., S=0 for the isotropic 

phase and S=1 for a nematic phase having the molecules completely aligned. In agreement 

with this statement the dynamics of ijQ  is determined by that of n. In summary, the 

macroscopic state of a nematic can be described by means of two scalar variables that can be 

chosen as ρ(r,t), (r, )e t , one vectorial variable, g=ρv(r,t) and one tensorial variable ijQ , that can 

be selected, for instance, as the anisotropic part of the dielectric tensor. 

Since n


 is related to a conservation law, its balance equation is a dynamical equation of the 

form 

 / 0j j i it v n Y ∂ ∂ + ∇ + =     (9) 

where iY  is not a current, since its surface integral is not a flux, but a quasi-current. This 

quantity must be orthogonal to n to fulfill the nematic symmetry n→- n; however, there are 

other contributions to iY  which does not come from the symmetries but from 

thermodynamic requirements. 

If a specific physical situation is given, the state of the system can be described in terms of 

an appropriate thermodynamic potential. This can be chosen, for example, as the total free 

energy E, (Callen H. B. 1985) 

 ( , , , , , )j i iE eV E V V gV V n Vn Vρ ρ ρ σ= = ∇   (10) 

where V denotes the volume of the system and σ is the entropy per unit of volume. From 
this assumption and using Euler’s relation, we can derive the Gibbs’ expression 

 ,ij j i i ide d Td v dg d n h dnµ ρ σ= + + ⋅ + Φ ∇ +
 

  (11) 

and the Gibbs-Duhem’s relation 

 p e T v gµρ σ= − + + + ⋅
 

. (12) 

Here Ǎ is the chemical potential, Φij y hi are called the molecular fields, which are defined as 
the partial derivatives of the thermodynamic potential with respect to the corresponding 
conjugated variable. Since in equilibrium the state variables are constants, any 
inhomogeneous distribution of these variables takes the system out of equilibrium. For this 
reason the gradients of these quantities are taken as thermodynamic forces.  Hence, the 
presence of ∇Ǎ, ∇T, j in∇  and ∇₁Φij give rise to irreversible processes in the system. The 

dynamical part of the hydrodynamic equations is obtained by expressing the currents σij, jie, 
and Yi in terms of the thermodynamic variables T, Ǎ, vi, and Φij. If additionally we separate 
in these expressions the reversible part, which does not generate entropy increase and it is 
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invariant under temporal inversion, from the irreversible  part, which increases the entropy 
and is not invariant under the transformation t→-t, we obtain the following expressions for 
the fluxes (Landau L. D. and Lifshitz E. 1986, Plainer H. 1988) 

 /2R D
ij ij ij ij kj i k kji k ijkm m kp n h vσ σ σ δ λ ν= + = + Φ ∇ − − ∇   (13) 

 1/ 2 /R D
i i i kji j k ik kY Y Y v hλ δ γ⊥= + = − ∇ +   (14) 

 e D D
i i j ijj Tj vσ σ= + .  (15)

 

In these equations the superscript indexes R and D denote, respectively, the reversible and 
irreversible or dissipative parts, and 

 il ilmn n mK nΦ = ∇   (16) 

where 

 1 2 3ilmn il mn p q pli i m lmK K K n n K n nδ δ ε δ⊥ ⊥ ⊥= + + .  (17) 

Here KΌ, K΍ y KΎ are the elastic constants of the nematic and ǆijk is the totally antisymmetric 

tensor of Levy-Civitta. The projector tensor is lm ik i kn nδ δ⊥ = − and ǌkji can be expressed as 

 ( 1) ( 1) .kji kj i ki jn nλ λ δ λ δ⊥ ⊥= − + +  (18) 

In this expression ǌ= ǎΌ/ǎ΍ , is the reversible parameter, also called flux alignment 

parameter, being ǎΌ and ǎ΍ two of the five independent viscosities of the nematic. The 

molecular field hk, that we have already defined as hk≡hi′- ∇₁Φij , turns out to be explicitly 

 
1

( / / ) .
2

k kjnl j l n kq q pjkl q qjkl l k j ph K n n K n K n nδ ⊥= ∇ ∇ + ∂ ∂ − ∂ ∂ ∇ ∇   (19) 

Finally, the viscous stress tensor ǎijkl contains five independent viscosities for the nematic, ǎi, 

i=1,2,...,5 

 

2 1 2 3

3 2 4 2

5 4 2

( ) 2( 2 )

( )( ) ( )

( )( )

ijkl jl ik il jk i j k l

j l ik j k il i k jl i l jk ij kl

ij k l kl i j

n n n n

n n n n n n n n

n n n n

ν ν δ δ δ δ ν ν ν

ν ν δ δ δ δ ν ν δ δ

ν ν ν δ δ

= + + + − +

− + + + + −

+ + +

. (20) 

It should be mentioned that a different choice for this tensor has been done in the ELP 

formulation (Ericksen, J. L. 1960, Leslie, F. M. 1966, Parodi, 0. 1970). The complete stress 

tensor for this formulation is given by Eq.(39) which for this case replaces Eq.(13). 

The second law of thermodynamics establishes that any irreversible process  that occurs in the 

system should increase the entropy. Thus, the entropy obeys the following balance equation 

 ( )/ /R D
i i i it v j j R Tσ σσ σ∂ ∂ + ∇ + + =  (21) 
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where R is the dissipation function for irreversible processes. This quantity can be interpreted 
as the energy per unit of volume dissipated by the microscopic degrees of freedom and 
divided by the temperature (R/T), represents the entropy production of the nematic. If, as we 
did previously, we relate Eq.(21) with Eqs. (6), (7), (8) and (9), by using the Gibbs’ expression 
(11) and the expressions (13)-(21), we obtain an explicit formula for R, that is 

 

1

( )

1 1 1
,

2 2 2

D D D D D D
i i ij j i i ij j i i ij j i i ij j

i ij j ijkl j i l k ij i j

R j T v h Y j T v h Y

h h v v T T

σο δ σ δ

δ ν κ
γ

⊥ ⊥

⊥

= −∇ − ∇ + − ∇ − ∇ +

= + ∇ ∇ + ∇ ∇
  (22) 

where γΌ⁻¹ is the rotational viscosity and the tensor ǋij describes the heat conduction 
(thermal conductivity). The second law of thermodynamics requires R to be a definite 
positive form, which in turns implies that every single coefficient of the previous expression 
is positive. Notice that Eq.(22) implies as well that the dissipative currents and quasi-
currents are given by the partial derivatives of the dissipation function, that is 

 /( ) ,D
i i ij jj R T Tσ κ= ∂ ∂∇ = ∇     (23) 

 / ( ) ,D
ij j i ijkl l kR v vσ ν= ∂ ∂ ∇ = ∇  (24)

 

 1/ /D
k k ik iY R h hδ γ⊥= ∂ ∂ = . (25)

 

In summary equations (6), (7), (8), (9) and (22) constitute a complete set to describe the 
irreversible dynamics of a low molecular weight nematic (thermotropic) in absence of 
external fields. 

4. Constitutive equations 

It is usual that applied external fields like electric and magnetic fields, gravity, temperature 

gradients, pressure and concentration, shear and vortex flows carry out the nematic to a 

new equilibrium state so that these fields must be included in the hydrodynamic equations. 

It is well known that for any polarizable medium an electric field E induces a polarization P 

=D-ǆ΋E, where D is the displacement electric vector. Now, in a nematic the molecular 

dipolar moments are oriented approximately parallel with respect to the long axis of the 

molecules. Thus, the induced polarization gives rise to a director orientation. In contrast the 

influence of the magnetic field in a nematic is much weaker and in general, the induced 

magnetization can be neglected. A very well known result based on conventional 

thermodynamic arguments establishes that the work associated to an electric field E =-∇Φ, is 

given by (1 / 2)eldw E D= − ⋅
 

, 
which should be added to the Gibbs’ expression (11) and to the 

Gibbs-Duhem’s relation (12). By modifying these expressions and using a procedure 

completely analogous to the one we followed in the last section, it is possible to show that in 

the presence of an electric field Eq. (7) transforms into 

 / /i j ij E i j j idv dt E P Eσ ρ ρ+ ∇ = + ∇  (26) 
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where the charge density is given by ρE= ǆ΋div D. To linear order in the thermodynamic 
forces, the expression for σij has to include in addition the electric contributions, so that we 
replace Eq. (13)  by the expression 

 (1 / 2)R D
ij i j i j ij lj i l kji k ijkl l kp n h vσ σ σ δ λ ν= + = + Φ ∇ − − ∇   (27) 

with 2 / 2p p Eε= − . Analogously, the currents (14), now are given by 

 1(1 / 2) (1 / )R D e
i i i kji j k ik k ijk j kY Y Y v h Eλ γ δ ζ⊥= + = − ∇ + − ∇  (28)

 

 ( ) ,e E E E
i ij j ij j j kjl kj E T hσ κ ζ= + ∇ + ∇  (29) 

 where σijE is the electric conductivity, and in consequence the entropy current is 

 E
i ij j ij jj T Eσ κ κ= − ∇ −  .  (30) 

Here the material tensors of second rank, ǋijE and σijE have uniaxial form and each one 
should be expressed in terms of two dissipative transport coefficient, that is, 

 ij ij i jn nα α δ α⊥
⊥= +  . (31)

 

On the other hand, the third order tensor ǇkjiE is irreversible and contains a dynamical 

coefficient, the flexoelectric coefficient ǇE, 

 ( ).E E
ijk ij k ik jn nζ ζ δ δ⊥ ⊥= +

  
(32) 

Following the same steps we used to obtain Eq.(22), the dissipation function R show in this 
case additional terms which involve the electric field, 

 
2

.

i ij j ijkl j i l k ij i j

E E E
ij i j ij i j ijk i j k

R h h v v T T

E E E T h E

δ ν κ

σ κ ζ

⊥= + ∇ ∇ + ∇ ∇

+ + ∇ − ∇
 (33) 

Most of the parameters involved in the hydrodynamic and electrodynamic equations for a 

nematic have been measured for different substances that show a uniaxial nematic phase. 

Among these one can mention the elastic constants (Blinov L. M. and Chigrinov V. G. 1994); 

specific heat, the flux alignment parameter ǌ and the viscosities ǎi, i=1,2...5, the inverse of 

the diffusion constant γΌ, the thermal conductivity (Ahlers, Cannell, Berge and Sakurai 

1994), and the electric conductivity σijE. 

Finally the dynamical equations for a nematic in an isothermal process can be obtained by 

inserting Eqs. (27) and (28) in Eqs. (7) and (9). This leads to 

 / (1 / ) 0i j ij lj l i kji k ijkl l kdv dt p n h vρ δ λ ν + ∇ + Φ ∇ − − ∇ =   (34) 

 / (1 / ) 0i ik k kji j kdn dt h vγ δ λ⊥+ − ∇ =
 
 (35)
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5. Apparent viscosity 

The viscosity function or apparent viscosity connects the force per unit area and the 
magnitude of the local shear (Carlsson T. 1984). It depends on the orientation of the director 
through the expression 

 2 2 2 2
1 5 2 6 3 4( ) (2 sin cos ( )sin ( )cos ) / 2,η θ α θ θ α α θ α α θ α= + − + + +   (36) 

where αΌ, α΍,αΎ,αΐ and αΑ are the Leslie coefficients (Parodi O. 1970). Since the orientation 
angle ǉ is given by Eq. (35), from the above equation it follows that the dependence of ǈ on ǉ 
indicates that the system is non-Newtonian in its behavior, in the sense that ǈ is strongly 
dependent on the driving force. If we integrate the result over the cross section area of the 
flow we obtain the averaged apparent viscosity 

 (1 / ) ( )

t

t

A

A dAη η θ=   (37) 

where At is the total area of the cross section. 

6. First normal stress difference 

One of the distinctive phenomena observed in the flow of liquid crystal polymers in the 
nematic state is that of a negative steady-state first normal stress difference, NΌ, in shear 
flow over a range of shear rates. NΌ is zero or positive for isotropic fluids at rest over all 
shear rates, which means that the force developed due to the normal stresses, tends to push 
apart the two surfaces between which the material is sheared. In liquid crystalline solutions, 
positive normal stress differences are found at low and high shear rates, with negative 
values occurring at intermediate shear rates (Kiss G. and Porter R. S. 1978). 

On the other hand, Marrucci et al (Marrucci G. and Maffettone 1989) have solved a two 
dimensional version of the Doi model for nematics  (Doi M. and Edwards S.. F. 1986), in 
which the molecules are assumed to lie in the plane perpendicular to the vorticity axis, that 
is, in the plane parallel to both, the direction of the velocity and the direction of the velocity 
gradient. Despite this simplification, the predicted range of shear rates over which NΌ is 
negative, is in excellent agreement with observations. This result opens up the possibility 
that negative first normal stress differences may be predicted in a two dimensional flow.  

We shall now examine the effects produced by the stresses generated during the 
reorientation process by calculating the viscometric functions that relate the shear and 
normal stress differences. For a planar geometry and using the convention in (Bird R. et al 
1971) the first normal stress difference is defined by 

 1 ,xx zzN σ σ= −    (38) 

where σij are the components of the stress tensor of the nematic used by De Gennes 
(DeGennes J. P. and Prost J. 1993). 

 
1 2 3

4 5 6 .

ij i j i j j i

ij i j i j

n n n n A n n

A n n A n n A

µ ρ µρ

µ µ µ µ

σ α α α

α α α

= + Ω + Ω +

+ +
 (39)
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Here Aij≡(1/2)(∂vi/∂xj+∂vi/∂xj) is the symmetric part of the velocity gradient and Ω≡dn/dt-

(1/2)∇×v×n represents the rate of change of the director with respect to the background 

fluid. The αi for i=1,..6, denote the Leslie coefficients of the nematic. 

The integration of the first normal stress difference, Eq.(38) over the whole cell and along the 
velocity gradient direction renders the net force between the plates as a function of the 
Reynolds number, which is proportional to N 

 1(1 / ) ( )

t

t

A

f A N dAθ=   (40) 

A positive force exerted by the fluid motion tends to push the plates apart, or otherwise, if 
the force is negative, the fluid tends to pull the plates close together.  

7. Nematic cells under shear flow 

In this section we study the flow properties of nematic-filled cells under shear flow. The 

cell geometry is important because many micro-fluidic devices are designed with channel-

like shapes and its mathematical treatment is simpler as compared to the case of 

capillaries. 

Liquid crystals and their electrorheological properties under flows with a constant shear 
rate over the height of the channel have been treated in a number of papers. However, in all 
of these papers the studies have focused on situations in which the anchoring was the same 
at all boundaries. Only recently, a systematic study of the influence of different boundary 
conditions on the shear flow was treated together with the influence of an applied electric 
field. 

7.1 Hybrid-aligned nematic cell 

First we are going to present the case of a hybrid-aligned nematic (HAN) cell since it is a 
common geometry used in devices (Guillen and Mendoza 2007). In this geometry, the 
director is aligned perpendicularly (also called homeotropic alignment) to one of the 
boundaries of the confining cell while it is parallel (also called homogeneous alignment) to 
the opposite boundary as shown in Fig. 2.  

The separation between the plates l is small compared to the transverse dimensions L of the 
cell, which is under the action of a perpendicular electric field E. The director’s 
configuration is given by 

  (41)
 

where θ(z) is the angle with respect to the z axis. We assume strong anchoring conditions at 

the plates of the cell 

 
  (42) 

As shear flow is applied as depicted in Fig. 2 
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  (43) 

which satisfies the nonslip boundary conditions 

   (44) 

v
0

-v
0
 

l E 

z = -l/2 

z = l/2 

L 

x 

z θ n 

 

Fig. 2. Schematics of a HAN cell subjected to a normal electric field and a shear stress. 
Adapted from Guillen and Mendoza 2007. 

Within the framework of the Ericksen, Leslie, and Parodi theory one can obtain the torque 

acting on a sheared molecule, 

   (45) 

A second torque that acts on the LC molecules is due to the electric field 

  (46)
 

An elastic torque can be derived form the Frank-Oseen elastic energy to give 

  (47)

 

Finally, the rotational inertia and viscous damping gives the following contribution to the 

torques 

 
 
 (48)

 

All the above contributions result in the differential equation for the director´s orientation 

that describes the equilibrium of torques 
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  (49)

 

Since we are only interested in the final stationary state, the above equation reduces to 

(Guillen and Mendoza 2007) 

  (50)
 

where we have used the linear momentum conservation equation 

  (51)
 

with η(θ) the position dependent viscosity of the liquid crystal given by Eq. (36), and we 

have assumed the equal elastic constant approximation. Also, we have defined a 

dimensionless field strength 

 
 
 (52)

 

a dimensionless shear rate 

 
 
 (53) 

 

and the normalized variable ζ≡z/l. 

Equation (50) can be solved numerically using the “shooting” method to obtain the 
stationary configuration of the nematic’s director. 

Explicit numerical results are given for the particular case of the flow-aligning liquid crystal 

4’-n-pentyl-4-cyanobiphenyl (5CB) with the following parameters T = 10 °C with TIN = 35 °C,  

κ = 1.316, K1 = 1.2_10−11 N, 1α = −0.0060 Pa s, 2α  = −0.0812 Pa s, 3α = −0.0036 Pa s, 4α  = 

0.0652 Pa s, 5α   = 0.0640 Pa s, 6α = −0.0208 Pa s, 1γ = 0.0777 Pa s, 2γ  = −0.0848 Pa s. 

In Fig. 3 we show the orientational profile for various values of q and m. We observe a 

tendency of the molecules to align with the direction of the electric field. In contrast, θ 
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increases as the value of m increases, for m>0, which means that the molecules tend to be 

aligned with the direction of the flow. On the other hand, for m<0, a remarkable difference 

is observed. In this case the cell shows two different regions, in the lower part of the cell, 

where the effect of the flow dominates, the molecules are tilted to the left whilst on the 

upper part, where the anchoring dominates, they are tilted to the right. 

 

 

Fig. 3. Nematic’s orientation θ as function of its position in the cell, ζ. Adapted from Guillen 
and Mendoza 2007. 

The velocity profiles can be obtained from Eq. (51) and are shown in Fig. 4. Note the 

different behavior between a positive and a negative flow. 

The position dependent viscosity can be calculated from Eq. (36) and it is shown in Fig. 5. It 

is maximum at the lower plate where the molecules are perpendicular to the direction of 

flow and minimum at the upper plate where the molecules are parallel to the direction of 

the flow. At intermediate positions the viscosity takes intermediate values. 
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Fig. 4. Velocity profiles. Adapted from Guillen and Mendoza 2007. 
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Fig. 5. Local viscosity for different values of the electric field and the shear flow. Adapted 
from Guillen and Mendoza 2007. 

The averaged apparent viscosity [Eq. (37)] is depicted in Fig. 6. We observe a moderate 
electrorheological effect and an interesting non-Newtonian behavior with alternate regions 
of shear thickening (shaded region) and thinning. 

Finally, the first normal stress difference 

   (54)
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is plotted in Fig. 7 and the corresponding averaged value is shown in Fig. 8 
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Fig. 6. Averaged apparent viscosity. Adapted from Guillen and Mendoza 2007.  

  

Fig. 7. First normal stress difference. Adapted from Guillen and Mendoza 2007. 

 

Fig. 8. Averaged first normal stress difference. Adapted from Guillen and Mendoza 2007. 

7.2 Homogeneous nematic cell 

In this subsection we study the flow of a homogeneous nematic cell as depicted in Fig. 9. 

The only difference of this cell as compared to the HAN cell is that here the alignment is 
homogeneous at both plates. At first sight one may think that this small difference may only 
produce slight changes in the rheological behavior of the cell. However, this is not the case 
and a completely different behavior arises. The most striking feature is the appearance of 
multiple steady-state configurations for certain combinations of the applied electric field 
and shear flow (Medina and Mendoza 2008). 
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Fig. 9. Schematics of a homogeneous cell subjected to a normal electric field and a shear 
stress. Adapted from Medina and Mendoza 2008. 

Using again the theory of Ericksen, Leslie, and Parodi together with the momentum 
conservation we obtain the differential equations that govern the steady state of the system 

 

 

 (55)

 

Here αi are the Leslie viscosities and κ≡K3/K1, with the homogeneous 

 
 
 (56)

 

and non-slip boundary conditions. 

The stationary configuration of the nematic’s director can be found by solving Eq. (55) 
numerically using the “shooting” method. Results are presented for 5CB as before. 

In Fig. 10 we show the nematic’s configuration for different values of the applied electric field, 
q, without flow (a) and with flow (b). In this last case two sets of solutions of Eq. (55) are 
shown. 

 

Fig. 10. Nematic’s configuration for (a) m=0 and (b) m=20. In the latter case two solutions 

are shown, for the second set of solutions we plot 180º - θ. Adapted from Medina and 
Mendoza 2008. 
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In Fig. 11 we show the nematic’s configuration for q=2 and different values of the shear 
flow. The case m=5 lies in a region where exist only one solution of Eq. (55) while the case 
m=10 lies in the region where Eq. (55) accepts multiple solutions. A phase diagram in the q-
|m| space is also shown in Fig. 11 that separates the region with only one solution from the 
region with multiple solutions. In the lower right panel we sketch the steady-state nematic’s 
configuration for these cases. The selection of one of the configurations over the other 
depends on the history of the sample as exemplified in Fig. 12. In this figure, we have 
recasted the phase diagram drawing the positive and negative parts of the m-axis and 
considered two different processes depicted by the arrows in the phase diagram. The two 
processes start at zero applied electric field, but with opposite starting shear flows (points A 
and A’ in the diagram). Then, following the processes depicted by the arrows in the phase 
diagram they arrive to the same final q, m pair with different configurations (point B’). 

 

Fig. 11. Left: Nematic’s configuration. Right up: Phase diagram showing the region (blue) 
with unique steady-state solutions and a region (yellow) with multiple solutions. Right 
down: Sketch of the configurations. Adapted from Medina and Mendoza 2008. 

 

Fig. 12. Sketch of two possible trajectories in the phase diagram that gives rise to two 
different steady states for a given pair q and m (point B’). Adapted from Medina and 
Mendoza 2008. 

In Fig. 13 we show the averaged viscosity as function of m for the trajectory starting at point 

A in Fig. 12. We observe an interesting non-Newtonian behavior with alternate regions of 

shear thickening and thinning. The second trajectory (the one starting at A’ in Fig. 12) would 

produce the same curves for the viscosity but interchanging m with –m. A moderate 

electrorheological effect is also evident in this figure. 
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Fig. 13. Averaged apparent viscosity as a function of m showing regions of shear thickening 
and shear thinning. Adapted from Medina and Mendoza 2008. 

In summary, we have shown that nematic cells are very sensitive to the boundary conditions 
at the plates of the cell. A HAN cell and a homogeneous cell behave in a completely different 
way, the homogeneous cell showing regions of multiple steady-state configurations that give 
rise to a history dependent rheological behavior that is absent in the HAN case. Both cases 
show complex non-Newtonian behavior with regions of shear thickening and thinning. 
Homeotropic cells and weak anchoring conditions remain to explore. 

8. Nematic capillaries 

In this section we study the flow properties of nematic-filled capillaries under the action of 
an electric field for two different flow conditions. In first place we treat the case of capillaries 
subjected to a pressure gradient and in second place we consider the case of a Couette flow. 

8.1 Hybrid nematic capillary under Poiseuille flow 

We consider a capillary consisting of two coaxial cylinders whose core is filled with a 

nematic liquid crystal subjected to the simultaneous action of both a pressure gradient 

applied parallel to the axis of the cylinders (Poiseuille flow) and a radial low frequency 

electric field as depicted in Fig. 14 (Mendoza, Corella-Madueño, and Reyes 2008). 

 

Fig. 14. Schematics of a nematic liquid crystal confined by two coaxial cylinders and 
subjected to a radial electric field and a pressure gradient. Adapted from Mendoza, Corella-
Madueño, and Reyes 2008. 
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The nematic’s director in cylindrical coordinates can be written as 

  (57) 

with the hybrid hard anchoring conditions 

 
 
 (58)

 

The constant pressure drop along the axis of the cylinders produces a flow profile given by 

   (59)
 

with the non slip boundary conditions 

  (60)
 

The nematodynamic equations adopt a more involved look, as compared to the case of the 
cells. The reader can find the appropriate expressions in (Mendoza, Corella, Reyes 2008). 
Here we just present the relevant results using as in the previous sections a 5CB nematic 
liquid crystal.  

In Fig. 15 we show the nematic’s configuration as function of x ≡ r/R2, parametrized with q, the 

ratio of the electric and elastic energies, and Λ, the ratio of the hydrodynamic and elastic 
energies (Mendoza, Corella-Madueño, Reyes 2008). The undistorted state corresponding to Λ = 
0 and q = 0 is similar to the escaped configuration. For q = 50,  is much more aligned with the 
radial direction than for q = 0. This is so because the director tends to be parallel to the electric 
field. For positive Λ > 0, corresponding to negative velocity,  tends to be axially aligned, 
whereas for negative Λ < 0 the trend is the opposite. In contrast, for q = 50 the influence of the 
pressure gradient is influenced by the electric field for regions near the inner cylinder. 

 

Fig. 15. Nematic’s configuration θ as a function of the position x ≡ r/R2 for 5CB and 
R1/R2=0.5. Adapted from Mendoza, Corella-Madueño, and Reyes 2008. 

In Fig. 16 we show a typical velocity profile for a given value of the electric field and 

different values of Λ. This figure exhibits a clear difference in the magnitude of the velocity 

between forward and backward flows, which is a consequence of the asymmetry of the 

undistorted director’s configuration (so called escaped configuration).  
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Fig. 16. Velocity profiles for a given q, and different values of Λ. 

Moreover, the extreme of the curves, representing a vanishing shear stress, are closer to the 

inner cylinder for all the curves, with no significant dependence on the value of Λ. This 

behavior is different from a Newtonian fluid for which the maximum is approximately at 

the middle of the distance between both cylinders. 

Fig. 17 presents the averaged apparent viscosity for this configuration. Note the non-
Newtonian behavior of the system and the non-symmetric response with respect to the 
direction of the flow. In particular, in Fig. 17b we observe that for a given value of the 

electric field and for the range of flow considered the viscosity decreases as Λ increases. This 

means that for backward flow (Λ>0) the viscosity decreases as the magnitude of the flow 

increases whereas for forward flow (Λ<0) the viscosity increases as the magnitude of the 
flow increases. Therefore, we have flow thinning in one direction and flow thickening in the 
other. This directional response is due to the fact that the initial undistorted nematic 
configuration is asymmetrical. Even more, for the forward case most of the mechanical 
energy is elastically accumulated in distorting the nematic’s configuration instead of being 
used to move the fluid, as compared to the backward case. In this sense the undistorted 
configuration is working like a biased spring inherent to the liquid, stiffer in one direction 
than in the other. 

 

Fig. 17. Averaged apparent viscosity as a function of (a) the electric field q and (b) the 

pressure gradient Λ. 

The averaged first normal stress difference is shown in Fig. 18. Panel (a) shows that N1 
depends almost linearly on q for backward flow, 50Λ = − , whereas it has a minimum in q = 
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10 for forward flow 50Λ = . Panel (b) displays clearly the contrast between forward and 

backward flows for small values of q where a local minimum moves to the right as  
increases. This shows that the directional dependence of this confined nematic can be 
electrically controlled.  

 

Fig. 18. Averaged first normal stress difference as function of (a) q and (b) Λ. Adapted from 
Mendoza, Corella-Madueño, and Reyes 2008. Adapted from Mendoza, Corella-Madueño, 
and Reyes 2008. 

8.2 Homogeneous nematic capillary under a Couette flow 

In this subsection we are going to present the case of a homogeneous nematic capillary 
subjected to a Couette flow and a radial electric field as shown in Fig. 19 (Reyes, Corella-
Madueño, and Mendoza 2008). The inner cylinder is rotating with angular velocity Ω1 and 

the outer cylinder with angular velocity Ω2. This case resembles the one corresponding to 
the homogeneous cell, and in fact the phenomenology is very similar. 

 

Fig. 19. Sketch of a nematic liquid crystal confined by two rotating coaxial cylinders and 
subjected to a radial electric field. Adapted from Reyes, Corella-Madueño, and Mendoza 2008. 

According to the figure, the director can be written as 
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  (61)
 

and the velocity as 

  (62)
 

As in the previous situations, we are considering hard anchoring and non-slip boundary 
conditions at the cylinders 

  (63)
 

and 

   (64) 

The orientational configuration for 5CB is shown in the left panel of Fig. 20. In (a) for q=20 
and different values of ΔΩ. The angle grows from zero up to a maximum value, then, it 
decreases to zero at the outer cylinder. This maximum increases as we increase the value of 
ΔΩ. This simply means that the nematic’s molecules tend to be more aligned with the flow  

 

Fig. 20. Left panels: Nematic’s configuration as a function of x for R1/R2=0.5 (a) q=20 and (b) 

q=50. Right panels: Velocity profiles as a function of x (a) q=20 and (b) q=50. The units of ∆Ω 
are rad/s. Adapted from Reyes, Corella-Madueño, and Mendoza 2008.  
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as it increases. As we can see, for the largest value of ΔΩ shown, there are two possible 
stationary configurations. In (b) we plot the same as in  (a) but for q=50. In this case for any 
value of ΔΩ the system may adopt multiple steady-state solutions. Here, we have plotted 
two different possible solutions. In the right panels we plot the corresponding velocity 
profiles. 

 

Fig. 21. Averaged apparent viscosity as a function of ∆Ω for (a) q≤21 and (b) q≥21. Adapted 
from Reyes, Corella-Madueño, and Mendoza 2008. 

In Fig. 21 we present the average viscosity as a function of |∆Ω|. Notice that the 
electrorheological effect is less pronounced for larger values of the shear flow since the 
cylinder’s rotation turns the nematic perpendicularly to the electric field and as a 
consequence its influence is reduced. 

9. Conclusion 

We have presented a series of results that characterize the flow behavior of a flow-aligning 
thermotropic liquid crystal (5CB) under the action of an applied electric field in a variety of 
different flow geometries and boundary conditions. It is clear from these results that the 
influence of the boundary is enormous and may lead to completely different behaviors. 
Among the interesting results we can mention the existence of a rich non-Newtonian 
response with regions of shear thinning and thickening, a moderate electrorheological effect 
and a history dependent directional response. 
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