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1. Introduction  

The focus of this chapter is to provide a review of the loss coefficient data for laminar flow 
of non-Newtonian fluids in pipe fittings. Since the total pressure change in a piping system 
generally consists of three components: (i) the frictional pressure loss in the pipe, (ii) the 
frictional pressure loss arising from flow through fittings and (iii) the pressure loss or gain 
resulting from elevation changes, this review will also deal with laminar and turbulent pipe 
flow of non-Newtonian fluids and the application of viscometry for flow in pipes and 
fittings. The rheological models relevant to industrial fluids such as mine tailings and 
sewage sludges are introduced, with particular emphasis on yield stress, or viscoplastic, 
fluids. 

Hooper (1981) presented a two-K method for determining the loss coefficient for laminar 
and turbulent flow through various fittings and valves. This method consists of two factors, 
one for laminar flow, K1 and the other for turbulent flow, Kturb. Unlike that for Kturb, there is 
little data available for K1. Experimental data over the full range of laminar and turbulent 
flow are presented for flow of Newtonian and non-Newtonian fluids in various fittings. The 
experimental procedures for the accurate determination of loss coefficients are described. 

Current practice for laminar flow through various fittings is to present the loss coefficient as 
a function of an appropriate Reynolds number. Different Reynolds numbers developed for 
non-Newtonian fluids have been evaluated to determine their ability to establish the 
necessary requirement of dynamic similarity for flow of viscoplastic fluids in various 
fittings. 

The laminar to turbulent transition in pipe fittings are also discussed. The experimental 
work done to date on contractions, expansions, valves and orifices is reviewed in addition to 
similar work published in literature.  

The magnitude of errors that can be obtained using the incorrect loss coefficient is 
demonstrated by means of a worked example. This chapter will provide the pipeline design 
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engineer dealing with non-Newtonian fluids with the necessary information critical for 
energy efficient design. 

2. Rheological models 

The main types of flow behaviour exhibited by fluids under steady-state shear include: 

• Newtonian 
• non-Newtonian  

• shear-thinning and dilatant (shear-thickening)  
• viscoplastic 

Over a limited shear rate range (of one or two decades), a fluid can exhibit a single class of 
behaviour characterised by the flow curves of Sections 2.1, 2.2.1 or 2.2.2. Over a wider shear 
rate range (within 10-6 to 106 s-1), most fluids exhibit more than one class of flow behaviour.  

It is difficult to predict the type of flow behaviour that a fluid will exhibit under given flow 
conditions (for example, at a given temperature, pressure and concentration). Nevertheless, 
there are textbooks such as those of Laba (1993) and Steffe (1996) that give examples that can 
serve as illustrations only. The user should be aware that a rheological test is the only sure 
method of ascertaining the rheological behaviour of a fluid (Alderman, 1997). 

2.1 Newtonian behaviour 

These are fluids for which an infinitesimal shear stress will initiate flow and for which the 
shear stress is directly proportional to the shear rate. The flow curve, at a given temperature 
and pressure, is therefore linear and passes through the origin as is shown in Figure 1(a). 
The slope of the flow curve, which is constant, is the viscosity. Re-plotting the flow curve in 
the form of a viscosity curve as shown in Figure 1(b) clearly depicts a constant viscosity with 
respect to shear rate. 

  (1) 

  

Fig. 1. Flow and viscosity curves for fluids exhibiting Newtonian behaviour 

Any deviation from Newtonian behaviour is said to be non-Newtonian. 

γ
τη


=

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200

S
h

e
a
r 

s
tr

e
s
s
 (

P
a
)

Shear rate (s-1)

(a) flow curve 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 200 400 600 800 1000 1200

V
is

c
o

s
it

y
 (

P
a
 s

)

Shear rate (s-1)

(b) viscosity curve 

www.intechopen.com



 
Resistance Coefficients for Non-Newtonian Flows in Pipe Fittings 

 

153 

2.2 Non-Newtonian behaviour 

2.2.1 Shear-thinning and dilatant (shear-thickening) behaviour 

Two departures from Newtonian behaviour, namely shear-thinning and dilatant (shear-
thickening) behaviour, are depicted in Figure 2.  

Shear-thinning behaviour is observed when an infinitesimal shear stress will initiate flow, 
that is, the flow curve passes through the origin, Figure 2(a) and the viscosity decreases with 
increasing shear rate as shown in Figure 2(b). This behaviour is sometimes incorrectly 
termed thixotropy because the equilibrium flow curve of a thixotropic material is often 
shear-thinning. However, unlike shear-thinning behaviour, thixotropy is a time-dependent 
property. Dilatant (shear-thickening) behaviour is observed when an infinitesimal shear 
stress will initiate flow, that is, the flow curve passes through the origin, Figure 2(a) and the 
viscosity increases with increasing shear rate as shown in Figure 2(b). 
 

  

Fig. 2. Idealised shear-thinning and dilatant (shear–thickening) behaviour 

For polymeric systems of low concentrations, low molecular weights or at temperatures well 
above the glass transition temperature, the variation of viscosity with shear rate as a 
function of concentration, molecular weight or temperature is shown typically in Figure 3. 

 
Fig. 3. Non-Newtonian viscosity of polymeric systems of low concentrations, low molecular 
weight or at temperatures well above the glass transition temperature (Alderman, 1997) 

It can be seen that as the concentration or molecular weight is increased or the temperature 
is decreased, both the zero and infinite shear viscosities, η0 and η∞ increases with the change 
in the zero shear viscosity being much greater than that for infinite shear viscosity. The 
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difference between η0 and η∞ can be very large, as much as two or three orders of 
magnitude even, if the molecular weight or concentration is sufficiently high. The 
characteristic shear rate, where the curve starts to deviate from the η0 line, decreases with 
increasing concentration or molecular weight or with decreasing temperature. The 
characteristic shear rate, where the curve starts to deviate from the η0 line, decreases with 
increasing concentration or molecular weight or with decreasing temperature.  

For particulate systems containing a dispersed phase having negligible inter-particle 
attraction, the variation of viscosity with shear rate as a function of solids content, shown 
typically in Figure 4, is complex. At low solids concentrations, the curve depicts shear-
thinning behaviour with well-defined zero and infinite shear viscosities. The lower 
boundary of the shear-thinning region can be identified as the curve depicted in Figure 4. At 
higher solids concentrations, dilatant behaviour is observed at high shear rates. This 
becomes more pronounced with increasing solids concentration. The characteristic shear 
rate decreases with increasing concentration until at very high concentrations it falls outside 
the lowest measurable shear rate. The magnitude of the slope at the characteristic shear rate 
also increases until at some concentration, it attains a value of -1. If replotted as a flow curve, 
this would show a yield stress. Here, the flow behaviour is viscoplastic. 

 
Fig. 4. Non-Newtonian viscosity in suspensions of negligible inter-particle attraction 
(Alderman, 1997) 

2.2.2 Viscoplastic behavior  

Two further departures from Newtonian behaviour, namely Bingham plastic and 
viscoplastic behaviour, are depicted in Figure 5. Fluids exhibiting viscoplasticity will 
sustain a certain shear stress, the yield stress, τy, without developing continuous flow. For 
stresses below τy, the shear rate remains zero whereas for stresses above τy, the fluid flows 
with a shear rate dependent on the excess stress (τ - τy). Bingham plastic behaviour is 
observed when there is a linear relationship between the shear stress in excess of the yield 
stress, τy and the resulting shear rate. The flow curve for a Bingham plastic fluid is linear but 
does not pass through the origin as shown in Figure 5(a). Viscoplastic behaviour is observed 
when the rate of increase in shear stress with shear rate in excess of the yield stress, τy 
decreases with increasing shear rate. The flow curve, shown in Figure 5(a), has the same 
characteristic shape as that for a fluid exhibiting shear-thinning behaviour but does not pass 
through the origin. The flow curve for both fluids cuts the shear stress-axis above the origin 
at τy on the linear plot, Figure 5(a). The viscosity for both fluids decreases with shear rate 
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similar to that for a shear-thinning fluid, Figure 5(b). However, unlike the shear-thinning 
viscosity which is finite at zero shear rate, the Bingham plastic or viscoplastic viscosity tends 
to infinity as shear rate is reduced to zero.  

Both polymeric and particulate systems can possess a yield stress. This occurs particularly 
for cross-linked polymers, polymeric gels and filled systems, and for high solids content 
suspensions and high dispersed phase emulsions and foams. In the case of suspensions, the 
yield stress arises because of particle-particle frictional interaction. In these materials, it is 
found that the Bingham plastic behaviour is obtained at high shear rates, as an asymptotic 
behaviour, Figure 5(a). The intercept of the extrapolated Bingham plastic asymptote is 
commonly called the Bingham yield stress, τyB, to distinguish it from the yield stress, τy. 

  

Fig. 5. Idealised Bingham plastic and viscoplastic behaviour 

2.3 Viscosity and flow curve models 

Fluids exhibiting Newtonian behaviour have constant viscosities as defined by Eqn. (1), 
and single point measurement at a convenient shear rate is sufficient to describe such a 
fluid. However, non-Newtonian fluids have viscosities that are shear rate-dependent, and 
a single point measurement is inadequate to describe the flow behaviour. Here, the 
relevant shear rate range in the engineering application must be assessed and used in 
determining the measurement conditions for the viscometer/rheometer. Shear rate-
dependent viscosity is often referred to as apparent viscosity, ηa, but there is no need to 
make this distinction if it is accepted that viscosity, as defined in Eqn. (1), can be variable. 
However, it is essential that values of η are quoted with their corresponding values of 
shear rate (or shear stress).  

The flow curve or viscosity curve data obtained from viscometric measurements under 
steady-state shear can be described mathematically in terms of rheological models 
(constitutive equations) and are amenable to curve fitting. The general form of a rheological 
model is fitted over a relevant shear rate range to the flow curve or the viscosity curve by 
least-squares regression analysis so that a specific rheological model can be obtained. This 
specific equation is then used for material characterization, engineering design applications 
or product formulation. 

The rheological model for Newtonian fluids contains just one constant, ηN. Many models 
have been proposed to describe the non-Newtonian flow behaviour of fluids, although the 
majority of these are of little value for engineering design applications and serve more as 
theoretical analyses.  
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In general, the simpler models (for example, Newtonian, Bingham plastic and power law) are 
used for fitting narrow shear rate ranges (say, one decade), giving straight lines on linear or 
logarithmic plots. Other models such as Herschel-Bulkley (1926) and Casson (1959) for two or 
three decades and Sisko (1958) for four decades or more are better for wider shear rate ranges. 
For the widest shear rate range achievable in practice (that is, 10-6 to 106 s-1), it is necessary to 
use a more complex model such as the Cross (1965) model or the Carreau (1968) model.  

Of the numerous rheological models available in the literature, the most commonly-used for 
engineering applications are described here. 

2.3.1 Newtonian model 

This is the simplest of all flow curve models and is given by  

  (2)
 

with ηN being the Newtonian viscosity. 

2.3.2 Power law model 

This model originally proposed by de Waele (1923) and Ostwald (1925) is described by the 
two-parameter equation: 

  (3)
 

where K is the consistency coefficient in units of Pasn and n is the power law exponent. This 
equation can be used to describe Newtonian behaviour when n = 1, shear-thinning 
behaviour when n < 1 or dilatant behaviour when n > 1. On a log-log plot, the model is a 
straight line with a slope of n. Values of n typically ranges from 0.2 to about 1.4. The further 
the value of n is from unity, the more non-Newtonian is the fluid. 

2.3.3 Bingham plastic model 

This two parameter model (Bingham, 1922) is described by 

  (4)
 

where τyΒ is the Bingham yield stress and ηΒ is the Bingham plastic viscosity.  

2.3.4 Herschel-Bulkley model 

This model also known as the generalised Bingham plastic model, is a three parameter 
yield/power law model (Herschel-Bulkley, 1926), given by 

  (5) 

where τyHB is the Herschel-Bulkley yield stress. This equation describes viscoplastic 
behaviour when n < 1. Because power law (τyHB =0; shear-thinning when n < 1 or dilatant 
when n > 1), Newtonian (τyHB = 0 and n = 1) and Bingham plastic behaviour (n= 1) can be 

γη = τ N


γK  = τ n

γη + τ = τ
ByB 

γK  + τ = τ n

yHB 
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regarded as special cases, the model represents the flow behaviour of a wide range of fluids 
without being too difficult to handle mathematically. 

2.3.5 Casson model 

A popular alternative to the Herschel-Bulkley model is the theoretical two-parameter model 
of Casson (1959). This is given by 

  (6)
 

where τyC is the Casson yield stress and τC is the Casson viscosity.  

2.4 Viscosity and flow curve measurement 

Commercial viscometers and rheometers employ a wide range of geometries for viscosity 
and flow curve measurement. These can be grouped into two main types: rotational 
viscometers and tube viscometers.  

2.4.1 Rotational viscometers 

Rotational viscometers, which rely on rotational motion to achieve simple shear flow, can be 
operated either in the controlled rate or controlled stress mode. In controlled-rate 
instruments, there are two methods of applying the rotation and measuring the resultant 
torque. The first method is to rotate one member and measure the torque exerted on the 
other member by the test sample, whilst the second method involves the rotation of one 
member and measuring the resultant torque on the same member, The rotating member is 
either at constant speed which can be sequentially stepped or with a steadily-changing 
speed ramp. The resultant torque is measured by a torsion spring. In controlled-stress 
instruments, either a constant torque (which can be sequentially changed) or a torque ramp 
is applied to the member, and the resultant speed is measured. The more common 
geometries used in rotational viscometry are shown in Figure 6.  

2.4.2 Tube viscometers 

Tube viscometers are generally once-through batch devices consisting of either a horizontal 
or vertical length of precision-bored, straight tube through which the test fluid is passed at 
varying rates from a reservoir. The diameters of the tube can typically range from 1 to 5 mm. 
Essentially, there are two types of tube viscometer, the controlled flow rate and the 
controlled pressure, as shown in Figure 7. 

In the controlled flow rate tube viscometer, a piston forces the fluid through a horizontal or 
vertical tube at a constant flow rate and the resultant pressure drop is measured. In the 
controlled pressure viscometer, compressed air (or nitrogen) is applied to drive the fluid 
through a horizontal or vertical tube and the resultant volumetric flow rate is measured. 

2.4.3 Practical considerations 

Flow curve measurements can be made using all of these geometries but there are several 
drawbacks for each geometry which need to be considered for each fluid under test and 

γη + τ = τ CyC 
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each specific application. Guidance on the use of these geometries for obtaining relevant 
viscometric data required for a particular application is given by Alderman and Heywood 
(2004a, 2004b). 

 

Fig. 6. Types of rotational viscometer 

Coaxial cylinder 

(a) Bob-in-cup           (b) single bob            (c) Moore-Davis(a) Bob-in-cup           (b) single bob            (c) Moore-Davis
 

The simplest geometry (a) consists of a bob 

(inner cylinder) located in a cup (outer 

cylinder) with the test sample contained in 

the narrow annular gap between the bob 

and the cup. Other variations of the coaxial 

cylinder viscometer that are commonly 

used include (b) a bob rotating in a large 

container that approximates to the “infinite 

sea” situation (that is, the container to bob 

radius ratio is at least 10 and (c) the Moore-

Davis double cylinder viscometer used for 

low viscosity fluids. 

Rotating disc 

 

This consists of a disc rotating in a large 

container (normally a 600 ml plastic beaker 

with an internal diameter of 97mm) of test 

material. The torque exerted by the test 

fluid on the rotating disc is measured as a 

function of rotational speed. 

Cone-and-plate 

(a) Cone and plate

(b) Truncated cone and plate

(a) Cone and plate

(b) Truncated cone and plate
 

Usually, the sample under test is contained 

between the exterior angle of a cone and a 

flat plate, (a). The axis of the cone is set 

normal to the plate with the cone apex 

touching the plate. Cone angles typically 

range from 0.25 to 1o. However, for 

solid/liquid suspensions and emulsions, a 

cone with a truncated apex (b) is often used 

to minimise problems due to particle 

jamming. 

In controlled-rate instruments, either the 

cone or the plate is rotated at a fixed speed 

and the resultant torque via the cone is 

measured. In controlled-stress instruments, 

a fixed torque or a torque ramp is applied to 

the cone and the resultant speed is 

measured. 

Parallel plate 

 

The sample under test is held in the gap 

between two identical circular flat plates. 

The gap between the two plates can be 

varied, typically up to 5 mm for plates of 

about 25 mm radius.  

In controlled-rate instruments, either the 

top or bottom plate is rotated at a fixed 

speed and the resultant torque is measured. 

In controlled-stress instruments, a constant 

torque or a torque ramp is applied to the top 

plate and the resultant speed is measured. 
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Fig. 7. Types of tube viscometer 

For the correct end-use of viscometric data in any processing application, the flow curve 
must be measured under appropriate conditions of temperature and shear. Hence, the shear 
rate (or shear stress) to be covered by the viscometer should be matched to that applicable to 
the particular flow process. With the range of viscometers commercially available, it is 
technically possible to measure viscosity over 12 orders of magnitude of shear rate from 10-6 
to 106 s-1. However, most processing applications require viscosity data over no more than 
two or three orders of magnitude of shear rate. Shear rates typical of some flow processes 
can be found in Alderman and Heywood (2004a). There are quick and simple methods 
available for defining the shear rate range for any processing application, Alderman and 
Heywood (2004a). If a method for shear rate estimation in some processing applications is 
not available, a useful approach is to define the flow region of interest, determine 
differences in fluid velocity at two points across the region (this will often be the surface of 
some moving element such as a pump impeller or mixer agitator) and divide this velocity 
difference by the distance of separation between the two points. These typical shear rates 
can be used as a basis for choosing a viscometer. 

As the equations for calculating the shear stress, shear rate and viscosity assume the flow in 
the viscometer is laminar, a check must be made to ensure the validity of the viscometric 
data. Details on how this is done are outlined in Alderman and Heywood (2004b). 
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2.5 Viscosity and flow curve data generation and interpretation  

Figure 8 summarises the key steps to ensuring the measurements of the flow curve are both 
accurate and relevant (Alderman and Heywood, 2004a; 2004b).The need for accuracy may 
sometimes introduce additional laboratory experiments, particularly if end effect and/or 
wall slip errors are incurred. However, ensuring that only the viscometric data that are 
relevant to the application of interest are measured will minimise the overall effort. Having 
selected the most appropriate viscometer for the sample under test and the application of 
interest, the next step is to generate the flow curve.  

 
Fig. 8. Flowchart for making accurate and relevant flow curve measurements (Alderman 
and Heywood, 2004b) 
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2.5.1 Rotational viscometers 

With controlled rate rotational instruments, the flow curve measurement is usually done by 
carrying out at least three cycles of a fixed time where the speed is varied, either by a 
sequence of step speed changes or a steadily-changing speed ramp, between minimum and 
maximum values whilst measuring the resultant torque. With controlled stress rotational 
instruments, the torque is varied in a similar manner whilst the resultant speed is measured. 
The time over which the speed or torque is varied is left to the operator to decide. However, 
a good starting point would be the time that gives 30 s per step. 

Repeated shear cycles on the test sample will enable one to determine whether the sample 
exhibits time-dependent flow behaviour such as thixotropy. If the up and down curves for 
the first and successive cycles coincide, the sample is undergoing steady-state shear. 
However, if hysteresis loops between the up and down curves are observed for each 
successive cycle, the sample is exhibiting time-dependent flow behaviour. In such cases, it is 
advisable to repeat the experiment with the speed (or torque) held constant until the torque 
(or speed) attains a steady value before changing the speed (or torque) to the next value. 
This will yield an equilibrium flow curve in which the up and down curves coincide.  

The average of the torque versus speed data at which the up and down curves coincide is 
the first step of the calculation procedure for obtaining the corrected flow curve. Care must 
be taken to ensure that the flow curve is not affected by the four error sources: 
secondary/turbulent flow, viscous heating, end effect and wall slip. Further details of this 
procedure can be found in Alderman and Heywood (2004b) for the appropriate viscometric 
geometry used. 

2.5.2 Tube viscometers  

With controlled-rate tube viscometers (Type A in Figure 7), the flow curve is obtained by 
carrying out pressure drop measurements at different constant flow rates. For each 
measurement, a new sample is often required due to the small capacity of the sample 
reservoir. With controlled-stress tube viscometers (Type B in Figure 7), the flow curve is 
generated by measuring the flow rate as a function of pressure drop on the sample. The 
pressure drop versus flow rate data is the first step of the calculation procedure for 
obtaining the corrected flow curve. Care must be taken to ensure that the flow curve is not 
affected by the four error sources: secondary/turbulent flow, viscous heating, end effect and 
wall slip. Further details of this procedure can be found in Alderman and Heywood (2004b). 

2.6 Viscosity and flow curve interpretation for engineering design 

Having completed the calculation procedure for the corrected flow curve (and hence the 
corrected viscosity curve), the data may be amenable to a single curve fit (Brown & 
Heywood, 1991). Sometimes, because of considerable scatter in the data, it may be more 
appropriate to construct at least two curves: a mean curve obtained from regression analysis 
using all the data and an upper bound curve obtained from regression analysis using (τ, ) 

data selected from the curve that was initially drawn by eye. The upper bound curve would 
normally represent the worst case for many engineering applications and would lead to a 
conservative design. Further factors can cause difficulties in attempting to draw a single 
flow curve through the data. These factors include the use of two or more different 

γ
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viscometric geometries which may give differing degrees of phase separation during shear, 
sample variability taken from the same batch, and uncorrected errors associated with the 
use of any viscometric geometry.  

For engineering design, the choice of flow curve model is limited by the design method to 
be used. For example, if the flow curve is to be used for pipeline design, the choice can be 
made from a number of models including Newtonian, power law, Bingham plastic, 
Cassonand Herschel Bulkley models. However if the flow curve is to be used for agitation in 
stirred tanks, the choice is either the Newtonian or the power law model. It is often not 
immediately obvious from the data which of the flow models should be selected. A decision 
will need to be made on which model to use. The following approach is suggested: 

i. Plot all the (τ, ) data on linear axes and separately, on double logarithmic axes. This is 

to assess the suitability of the Newtonian, Bingham plastic and power law models. 
ii. If there is considerable scatter in the data, decide by eye or from the correlation 

coefficient obtained by linear regression analysis whether a straight line through the 
linear or the log-log plot gives the better representation. Similarly decide for the upper 
bound curve. If one of these alternatives is acceptable, the use of the Herschel-Bulkley 
model is probably not warranted. 

iii. If neither of these alternatives appears satisfactory because there is significant curvature 
of the data on both linear and log-log plots, the following can arise: 
a. If there is data curvature on the log-log plot with the slope of the curve increasing 

with shear rate axis and if the linear plot does not produce a straight line then the 
Herschel-Bulkley model should adequately describe the data. 

b. If there is data curvature on the log-log plot and the slope of the curve decreasing 
with shear rate axis, then the use of the Herschel-Bulkley model is inappropriate as 
this implies a negative yield stress parameter. However, a curve fit is possible and 
would result in a negative value for the yield stress parameter. Force-fit either a 
Bingham plastic or power law model to the data. 

Estimates need to be made for the parameters defined in the flow models. As the Herschel-
Bulkley model can be reduced to the Newtonian, power law and Bingham plastic models, a 
least squares regression analysis can first be performed on the  (τ, ) data to obtain τyHB, K 

and n. It may then be possible to simplify the model by setting the τyHB to zero if the 
estimate is close to zero and/or setting n to 1 if the estimate is close to unity.  

Two methods are commonly used when carrying a regression analysis on the (τ, ) data 

(Heywood & Cheng, 1984): 

1. a non-linear least squares regression on unweighted data,  
2. a non-linear least squares regression on weighted data. 

In Method 1 it is assumed that the error e lies in τ: 

  (7)
 

whereas in Method 2, the error is assumed to lie in ln (τ - τyHB): 

  (8) 

γ

γ

γ

eγKττ n
yHB ++= 

( ) eγlnnKlnττln yHB ++=− 
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Standard non-linear regression software packages can be used in either case. Alternatively, 
non-linear regression can be performed using Microsoft Excel via the ‘Solver’ tool (Roberts 
et al., 2001). Both methods will provide sets of τyHB, K and n estimates which give 
viscometric data predictions to ± 2% of the original data within the original shear rate range. 
Outside this shear rate range, agreement can be poor. 

Examples of the extrapolated flow curves for the two sets of parameters obtained in the two 
regression methods are shown in Figure 9. Provided the relevant shear rate/shear stress 
window for the application is covered by the viscometer, either of the two regression 
methods can be used. However, the method that gives the most uniform data spread should 
be used. 

 

Fig. 9. Example of extrapolation of predicted (τ, ) data outside the experimental range for 

an 8.0% digested sewage sludge (Heywood and Cheng, 1984) 

3. Pipe flow fundamentals 

The basic relationships for design in laminar, transitional and turbulent pipe flow are 
obtained by integration of the constitutive rheological relationship, over the cross-sectional 
area of the pipe. 

3.1 Rheological approach 

Industrial fluids exhibiting viscoplastic behaviour are often best modelled using the 
Herschel-Bulkley model (Govier & Aziz, 1972 and Hanks, 1979). The constitutive rheological 
equation is given by Eqn. (5). 

3.2 Laminar flow 

Equations for the design of laminar pipe flow can be derived by integrating Eqn. (5) over the 
circular pipe geometry (Govier & Aziz, 1972). Because of the yield stress, a central solid plug 
is formed where the point shear stress is less than the yield stress, as shown in Figure 10.  

γ
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Fig. 10. Schematic showing the geometry of the unsheared plug  

The radius of the plug is determined from the linear shear stress distribution and the yield 
stress as 

  (9)

 

In the annular region where the point shear stress exceeds the yield stress, the point velocity 
u is obtained by integration of the constitutive rheological relationship, and applying the no-
slip assumption at the pipe wall 

  (10)

 

The plug velocity uplug is obtained at the point where the applied shear stress is equal to the 
yield stress as 

  (11)

 

These two velocity distributions are integrated over the pipe cross-sectional area 
appropriate to each, in order to yield the total volumetric flow rate Q as 

  (12)

 

This relationship can be used for laminar pipe flow design. 

3.3 Transitional flow 

The approach used here for the prediction of the transition from laminar to turbulent flow is 
the modified Reynolds number Re3 (Slatter, 1995; Slatter, 1999). This approach predicts a 
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laminar to turbulent transition in the Reynolds number region of 2100. This approach was 
specifically developed to place emphasis on the viscoplastic nature of the material (Slatter, 
1995). Using the fundamental definition that Re ∝ inertial/viscous forces, the final 
expression is 

  
(13)

 

As shown in Figure 10, in the presence of a yield stress the central core of the fluid moves as 
a solid plug which fundamentally affects the stability of flow (Slatter, 1995, 1999). The 
unsheared plug is treated as a solid body in the centre of the pipe. The flow that the plug 
represents must be subtracted as it is no longer being treated as part of the fluid flow. The 
corrected mean velocity in the annulus Vann is then obtained as follows:- 

 Vୟ୬୬ = ୕౗౤౤୅౗౤౤ = ୕ି୕౦ౢ౫ౝ஠ቀୖమି୰౦ౢ౫ౝమ ቁ (14) 

and 

 Qplug = uplugAplug (15)

 

The sheared diameter, Dshear, is taken as the characteristic dimension because this represents 
the zone in which shearing of the fluid actually takes place, and it is defined as 

 Dshear = D – Dplug (16) 

and 

 Dplug = 2rplug (17) 

These relationships can be used for pipe flow design to determine the transition from 
laminar to turbulent flow. 

3.4 Turbulent flow 

The approach used here is the particle roughness turbulence approach (Slatter, 1996, 1999b, 
2011). The point of departure of this approach is the classical logarithmic velocity 
distribution 
 

 
୳୚∗ = A	ln ቀ ୷ୢ౮ቁ + B 

(18)

 

The value of A is taken as the inverse of the von Karman universal constant, A=1/χ = 2.5. B 
is the classical roughness function (Schlichting, 1960). Integrating and rearranging we get 
the mean velocity V as  ୚୚∗ = ୅	஧ ln ቀ ୖୢఴఱቁ + B − ͵.7ͷ 

(19) 

For smooth wall turbulent flow, this reduces to 
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୚୚∗ = ʹ.ͷ	ln ቀ ୖୢఴఱቁ + ʹ.ͷ	ln	Re୰ + ͳ.7ͷ 

 (20) 

For fully developed rough wall turbulent flow, this reduces to 

 
୚୚∗ = ʹ.ͷ	ln ቀ ୖୢఴఱቁ + Ͷ.7ͷ (21) 

which will yield a constant value for the Fanning friction factor, f  ଵ√୤ = Ͷ.Ͳ7	log ቀଷ.ଷସୈୢఴఱ ቁ
 

(22) 

4. Minor losses in pipe systems 

Head losses, in addition to those due to straight pipe friction, are always incurred at pipe 
bends, junctions, contractions, expansions and valves. These additional losses are due to 
eddy formation generated in the fluid at the fitting. In the case of long pipelines of several 
kilometres, these local losses may be negligible, but for short pipelines they may be greater 
than the straight pipe frictional losses (Chadwick & Morfett, 1993). A general theoretical 
treatment for local head losses is not available, but it is usual to assume rough turbulence 
(where the friction factor is independent of the Reynolds number) since it leads to a simple 
equation (Chadwick & Morfett, 1993). The prediction of losses in pipe fittings is either based 
on (King, 2002): 

a. The fitting will contribute to the energy dissipation an amount equivalent to an 
additional length of pipe that is calculated as a multiple of the pipe diameter. 

b. The kinetic energy is dissipated as the fluid flows through the fitting and the loss is 
calculated in terms of the number of velocity heads that are lost. 

Here, the losses in pipe fittings will be expressed as the number of velocity heads lost. 

On dimensional grounds, the head loss in a fitting will depend upon the fluid velocity, fluid 
properties and the geometry of the fitting as follows (Edwards et al., 1985): 

 
 
 (23)

 

This can be expressed as a function of the velocity energy head given by 

  (24)
 

where hfitt is the local head loss and kfitt is the fitting loss coefficient. 

Since the pressure drop across the fitting, Δpfitt is given by Δpfitt=ρghfitt, Eqn. (24) can be 
rewritten as 

  (25) 

The loss coefficient, kfitt, is the non-dimensionalised difference in overall pressure between 
the ends of two long straight pipes when there is no fitting and when the real fitting is 
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installed (Miller, 1978). The flow lengths over which pressure losses occur start from a few 
diameters upstream to several pipe diameters downstream of the actual length of the fitting. 
This is known as the region of influence or interference (see Figure 11). The pressure loss 
across the fitting Δpfitt should be measured across this region. It can be the measured static 
pressure drop (Δps) or the total pressure that is Δptot = Δps+½ρV2. It is therefore important to 
state whether kfitt is based on the static or total pressure (Miller, 1978). If there is a change in 
pipe diameter, the convention is to use the higher mean flow velocity (V) of either the 
upstream or the downstream pipe.  

 
Fig. 11. Definition of energy head loss 

With the exception of abrupt contractions and expansions, all other fittings have a physical 
length. There are three distinct conventions for estimating the length of the straight pipe in 
the test section (Perry & Chilton, 1973): 

i. the actual length of the centreline of the entire system is taken; 
ii. the lengths of the individual pieces of pipe that are actually straight are summed up; 
iii. the distances between the intersections of the extended centrelines of the successive 

straight pipes are added. 

4.1 Turbulent flow loss coefficient 

For turbulent flow through fittings, with the exception of bends, the loss coefficient is 
independent of the Reynolds number because inertia forces dominate. Experimental work 
showed that this is true for Newtonian fluids (Miller, 1978, Crane, 1999) and non-Newtonian 
fluids (Edwards et al., 1985, Ma 1987, Turian et al., 1998). 

4.2 Laminar flow loss coefficient 

For laminar flow, the loss coefficient is inversely proportional to the Reynolds number 
(Hooper, 1981; Edwards et al., 1985; Ma, 1987; Pienaar, 1998) and the data loci is presented 
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as a straight line of slope x = –1 in most cases when tests are conducted to sufficiently low 
Reynolds numbers, i.e. Re < 10.  

  (26)
 

where K1 is the laminar flow loss coefficient constant and is a characteristic of a specific 
fitting involving its dimensions.  

4.3 Generalised correlation for loss coefficient 

Hooper (1981) provided a generalised correlation for the determination of the loss 
coefficient spanning Reynolds number from laminar to turbulent flow 

  (27)
 

where K1 and kturb are determined experimentally and Di is the pipe diameter in inches 
(King, 2002).  

4.4 Determination of loss coefficients 

The energy losses across a fluid-conveying conduit in a fluid are normally accounted for 
using the mechanical energy balance: 

  (28) 
 

where subscripts 1 and 2 refer to the upstream and downstream conditions respectively, V is 
the mean flow velocity, z is the elevation from the datum, ǂ is the kinetic energy correction 
factor and p is the static pressure and where there are N sources of energy loss (Edwards et 
al., 1985). Each term in the expression represents energy per unit weight of fluid, known as 
energy head or head loss, and is a statement of the law of conservation of energy as applied 
to fluid flow. The head loss is in units of metres. For the case of a head loss in a fitting, the 
energy equation may be rewritten as: 

  (29)
 

where h1 and h2 refer to the friction head loss in the straight pipe upstream and downstream 
of the fitting and hfitt refers to the head loss in the fitting. The head loss, h, in the straight 
pipe can be calculated from  

  (30) 

In practice, it is difficult to measure the pressure drop across the fitting only (Ward Smith, 
1976) to distinguish between the incompletely developed and the fully-developed flow 

x

1
fitt

Re

K
k =









++=

i
turb

1
fitt

D

1
1k

Re

K
k

+++=++
=

N

1i
loss

2
2
22

2
1

2
11

1 h
g

p

2g

V
z

g

p

2g

V
z

ρ

α

ρ

α

2fitt1
2

2
22

2
1

2
11

1 hhh
g

p

2g

V
z

g

p

2g

V
z +++++=++

ρ

α

ρ

α












Δ

2g

V

D

4fL
 = h

2

www.intechopen.com



 
Resistance Coefficients for Non-Newtonian Flows in Pipe Fittings 

 

169 

region prior to and after the fitting. One method is to extrapolate the fully developed 
pressure gradient to the fitting centreline if the pressure is measured along the length of the 
two pipes. The second method is to measure the total pressure drop across the system by 
using two pressure taps only. The latter is experimentally a cheaper method, as only one 
pressure transducer is required. There are difficulties associated with both methods that 
could influence the results obtained to some extent. For the pressure gradient to be 
determined, it is required to select the points that are in the fully developed friction gradient 
region, but this is not always an easy task, as the distance of interference changes with 
Reynolds number (Pal & Hwang, 1999). For the total pressure drop method on the other 
hand, one needs to ensure that the additional losses are accounted for by ensuring that there 
is significant length of straight pipe. The difficulty is often encountered that to determine the 
loss in the fitting, two large numbers are being subtracted to obtain a very small number, 
resulting in significant errors or negative results (Sisavath, 2002). The following was found 
when data obtained for Newtonian lubrication oil flowing through sudden contractions was 
analysed using the pressure grade line approach as well as the total pressure drop approach 
to obtain values of kturb and K1con and compared to results found in literature as shown in 
Figure 12.  

 
Fig. 12. Comparison of different analysis method to determine loss coefficient (Pienaar & 
Slatter, 2004) 

Between Re = 10 – 10 000, the fact that all the data points are used for extrapolation or that 
some data are selected gives little difference in the loss coefficient calculated. It is clear that 
the range of data selected for analysis of results has a significant effect at Reynolds numbers 
less than 10 and greater than 10 000. Good agreement was found between this work using 
all data and that of Jadallah (1980) and the prediction of ESDU (1989).  
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• At Re > 10 000, the results were significantly lower than predicted results and it was 
obvious that in this range the data closed to the contraction plane had to be excluded 
from the pressure gradient analysis.  

• At Re < 10, good agreement was found between this work using selected data and the 
prediction of McNeil and Morris (1995). 

• Discrepancies between K1 values are often due to the fact that results are not obtained at 
Reynolds numbers less than 10 in the purely viscous range before onset of turbulence. 

It is evident that it is not only the physical experimental measurements that contribute to the 
large scatter of results, but also the analytical approach applied to the experimental results 
to obtain loss coefficients. It is important to analyse experimental results in various ways by 
assessing experimental data very carefully. 

4.5 Dynamic similarity 

Complete analytical solutions for engineering problems involving the flow of real fluids is 
seldom attainable and experiments on models of different physical size are often a necessary 
part of the design process. This investigation is typical of this approach. In order to correctly 
interpret the qualitative and quantitative data obtained from such experiments, it is 
necessary to understand the relationship between models of different size. The concepts of 
dimensional analysis and physical, geometric, kinematic and dynamic similarity are 
introduced as they apply to the specific problem of modelling and data interpretation of 
fittings of different size. Dimensional analysis enables the magnitudes of individual 
quantities relevant to a physical problem to be assembled into dimensionless groups, often 
referred to by name. The dimensionless group of specific interest here is the Reynolds 
number. These groups assist in the interpretation of model studies by ensuring that the 
conditions under which tests and observations take place at one size fitting are the same as 
those at the other size fitting.  

Physical similarity, like dimensional analysis, helps to ensure that the conditions under 
which tests and observations take place at one scale are the same as those on another scale. 
The models at different scale are said to be physically similar in respect of specified physical 
quantities (eg, velocity), when the ratio of corresponding magnitudes of these quantities 
between the two systems are everywhere the same. For any comparison between models, 
the sets of conditions associated with each must be physically similar.  

Geometric similarity is similarity of shape. The requirement is that any ratio of length in one 
model to the corresponding length in another model is everywhere the same. This ratio is 
referred to as the scale factor. Geometric similarity is the first requirement of physical 
similarity. Kinematic similarity is similarity of motion and requires similarity of both length 
and time interval. 

Dynamic similarity is similarity of forces. Since there may be several kinds of forces acting 
on a fluid particle, it is usually impossible to satisfy dynamic similarity for all of them 
simultaneously. The justification for comparing observations from one model flow system to 
another is that the fluid behaviour in both systems is similar thus implying kinematic 
similarity. Geometric similarity alone does not imply dynamic similarity. The requirement for 
kinematic similarity is to have both geometric and dynamic similarity. This produces 
geometric similarity of flow patterns and it is this which is of prime importance in this study. 
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It was shown by Edwards et al. (1985) and Fester and Slatter (2009) that if geometric 
similarity is maintained, the Reynolds number can be used to establish dynamic similarity 
in globe and gate valves. Although Edwards et al. (1985) initially indicated that for turbulent 
flow in globe valves, the turbulent loss coefficient is geometry dependent, this was later 
found to be due to the globe valves not being geometrically similar. Fester and Slatter (2009) 
found that the turbulent loss coefficient is in fact independent of the valve size for the 
geometrically similar globe valves tested. This was found to be in agreement with Edwards 
et al.’s (1985) findings for gate valves. It will only depend on the valve opening for carefully 
machined valves. However, results for diaphragm valves agreed with Edwards et al.’s 
statement that for significant changes in cross-sectional areas, the result becomes size 
dependent. The viscous force dominated range at Re < 10 is not affected by valve size. In 
fact, the K1 value obtained for non-Newtonian fluids is in excellent agreement with that 
provided by Hooper (1981). As the Reynolds number increases beyond the critical Reynolds 
number as inertia forces begin to dominate, the loss coefficient is sensitive to geometry and 
valve size. Results for valves from different manufacturers are remarkably different in this 
region and this is directly related to the flow path. Furthermore, the valves were rubber-
lined, and this influenced the actual final diameter of the valve.  

4.6 Transition from laminar to turbulent flow 

Miller (1978) presented general idealized curves of the laminar to turbulent transition region 
as shown in Figure 13. The transition is not always sharp since it can be the entire region 
from where the loss coefficient starts to deviate from the trend of being inversely 
proportional to the Reynolds number to where it becomes independent of the Reynolds 
number. Sometimes a minimum is reached before the loss coefficient increases and then 
takes a constant value in turbulent flows. The transition region starts where the flow 
upstream of the fitting is laminar, but downstream turbulence is introduced (Jameson & 
Villemonte, 1971). Since the Stokes flow region is between 1 < Re < 10, it is important that 
tests must be conducted in this range to ascertain the onset of transitional flow. Various  

 
Fig. 13. Trends in loss coefficients in the laminar to turbulent transition region (Miller, 1978) 
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conflicting transition Reynolds numbers that have been reported is mainly due to the 
different definitions used for onset of transitional flow. It has been defined as either the 
intersection between the straight lines for laminar flow and turbulent flow (Ma, 1987) or as 
the point where the data starts to deviate from the laminar flow line (Fester & Slatter, 2009). 
The latter always occur at Reynolds numbers lower than that predicted by the intersection 
method. For short orifices, the ratio of the Reynolds number from the onset of deviation 
from laminar flow to that of fully developed turbulent flow was found to be ≈0.008 for ǃ 
ratios ranging from 0.2 to 0.7. For sudden contractions and long orifices, this minimum 
value is not as pronounced as for short orifices as shown in Figures 14 to 16. 

 
Fig. 14. Data showing transition region for a long orifice (Fester et al., 2010) 

 
Fig. 15. Data showing transition region for a sudden contraction (Fester et al., 2008) 

 
Fig. 16. Data showing transition region for a short orifice (Ntamba, 2011) 
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4.7 Loss coefficient data 

Loss coefficients for both laminar and turbulent flow of Newtonian and non-Newtonian 
fluids through various types of fittings are provided for engineering design calculations.  

4.7.1 Contractions and expansions 

For sudden contractions and expansions where ǃ is the ratio of the downstream (dd) to 
upstream (du) pipe diameter, K1 values for non-Newtonian fluids were found to be similar 
to those found for Newtonian fluids. Here, the non-Newtonian behaviour of the fluid was 
accounted for by using the appropriate Reynolds number for the fluid. This was the 
conclusion drawn by Edwards et al.(1985), Ma (1987), Pienaar (1998), Pal and Hwang (1999) 
and Fester et al. (2008). Mika (2011) was, however, unable to establish dynamic similarity for 
laminar flow of ice slurries of various concentrations in sudden contractions. Tables 1 and 2 
show a comparison of the results obtained by various workers for sudden contractions and 
expansions respectively. In general, there was much better agreement between values in 
turbulent flow than those in laminar flow for which no quantitative agreement was found 
amongst the work of different researchers or correlations to predict losses through sharp-
edged contractions and expansions. 
 

STUDY Fluid βcon K1con kcon 

Hooper, 1981 - - 160 - 

Edwards et al., 1985
50% glycerol/water 
Lubricating oil 

0.445 110 0.45 

Edwards et al., 1985
50% glycerol/water 
Lubricating oil, CMC, China clay

0.660 59 0.33 

Ma, 1987 Laterite & Gypsum slurries 0.5 900 0.23 

Pienaar, 1998 100% Glycerol, Kaolin, CMC 0.463 640 0.414 

Pienaar, 1998 100% Glycerol, Kaolin, CMC 0.204 1300 0.44 

Pal & Hwang, 1999 Oil-in-water Emulsions 0.49 - 0.43 

Table 1. Loss coefficient data for sudden contractions 

 

Reference Fluid βexp K1exp kexp 

Idelchik, 1966 Newtonian fluids - 30 - 

Edwards et al., 1985 Glycerol, CMC Solutions, China clay 1.97 139 0.55 

Edwards et al., 1985 Glycerol, CMC Solutions, China clay 1.52 87.7 0.32 

Edwards et al., 1985 Glycerol, CMC Solutions, China clay 2.18 150 0.62 

Ma, 1987 Laterite, Gypsum 2 115 0.551 

Pienaar, 1998 Water, Glycerol, Kaolin, CMC 2.16 959 0.954 

Pienaar, 1998 Water,Glycerol,Kaolin, CMC 4.9 1408 0.918 

Turian et al., 1998 Laterite, Gypsum 2 - 0.551 

Pal & Hwang, 1999 Oil-in-water emulsions 0.49 - 0.49 

Table 2. Loss coefficient data for sudden expansions 
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4.7.2 Valves 

Valves form an integral part of slurry pipework systems. These fall within the category of 
fittings that influence slurry flow in pipework by opening, closing, diverting, mixing or 
partially obstructing the flow passage (Whitehouse, 1993). An isolation (on-off) valve is a 
valve designed for use in either the fully open or closed position. Those suitable for slurry 
service include knife gate, parallel gate, diaphragm, pinch, plug, ball, butterfly and rotating 
disc (Alderman & Heywood, 1996). 

A regulating (throttling) valve is a valve designed for use in all positions between fully open 
and fully closed. Those suitable for slurry service include globe, diaphragm, pinch and 
segmented ball (Alderman & Heywood, 1996). Work on frictional pressure losses arising 
from flow through valves has been carried out with Newtonian slurries using both isolation 
and regulating valves. Initially, work with non-settling, non-Newtonian slurries appears to 
have been restricted to gate and globe valves (Edwards et al., 1985; Turian et al., 1998; Pal & 
Hwang, 1999). This work was extended to diaphragm valves by Mbiya et al. (2009) and 
Kabwe et al. (2010). 

4.7.2.1 Globe and gate valves 

A summary of loss coefficient data for gate and globe valves are provided in Table 3 ranging 
from 12.5 mm to 40 mm. Figure 17 shows experimental data obtained for 12.5, 25, 40 and 65 
mm globe valves from two different manufacturers. A range of Newtonian and non-
Newtonian fluids were tested for Reynolds numbers covering from 0.05 to 1000000 obtained 
from three different test rigs (Fester & Slatter, 2009). In laminar flow, good agreement was 
obtained with those obtained by Hooper for a standard globe valve, but in turbulent flow, 
the predicted values for a 1 inch globe valve approximated those for the 65 mm valve. The 
laminar to turbulent transition for the 12.5, 25 and 40 mm valves was found to be smooth 
whereas a minimum was obtained for the 65 mm valve.  
 

Type Fluid Setting K1valve x kvalve 

Gate:  
Hooper, 1981 

Newtonian Full open 300 1 0.1 

Globe Standard: 
Hooper, 1981 

Newtonian Full open 1500 1 4 

Globe Angle/Y: 
Hooper, 1981 

Newtonian Full open 1000 1 2 

Gate: 1 inch  
Turian et al., 1998

Laterite and
Gypsum slurries

Full open 320 1 0.80 

Gate: 2 inch  
Turian et al., 1998

Laterite and
Gypsum slurries

Full open 320 1 0.17 

Gate: 1 inch Edwards
et al., 1985 

CMC solutions
China clay slurries

Full open 273 1 - 

Gate: 2 inch Edwards 
et al., 1985 

CMC solutions
China clay slurries

Full open 273 1 - 

Globe: 1 inch 
Edwards et al., 1985

CMC solutions
China clay slurries

Full open 1460 1 122 
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Type Fluid Setting K1valve x kvalve 

Globe: 2 inch 
Edwards et al., 1985

CMC Solutions
China clay slurries

Full open 384 1 25.4 

Globe: 1 inch  
Pal & Hwang, 1999

Oil-in-water 
emulsions

Full open 62 0.53 - 

Globe: 1 inch  
Pal & Hwang, 1999

Oil-in-water 
emulsions

Half open 169 0.53 - 

Globe: 1 inch 
Turian et al., 1998

Laterite and
Gypsum slurries

Full open - - 10.0 

Globe: 25, 15, 40 mm
Fester et al, 2009 

Water, CMC, 
Koalin slurries

Full open 700 1 12 

Globe:, 25, 15, 40 mm
Fester et al, 2009 

Water, CMC, 
Koalin slurries

Half open 1200 1 23 

Table 3. Loss coefficient data for globe and gate valves 

 

Fig. 17. Comparison of experimental pressure loss coefficient with various correlations 
(Fester & Slatter, 2009) 

4.7.3 Diaphragm valves 

Extensive experimental work was conducted on straight-through diaphragm valves from 
two manufacturers (Kabwe et al., 2010). The nominal valve sizes were 40, 50, 65, 80 and 100 
mm. The fluids tested were water, carboxymethyl cellulose solutions and kaolin 
suspensions. It was observed that at Reynolds numbers below 10, the loss coefficient is 
independent of the valve opening for valves from both manufacturers. This purely laminar 
flow regime can be modelled using a K1valve constant of 1000. This is in agreement with the 
value provided by Hooper (1981). However, in the fully turbulent regime this loss 
coefficient for the Natco valves were found to be higher than those for Saunders valves. This 
may be attributed to the more tortuous flow path of the Natco valve compared with that of 
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the Saunders valve. A new correlation was developed to account for the prediction of head 
losses through diaphragm valves at various opening positions that would be useful for 
design purposes. This is given by  

 Ω
valve 2.5

1000 λ
k

Re θ
= +   (31) 

where λΩ is kvalve at 100% opening and θ is the valve opening. The results obtained for the 
valves are given in Table 4. 

4.7.4 Orifices 

Loss coefficient data for orifices are provided in Table 5 and 6. Johansen, in 1930, initiated 
the first detailed studies on sharp edged concentric orifices but as recent as 2007 the lack of 
pressure loss coefficient data for ǃ ratios of 0.2, 0.3, 0.4, 0.5 and 0.7 in literature for long and 
short orifices was identified (ESDU, 2007). Little work has been done with non-Newtonian 
fluid despite their importance in the field of polymer processing, flow of petroleum 
products, biomedical engineering, biochemical engineering, food processing, and mineral 
processing plants. In such applications, the flow remains laminar even at large flow rates 
(Bohra , 2004). Correlations found in literature are generally for turbulent flow regimes for 
which the loss coefficients mainly depends on the geometry of the orifice, practically 
independent of Reynolds number.  
 

TYPE 
size 

(mm) 
kvalve at % opening 

25 50 75 100 
Saunders Diaphragm valve  
Kabwe et al., 2010 

100 69 18 4.7 1.0 

Saunders Diaphragm valve  
Kabwe et al., 2010 

80 28 19 4.3 0.5 

Saunders Diaphragm valve  
Kabwe et al., 2010 

65 22 3.6 1.8 0.6 

Saunders Diaphragm valve  
Kabwe et al., 2010 

50 89 10 3.9 1.6 

Saunders Diaphragm valve  
Kabwe et al., 2010 

40 72 33 8.2 2.7 

Natco Diaphragm valve  
Mbiya et al., 2009 

100 100 29 10 1.4 

Natco Diaphragm valve  
Mbiya et al., 2009 

80 67 18 6.8 2.5 

Natco Diaphragm valve  
Mbiya et al., 2009 

65 63 16 2.8 1.2 

Natco Diaphragm valve  
Mbiya et al., 2009 

50 85 25 8.1 2.5 

Natco Diaphragm valve  
Mbiya et al., 2009 

40 211 35 18 8.1 

Table 4. Loss coefficient data for diaphragm valves 
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4.7.4.1 Long orifices  

In 1972, Lakshmana Rao and his co-workers obtained the pressure loss coefficients for 
laminar flow in five sharp square-edged long orifices with a constant ǃ ratio of 0.2 whilst 
varying the thickness to diameter ratios from 0.48 to 10.11. Pressure loss coefficients in 
turbulent flow for orifices with ǃ ratios of 0.36, 0.4, 0.5 and 0.7 with aspect ratios of 4, 4, 5 
and 5 respectively are compared with those of Ward-Smith (1971) and Idel’chik et al. (1994). 
Excellent agreement was found between experimental work and turbulent flow correlations 
from Ward-Smith (1971) and Idel’chik et al. (1994), with maximum difference between the 
experimental data models were 9.87% and 12% respectively for the maximum beta ratio of 
0.7. This difference was well within the experimental error obtained. The comparison shows 
clearly that correlations published by Ward-Smith (1971) and Idel’chik et al. (1994) can be 
used from Re > 1000, although the two models has an applicability range from Re > 104. 

Due to lack of correlations to predict losses through long orifices for laminar flow, the 
correlations of Hasegawa et al. (1997) and Bohra (2004), although limited to ǃ = 0.1 and 0.137 
respectively, were evaluated at the higher orifice diameter ratios tested in this work. 
Hasegawa et al. (1997) shows good agreement in laminar flow for the Stokes flow region, Re 
< 10, for ǃ = 0.5. It is however unable to predict turbulent flow. Bohra (2004) approximates 
turbulent flow data very well for all cases except for ǃ = 0.7. However, there is good agreement 
in laminar flow for ǃ = 0.7. The comparison (Figure 18) also revealed that an improvement of 
the models is required to predict losses accurately over a wide range of laminar and turbulent 
flow. No suitable correlation was found in the literature to predict pressure losses through 
long square edged orifices from laminar to turbulent flow regimes. The loss coefficient data 
obtained from the experimental work (Fester et al., 2010) is given in Table 5. 
 

STUDY FLUID βLor t/d K1Lor kLor 

Fester et al., 2010 CMC, Kaolin, 0.36 4 3500 76 

Fester et al., 2010 CMC, Kaolin 0.40 4 2100 44 

Fester et al., 2010 CMC, Kaolin 0.50 5 1500 17 

Fester et al., 2010 CMC, Kaolin 0.70 5 860 2.3 

Table 5. Loss coefficient data for long orifice 

4.7.4.2 Short orifices 

Although the work on orifices started in the early 1900s, it was mainly for determining 
discharge coefficients (Johansen, 1930; Medaugh & Johnson, 1940). A comparison of 
pressure loss characteristics of different geometries orifices and nozzles was done by Alvi et 
al. (1978). They found that the flow characteristics of orifices can be divided into three 
regimes: fully laminar region, re-laminarising region and turbulent region. Lakshmana Rao 
et al. (1977) investigated the critical Reynolds number for orifice and nozzle flows and found 
that the critical Reynolds number approached a constant value for low value of orifice or 
nozzle diameter to pipe diameter ratio. The work done on flow through orifice plate was 
carried out using Newtonian fluids. In such applications, the flow remains laminar even at 
large flow rates (Bohra et al., 2004). Edwards et al. (1985) used aqueous solutions of 
carboxymethylcellulose and suspensions of china clay in water through orifice plates. 
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Significant differences were found between the experimental results of Edwards et al. (1985) 
and those of Ntamba (2011) as shown in Table 6. However, the results of Ntamba (2011) 
shown in Figure 19 are in good agreement with that of Lakshmana Rao et al. (1977). 

 
Fig. 18. Comparison of experimental pressure loss coefficient with correlations for long 
orifices 

 
STUDY FLUID βor K1or kor 

Edwards et al., 1985 50% glycerol/water 
Lubricating oil 

0.289 786 - 

Edwards et al., 1985 50% glycerol/water 
Lubricating oil, CMC, China clay 

0.577 154 - 

Ntamba, 2011 Koalin, CMC, Bentonite 0.20 2250 1213 

Ntamba, 2011 Koalin, CMC, Bentonite 0.30 1111 227 

Ntamba, 2011 Koalin, CMC, Bentonite 0.57 340 14.2 

Ntamba, 2011 Koalin, CMC, Bentonite 0.70 122 3.85 

Table 6. Loss coefficient data for short orifices 
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β = 0.4 t/d = 4 (Hasegawa et al.,1997) β = 0.5 t/d = 5 (Hasegawa et al.,1997)
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Fig. 19. Experimental pressure loss coefficient data for short orifices 

5. Worked example
1
  

In order to illustrate the effect that the fittings loss has in laminar viscoplastic flow, a simple 
system consisting of 10 m of straight 50 mm ID pipe and 5 fittings - the loss coefficient of the 
above diaphragm valve in laminar flow is kv=946/Re3, and for turbulent flow is constant at 
kv= 2.5 - is set and analysed. The fluid used for the analysis is a viscoplastic paste (τy = 100 
Pa, K = 1 Pa.s, relative density = 1.5 and n = 1). These values were chosen so as to present  
a relatively simple viscoplastic rheology which would yield laminar flow in a 50 mm pipe at 
3 m/s. 

The objective of the analysis was to obtain the head loss as a function of volumetric flow 
rate. The operating flow rate considered was 0.006 m3/s which corresponded to an 
operating average velocity V of 3 m/s in a 50 mm pipe. 

Since the value of the laminar flow loss coefficient is not available to most designers, the 
effect of incorrectly using the turbulent - constant - value for design in laminar flow will be 
highlighted. 

Figure 20 shows the fittings head losses in both laminar and turbulent flow. Figure 20 shows 
three principal differences between the fittings head losses in both laminar and turbulent flow: 

1. The significant contribution of the laminar fittings loss to the start-up static head  
(at Q = 0). 

2. The very different shape presentation between laminar and turbulent flow. 
3. The significant difference in magnitude which arises. 

                                                 
1 From Slatter & Fester (2010): reproduced with permission 
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5.1 Start-up static head 

In this example, the contribution of the laminar fittings loss to the start-up static head (at 
Q = 0) is 6.5 m, as can be seen on the ordinate of Figure 20. Inspection of Eqn. (24) might 
lead one to expect a zero result at Q=0, as portrayed by the turbulent locus in Figure 20.  

However, it must be understood that this non-zero value is a result of the combined effects 
of Eqns. (13), (24) and (26), and is a sign of the presence of a yield stress. 

5.2 Shape presentation 

The inherently parabolic shape of the turbulent locus in Figure 20 is a direct consequence of 
the quadratic form of Eqn. (24) and the constant value of the loss coefficient kfitt=2.5 for this 
valve type in turbulent flow. 

Equally, the inherently viscoplastic shape of the laminar locus in Figure 20 is a direct 
consequence of the hyperbolic form of Eqn. (26) combined with the emphasis of the role of 
the yield stress in Eqn. (13). 

5.3 Difference in magnitude 

Figure 20 shows that there are considerable differences in the magnitude of the fittings Head 
losses in laminar and turbulent flow. A direct comparison of these magnitudes is shown in 
Figure 21. 

Figure 21 shows that the difference in magnitude is best expressed in orders of magnitude. 

In this example, the fittings head losses in laminar flow shown in Figure 20 and Figure 21 
exceed those in turbulent flow by several orders of magnitude. 

 
 

Fig. 20. Fittings Head Losses in Laminar and Turbulent flow  
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Fig. 21. Comparison of the Fittings Head Losses in Laminar and Turbulent flow shown in 
Figure 20 

5.4 Pump power predictions 

Whilst these three issues discussed above are of importance, the issue of primary practical 
interest for paste piping design is the error in power prediction, if the design is performed 
using the incorrect approach (Slatter & Fester, 2010). This situation is summarised for this 
example in Figure 22. 

Figure 22 shows the pump operating points for both the laminar and turbulent design cases, 
as derived from the practical design case example presented above. 

The three possible operating points arising from the different design approaches to the 
practical design case example are highlighted in Figure 22 and designated Point A, Point B 
and Point C. The coordinates and resulting motor power (brake power) requirements from 
each of these three operating points are presented in Table 7. 

 
Fig. 22. Pump operating points for both the laminar and turbulent design cases 
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Point A B C 

Q [m3/s] 0.0059 0.0046 0.0059 

H [m] 53 57 67 

Fluid Power [kW] 4.6 3.9 5.8 

Pump Efficiency 65% 50% 55% 

Brake Power [kW] 7.1 7.7 10.6 

Table 7. Pump operating point coordinates from Figure 22 

If the design is performed using the incorrect approach (Slatter & Fester, 2010), the 
(incorrect) design operating point will be at Point A for this example, as shown in Figure 22 
and Table 7. 

If the designer follows the information published by the authors (Fester et al., 2007; Mbiya et 
al., 2009) , the (correct) design operating point will be at Point C for this example, as shown 
in Figure 21 and Table 7. 

This presents at least two problems of profound practical importance:- 

1. If the designer follows the first (incorrect) approach, then Figure 22 shows that – in 
reality – the pump will actually operate, not at Point A, but at Point B, at pump speed 
N1. Point B presents an operating flow rate penalty exceeding 20% whilst being almost 
10% under-powered, as shown in Table 7.  

2. In order to achieve the desired flow rate, the operating point will need to move from 
Point B to Point C, i.e. the speed would need to be significantly increased to pump 
speed N2. This increase in pump speed will require 50% more brake power, as shown in 
Figure 22 and Table 7.  

The important practical message here is that the pump motor would be 50% undersized. 

All of these issues are further exacerbated by the shallow intersection angle which the 
laminar flow system curve presents to a centrifugal pump curve, as shown Figure 22. This 
will result in unstable operation, as small changes in head (i.e. small changes in material 
consistency) will result in significant changes in operating point flow rate. 

As indicated by other laminar flow investigations over several decades (e.g. Edwards et al., 
1985; Fester et al., 2008), all fittings show the kv values in laminar flow to be significantly 
greater than those in turbulent flow.  

6. Conclusions  

Minor losses are important in the efficient design of pipelines in laminar flow. The loss 
coefficients in laminar flow for all fittings are orders of magnitude greater than those in 
turbulent flow. The purely viscous driven flow regime is primarily at Re < 10, after which 
turbulence will be introduced that is dependent on the geometry of the fitting. For some 
fittings, the minima value obtained are very pronounced, especially for larger orifice ratios 
and larger valve sizes. For sudden contractions and long orifices, a smoother transition is 
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observed. Dynamic similarity can be established for geometrically similar fittings using a 
Reynolds number that can accommodate the rheological parameters of the fluid. Pump 
sizing estimates for shorter lengths of pipelines with a number of fittings operating in 
laminar flow can be underpredicted by up to 50%. The significance of the impact on pump 
sizing would therefore appear to be representative of other fittings in general, but focussed 
research to substantiate this is required. 
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