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1. Introduction 

A reliable bond to dental hard tissues and materials has always been one of the most 
significant contributions for restorative dentistry (Leinfelder, 2001). A durable and stable 
bond between resins and dental hard tissues and restorative materials which has to 
integrate all parts of the system into one coherent structure is fundamental for the long-term 
retention and clinical success of the restorations. However, micromechanical attachment is 
one of the key mechanisms for a reliable adhesion to dental hard tissues and restorative 
materials (Matinlinna & Vallitu, 2007; Van Noort, 2002b; Fabienelli, et al., 2010). Advances in 
adhesive dentistry have resulted in the recent introduction of modern surface conditioning 
methods in order to achieve high bond strengths through increased surface roughness of 
both dental hard tissues and the restorative materials (Matinlinna & Vallitu, 2007; Van 
Noort, 2002b).  

The use lasers in dentistry has evolved since their development in 1962. Researches have been 
carried out on effects of lasers on dental hard tissues and materials and applications of 
different wavelengths as they become available (Roberts-Harry, 1992; Convissar & Goldstein, 
2001; White, et al., 1993; Frentzen, et al., 1992; Arima & Matsumoto, 1993; Wilder-Smith, et 
al., 1997; Cernavin, 1995; Keller & Hibst, 1989; Burkes, et al., 1992; Wigdor, et al., 1993; 
Visuri, et al., 1996b). According to current literature there is no optimum wavelength for all 
dental applications. Each wavelength has distinct treatment advantages and offers various 
treatment options. Understanding the differences between laser wavelengths will help to 
choose the adequate wavelength for each application in the dental office (Kutsch, 1993).  

Laser light has properties such as being coherent, monochromatic and collimated. Laser light 
travels in specific wavelengths in a predictable pattern (coherent) and parallel (collimated) and 
it has one color (monochromatic). Lasers and target tissues interact in four ways. When a laser 
light hits the target it can be reflected, absorbed, scattered throughout the target or transmitted 
into the target (Kutsch, 1993). During laser application light energy is converted into heat and 
energy absorption on the target surface causes the vaporization. This process is called ablation 
or photoablation by vaporization (Cardoso, et al., 2008; Esteves–Oliveira, et al., 2007; 
Tachibana, et al., 2008; Lee, et al., 2007). Among currently available lasers, the erbium:yttrium-
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aluminum-garnet (Er:YAG) and Erbium,Chromium:Yttrium-Scandium-Gallium-Garnet 
(Er,Cr:YSGG) lasers have been proposed for different dental applications, including carious 
dentin removal, cavity preparation, surface conditioning, and as a surface treatment method 
for indirect restorations (Trajtenberg, et al., 2004; Atsu, et al., 2006; Bottino, et al., 2005; Gökçe, 
et al., 2007; Harashima, et al., 2005).  

2. Morphological analysis of Er:YAG laser treated enamel and dentin  

Etching of enamel with phosphoric acid was first recommended by Buonocore in 1955. 
(Buonocore, 1955). Resin bonding to tooth ensured by acid etching of enamel and/or dentin 
with total etch or self-etching techniques and followed by the use of a dentin adhesive 
(Fusayama, et al., 1979). Phosphoric acid removes the matrix phase of enamel and increases 
the surface area as well as creating high-energy hydrophilic surface with honey-comb-like 
structure (Sharpe, 1967; Reynold, 1975). Acid etching results in dissolution of the 
hydroxyapatite and enhances the penetration of adhesive monomers (Van Meerbeek, et al., 
2003) forming resin tags in situ after polymerization (Barkmeier & Cooley, 1992; Leinfelder, 
2001).  

Conversely bonding to dentin is more complex due to its hydrated biological structure. To 
obtain intimate association of adhesive and dentin is hard when dentin is conditioned with 
total etch technique (Marshall, et al., 1997; Pashley, 1992). Etching dentin results in smear-
free surface, open dentinal tubules with widened orifices due to removal of peritubular 
dentin, increased permeability by the loss mineralized dentin within the collagen matrix and 
exposed collagen web (Marshall, et al., 1997; Pashley, 1992; Pashley & Carvalho, 1997; 
Schein, et al., 2003).  

Micromechanical retention is still the key factor for bonding to dentin. Monomers 
containing hydrophilic radicals infiltrate through the collagen fibrils and polymerized to 
develop the micromechanical retention. Many efforts have been spent to promote this 
dentin-resin interdiffusion zone, hybrid layer, since its description in 1982 (Nakayabashi, et 
al., 1982).  

Air abrasion has also been introduced for enamel pretreatment by Olsen et al., in 1940. It 
was used for cavity preparation (Olsen, et al., 1997a). In this method, alumina particles were 
applied under air pressure to roughen the enamel surface (Zachrisson & Buyukyılmaz, 
1993). 

Etching dental hard tissues with laser has recently been proposed and may enable strong 
bonds with the restorative materials. Pulsed Nd:YAG lasers are sometimes used to etch 
enamel in preparation for bonding of restorative materials but some studies suggest that 
Nd:YAG etching alone results weaker bonds compared with acid etching (Roberts-Harry, 
1992). It was suggested that to use the Nd:YAG laser efficiently for surface roughening a 
topical absorber must be applied to enamel surfaces and low pulse energies (100 mj or less) 
should be used (Roberts-Harry, 1992). SEM evaluation of the surface of Nd:YAG laser 
treated dentin was partially obliterated due to resolidification of molten dentin with 
grooves, fissures and concavities but without smear layer (Ariyaratnam, et al., 1999). They 
also stated that lased dentin surfaces produced a rougher surface compared to untreated 
dentin. This difference was suggested to maintain the micromechanical interlocking with 
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the dentin adhesive. It was concluded that although laser irradiation with Nd:YAG laser 
produced a favorable surface for bonding, the bond strength to dentin did not differ from 
the conventionally treated dentin.  

Both enamel and carious dentine were suggested to be removed with Nd:YAG and excimer 
lasers without signs of thermal damage (White, et al., 1993; Frentzen, et al., 1992; Arima & 
Matsumoto, 1993; Wilder-Smith, et al., 1997). When compared with Nd:Yag laser, Ho:YAG 
laser was shown to remove dental hard tissues more effectively with less cracks (Cernavin, 
1995).  

Some investigations suggest that CO2 laser etching results in bonds of comparable strength 
on enamel and higher bond on dentin surfaces, compared to acid etching (Cooper, et al., 
1988; Liberman, et al., 1984). Therefore CO2 lasers can be recommended for enamel etching 
prior to composite restorations and fissure sealants without need of an absorber (Walsh, 
1994). However excessive heat generated by some lasers may cause pulpal damage (Akova, 
et al., 2005). Adequate laser parameters can supply limited pulpal temperature increases 
within safety limits (Obata, et al., 1999). Controversially CO2 laser at high fluencies and in 
continuous wave mode may cause cracking, flaking, crater formation, charring, melting and 
recrystallization of dental hard tissues (Stern, et al., 1972; Boehm, et al., 1997; McCormack, et 
al., 1995; Malmström, et al., 2001).  

Other pulsed lasers whose wavelengths are strongly absorbed by dental hard tissues and 
hydroxyapatite, e.g. erbium lasers (Er:YAG and Er,Cr:YSGG), can successfully be used for 
dental hard tissue procedures including conditioning or etching without any side effects. 
Again no absorber is required (Liberman, et al., 1984; Keller & Hibst, 1989; Burkes, et al., 
1992; Wigdor, et al., 1993; Visuri, et al., 1996b).  

The water and the hydrated components of dental hard tissues absorb the high energy of 
erbium lasers and evaporate with micro explosions resulting in particle removal (ablation). 
(Cardoso, et al., 2008; Esteves–Oliveira, et al., 2007; Tachibana, et al., 2008; Lee, et al., 2007). 
This thermomechanical effect of erbium lasers on dental hard tissues can vary according to 
the tissue composition and mainly the water concentration. The mechanism of ablation of 
dental hard tissues with erbium lasers is still unclear but it was proposed that it takes place 
by the expansion of subsurface water resulting in microexplosions. This microexplosion 
induce strong mechanical separation of the calcified tissue (Kayano, et al., 1989). This 
constitutes the major principle of erbium laser ablation and produce non-uniform tissue 
removal with ejection of both organic and inorganic tissue microparticles, creating the 
micro-crater like appearance typical of lased surfaces (Corona, et al., 2007) 

Erbium lasers have a shallow thermal penetration depth and can ablate sound and carious 
enamel and dentine (Keller & Hibst, 1989; Burkes, et al., 1992; Wigdor, et al., 1993; Visuri, et 
al., 1996b). Besides rough and irregular surface with sharp edged craters without color 
changes indicative of thermal damage (burning or carbonization) of surrounding tissues 
and/or the pulp have been reported. Concave and convex surfaces caused by microablation 
have been observed (Harashima, et al., 2005; Oelgiesser, et al., 2003). Er:YAG laser with 
appropriate parameters proposed to can selectively remove enamel hydroxyapatite crystals 
resulting in irregular surface that would enhance the micromechanical retention (Hibst & 
Keller, 1989; Hossain, et al., 1999).  
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Sasaki, et al., (2008) made a structural analysis of acid and Er:YAG laser etched enamel. 
They stated that acid etching exhibited a more homogenous etching pattern whereas 
Er:YAG alone showed areas of ablation. Er:YAG laser irradiation followed by acid etching 
resulted in more homogenous surface pattern than the only lased surfaces.  

Harashima, et al., (2005) reported that cavities prepared by Er:YAG laser showed 
characteristic rough surface similar to an acid etched surface with open dentinal tubules and 
stripped surfaces. They also stated very clean surfaces, almost free of debris when the laser 
tip was aligned perpendicular to the surface. Scratched appearance with interspersed open 
dentinal tubules at areas covered by melted surfaces was found with angulated laser 
application (Harashima, et al., 2005). Unlike acid etching it was shown that the collagen 
fibrils were not found forming a porous network responsible for the increased porosity of 
dentin surface and subsurface. The morphological analysis of resin-dentin interface of acid 
etched dentin revealed triangular hybridization with resin tags in different lengths at the 
transition between peri- and intertubular dentin. But little or no hybridization zones with 
fewer and thinner tags at the intertubular dentin areas could be observed due to scarcity and 
discontinuity of the interdiffusion area at the resin-dentin interface (Schein, et al., 2003).  

Literature review also states crater formations, mineral meltdowns and enamel melting, 
cracks, fissuring in enamel and smooth edged voids (Frentzen & Koort, 1992; Olsen et al., 
1997b). Parameter factors and wavelength specificity relate to the degree of change that can 
be induced to enamel. Varying pulse width, pulse mode and spot size can produce 
significant changes in enamel and dentin surface morphology (Frentzen & Koort, 1992).  

Erbium lasers also denatures the organic content and reduces the solubility of 
hydroxyapatite (Keller & Hibst, 1989; Hibst & Keller, 1989; Bader & Krejci, 2006). The 
interaction of erbium lasers with dental hard tissues results in negatively effected bond 
between the composite resins and dentin and collagen fibrils (Moretto, et al., 2010; Ceballo, 
et al., 2002; Ramos, et al., 2010, Oliveira, et al., 2010). Carvalho, et al., (2011) suggested that 
removal of laser irradiated dentin with phosphoric acid gel and sodium hypochlorite had 
increased the bond strength to dentin.  

In a recent study phosphoric acid etching of enamel was compared with Er:YAG laser and 
Er:YAG laser+acid etching, and it was concluded that Er:YAG laser+acid group exhibited 
the highest bond strength, followed by acid and laser groups. The lower bond strength with 
only laser group was attributed to the non-homogenous laser application leaving untouched 
areas on the surface. Laser application followed by acid etching effectively conditioned the 
non-lased spots remained within the irradiated area (Sasaki, et al., 2008).  

On the other hand some authors reported that the microretentive pattern resulting from 
laser irradiation could be favorable to bonding procedures (Hossain, et al., 2001; Li, et al., 
1992; Visuri, et al., 1996a). Some studies suggest that laser irradiated dentinal tissue resulted 
in lower bond strength than does non-irradiated dentin. Visuri, et al. (1996a) reported a 
significantly higher shear bond strength of composite to dentin prepared with an Er:YAG 
laser. In contrast, Sakakibara, et al. (1998), Ceballo, et al. (2002) and Dunn, et al. (2005) 
reported a decrease in bond strength to laser-irradiated dentin, and Armengol, et al. (1999) 
and Kataumi, et al. (1998) found no difference between laser- irradiated and non-irradiated 
specimens. 
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Treating dentin erbium lasers (Er:YAG and Er,Cr:YSGG) creates a rough, smear layer-free 
surface with open dentinal tubules. SEM observations of Carvalho, et al., (2011) revealed 
irregular and rugged dentinal surfaces, following Er,Cr:YSGG laser. Harashima, et al., (2005) 
observed smaller width and stripped surfaces on the cavities prepared by Er:YAG laser. 
They may also cause fissures and cracks that can be considered as drawbacks of using 
erbium lasers for surface pretreatment (Aoki, et al., 1998; Hossain, et al., 1999; De Munck, et 
al., 2002; De Oliveira, et al., 2007; Moretto, et al., 2010). Increase in acid resistance of dental 
hard tissues after laser irradiation was also been reported by some authors (Fried, et al., 
1996; Hossain, et al., 2000; Apel, et al., 2002; Liu, et al., 2006).  

SEM evaluation of Er:YAG laser treated enamel and dentin revealed different surface 
morphologies in accordance with literature reviewed depending on the laser parameters. 

2.1 Morphological analysis of Er:YAG laser treated enamel  

 
Fig. 1. Enamel. 100 mj. 10 Hz. With water cooling. Honey-comb appearance can be seen but 
not throughout the surface which is due to non-homogenous application of the laser.  

 
Fig. 2. Enamel. 100 mj. 10 Hz. With water cooling. Honey-comb appearance can be seen on 
the surface similar to acid etching.  
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Fig. 3. Enamel. 100 mj. 10 Hz. With water cooling. Higher magnification of the surface in Fig. 
2. No signs of thermal damage. Honey-comb appearance.  

 
Fig. 4. Enamel. 250 mj. 10 Hz. With water cooling. Serrated surface with honey-comb 
appearance. 

 
Fig. 5. Enamel. 500 mj. 10 Hz. With water cooling. Interprismatic matrix has been removed. 
Similar to acid etching but some melting points probably due to repeated shots at the same 
point can be observed.  
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Fig. 6. Enamel. 600 mj. 10 Hz. Without water cooling. Layered enamel surface possibly due 
to dehydration of enamel during laser application.  

 
Fig. 7. Enamel. 750 mj. 10 Hz. Without water cooling. Higher magnification of the previous 
Fig. Layered enamel surface.  

 
Fig. 8. Enamel. 800 mj. 5 Hz. Without water cooling. Melted and resolidified enamel. This 
texture is highly acid resistant.  
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Fig. 9. Enamel. 1000 mj. 10 Hz. Without water cooling. Rose-bud like appearance. Clear 
evidence of over destruction of enamel with high energy intensity. Enamel lost its integrity 
in layers around the lased point. (The crack at midline is a result of dehydration during 
preparation of the specimen for SEM evaluation). 

 
Fig. 10. Enamel. 1000 mj. 10 Hz. Without water cooling. Similar appearance with Fig. 13. 
Overdestructed and layered surface as a result of excessively heated enamel.  

2.2 Morphological analysis of Er:YAG laser treated dentin  

 
Fig. 11. Dentin. 250 mj. 10 Hz. Without water cooling. Swollen dentin orifices.  
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Fig. 12. Dentin. 400 mj. 10 Hz. Without water cooling. Cavitation with charring. (The crack at 
midline is a result of dehydration during preparation of the specimen for SEM evaluation).  

 
Fig. 13. Dentin. 250 mj. 10 Hz. With water cooling. Partially open dentinal tubules with 
crater formations.  

 
Fig. 14. Dentin. 500 mj. 10 Hz. Without water cooling. Pop-corn like appearance. One 
exploded (right) an done over swollen dentin orificies. Evidence of thermal destruction of 
dentin.  
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Fig. 15. Dentin. 500 mj. 5 Hz. With water cooling. intertubular Apperent evidence of 
intertubular dentin being affected dramatically by laser. (The crack on the right is a result of 
dehydration during preparation of the specimen for SEM evaluation) 

 
Fig. 16. Dentin. 250 mj. 5 Hz. With water cooling. Nearly all dentinal tubules are open. 
Adequate surface for bonding procedures. Stratified surface due to non-homogenous 
application of laser. Calcospherite areas which are usually seen following Na(OH) were 
observed.  

 
Fig. 17. Dentin. 250 mj. 5 Hz. With water cooling. Higher magnification of the surface in Fig. 
16. No signs of thermal damage. No melted and swollen dentin. All dentinal tubules are 
open. Adequate surface for bonding procedures.  
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Fig. 18. Dentin. 250 mj. 5 Hz. With water cooling. Higher magnification of the surface in Fig. 
17. No signs of thermal damage. 

3. Morphological analysis of Er:YAG laser treated all-ceramic materials 

A new class of dental framework materials have been introduced to the market for crown 
and fixed partial denture fabrication such as high-aluminium trioxide (alumina) ceramics, 
leucite reinforced feldspathic ceramics, castable glass-ceramics, machining and CAD/CAM 
ceramic systems and yttrium tetrogonal zirconia polycrystal (Y-ZTP; zirconia) (Atsu, et al., 
2006; Amaral, et al., 2006; Bottino, et al., 2005; Kim, et al., 2005; Kern & Wegner, 1998). 
Alumina and zirconia demonstrate high clinical success due to their high cristalline content 
and are potential substitutes for traditional materials (Cavalcanti, et al., 2009a; Jacobsen, et 
al., 1997; Haselton, et al., 2000; Toksavul & Toman, 2007; Fradeani & Redemani, 2002).  

The tetragonal to monoclinic phase transformation capability of zirconia results in high 
mechanical properties (Guazzato, et al.,2004). External stresses such as sandblasting, 
grinding, impact, and thermal aging can trigger this phase transformation mechanism 
(Karakoca & Yılmaz, 2009).  

The clinical succes and survival rates of these restorations depend on several factors such as 
cementation procedure. To maintain a micromechanical bond, a key factor between 
restoration and the resin, luting surfaces of the restorations should be conditioned (Awliya, 
et al., 1998; Özcan, et al., 2001). To achieve reliable adhesion to these new materials, surface 
pre-treatments usually followed by silanization are required (Atsu, et al., 2006; Amaral, et 
al., 2006; Bottino, et al., 2005; Kim, et al., 2005; Kern & Wegner, 1998).  

To obtain high mechanical bond strength to newer restorations, the inner surfaces are 
roughened by numerous techniques to increase the luting surface area. Among several 
methods that have been investigated for surface modification dental restorative materials, 
grinding, abrasion with diamond rotary instruments, airborne particle abrasion with 
aluminum oxide particles (sandblasting), chemical etching with different concentrations of 
hydrofluoric acid (HF), silica coating (Cojet, Rocatec), Silicoater MD, PyrosilPen silanization, 
selective infiltration-etching technique and combinations of any of these methods are the 
most common conditioning techniques prior to luting procedures (Amaral, et al., 2006; De 
Oyague, et al., 2009; Özcan, et al., 2001; Özcan, 2002; Kern & Thompson, 1994; Aboushelib, et 
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al., 2007). Although surface treatments are used to micromechanical retention, they might 
affect the mechanical properties of zirconia (Sato, et al., 2008). 

For chemical etching, different concentrations of HF acid, acidulated phosphate fluoride and 
ammonium bifluoride are used to condition the restorations (Blatz, et al. 2003; Clauss, 2000; 
Janda, et al. 2003). Etching dissolves the low fusing glass matrix exposing the cristalline 
structure and creates a micromechanically retentive surface but also promotes hydroxyl 
group formation on the etchable ceramic materials (Matinlinna & Vallitu, 2007; Özcan, 2003; 
Van Noort, 2002a; Özcan, et al., 2001). But some new materials such as zirconia and alumina 
are non-etchable because of they do not have glassy phase at the cristalline border and it is 
difficult to form microretentive surfaces to obtain strong and durable bonds with chemical 
etching techniques (Blatz, et al., 2003; Clauss, 2000; Janda, et al., 2003; Awliya, et al., 1998). 
Therefore different surface conditioning methods such as sandblasting and silica coating 
have been suggested for surface pretreatments of alumina and zirconia frameworks to 
modify the surface properties (Della Bona, et al., 2004; Phark, et al., 2009; Ersu, et al., 2009; 
Jacobsen, et al., 1997).  

Different sizes of alumina particles between 25 and 250 μm are used (Blatz, et al., 2003; Kern 
& Wegner, 1998; Hummel & Kern, 2004; Curtis, et al., 2006). Sand blasting the surface with 
aluminum oxide particles cleans the ceramic surface and creates adequate bonding with 
micromechanical mechanisms to alumina- and zirconia based frameworks (Matinlinna & 
Vallitu, 2007; Phark, et al., 2009; Blatz, et al., 2003; Kern & Wegner, 1998; Hummel & Kern, 
2004; Blatz, et al., 2004). The abrasive process removes loose contaminated layers, increases 
surface area and improves the wettability (Amaral, et al., 2006; Kümbüloğlu, et al., 2006).  

Large abrasive particles result in rougher surface since the abrasion of the surface increases 
in proportion to the square of the diameter of the particle. Particle size variations and and 
the high pressure during sandblasting may cause flaws and phase transformation that 
expedites micro-crack formation and lead to altered mechanical properties of zirconia 
(Zhang, et al., 2004; Zhang, et al., 2006). Mechanical grinding and sandblasting may create 
subcritical microcracks and phase transformation within zirconia surface which might 
negatively affect the mechanical properties (Karakoca & Yılmaz, 2009; Ayad, et al., 2008).  

Sandblasting is not recommended to roughen In-Ceram Zirconia frameworks as the 
aluminum oxide particles used to condition the surface have a hardness similar to that of the 
aluminum oxide crystals present in the target material (Borges, et al., 2003). Alternatively 
use of synthetic diamond particles 1-3 μm in size have been advocated to roughen the 
aluminous ceramics (Sen, et al., 2000).  

Another method to inrease the surface energy of ceramic materials is tribochemical silica 
coating that is based on forming a SiO2 layer followed by silane application with accelerated 
silica coated alumina particles on to the ceramic surface, including non-etchable alumina 
and zirconia (Matinlinna & Vallitu, 2007; Kramer, et al., 1996; Sindel, et al., 1996; Özcan, 
2002). Silica coating method also provides micromechanical retention like sandblasting and 
silica deposition on the luting surface (Kern & Thompson, 1995; Matinlinna & Vallitu, 2007; 
Özcan, et al., 2001). In a recent study AFM results revealed irregular and heterogeneous 
surfaces following silica coating and sandblasting of zirconia with the formation of high 
peaks and shallows while SEM observations showed microretentive grooves in conjuction 
with Atomic Force Microscope (AFM) results (Subaşı & İnan, 2011).  
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In addition to currently used conditioning methods, laser-induced modifications of dental 
materials have also been studied. Lasers have been proposed to modify the surface of 
materials in relatively safe and easy means (Ersu, et al., 2009; Gökçe, et al., 2007; Akova, et 
al., 2005; Spohr, et al., 2008; Cavalcanti, et al., 2009b; Jacobsen, et al., 1997). Implant surfaces 
treated with lasers exhibit high degree of purity with adequate surface roughness (Gaggl, et 
al., 2000; Cho & Jung, 2003). 

Among the several applications of lasers, surface conditioning for bonding have also been 
reported. Various laser types such as Nd:YAG, Er:YAG, Er,Cr:YSGG and CO2 have been 
studied for surface alterations of dental materials (Convissar & Goldstein, 2001). But only 
limited studies are available on the laser treatment of all ceramic materials (Ersu, et al., 2009; 
Gökçe, et al., 2007; Akova, et al., 2005; Cavalcanti, et al., 2009b; Jacobsen, et al., 1997; 
Cavalcanti, et al. (2009a).  

Ceramics do not effectively absorb some certain wavelengths such as 1064 nm (Nd:YAG). To 
increase the energy absorption of this laser the surface of ceramic material can be covered 
with graphite powder prior to laser irradiation. During laser application the graphite is 
removed from the surface with microexplosions (Spohr, et al., 2008).  

Some lasers are also used for other applications such as forming a glazed surface layer on 
ceramics, the removal of resin composite filling materials, laser welding of ceramics and metal 
alloys, including titanium, and increasing the corrosion resistance of metal alloys (Ersu, et al., 
2009; Schmage, 2003). Focussed CO2 laser causes in conchoidal tears (result of surface 
warming) on ceramic surface that provides mechanical retention between resin composite and 
ceramics. But sudden temperature changes could create internal tensions that might affect the 
bond strength (Ersu, et al., 2009). The authors concluded that CO2 laser surface modification 
demonstrated higher bond strength than control, sandblasted and chemical etching.  

Results of studies that compared the bond strength of resins to CO2 laser and chemically 
etched zirconia vary. Obata, et al., (1999) stated that laser etching produced lower bond 
strength compared to acid ecthing whereas Ural, et al., (2010) proposed higher bond 
strength. They attribute the high bond strength values to power levels of the laser used in 
their study. Increased power settings caused micro-cracks and high bond strength (Ural, et 
al., 2010).  

Watanabe, et al., (2009) suggested that Nd:YAG laser irradiation improved the mechanical 
properties of cast titanium. Nd:YAG laser as an etchant was also used to enhance the bond 
strength of low-fusing ceramic to titanium (Kim & Cho, 2009).  

Nd:YAG laser was also used to roughen In-Ceram Zirconia and feldspathic ceramic (Li, et 
al., 2000; Spohr, et al., 2008). Li, et al., (2000) reported that SEM images of Nd:YAG laser 
applied specimens was fovarable to mechanical retention between the feldspathic ceramic 
and the resin cement and both laser and HF acid etched groups exhibited same shear bond 
strength. Nd:YAG laser treatment of In-Ceram Zirconia caused surface changes 
characterized with material removal due to the micro-explosions resulting in formation of 
voids and fusing and melting of the most superficial ceramic layer followed by solidification 
to a smooth blister-like surface (Spohr, et al., 2008). Nd:YAG laser irradiation of zirconia 
causes color change to black with many cracks and reduced oxygen content (Noda, et al., 
2010).  
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Recently roughening capacity of the Er:YAG laser for the inner surfaces of the lithium di-
silicate material has been introduced (Gökçe, et al., 2007). Ceramic specimens laser etched 
with low energy levels exhibited similar bond strength that of chemicaly etched specimens. 
But as the energy level increased bond strength values decreased dramtically. They 
concluded that their results could be explained by insufficient micro depths of the 
irregularities formed by high Er:YAG laser power settings, which resulted in limited 
penetration of silane and low bond strength. Higher power settings resulted in low bond 
strengths which might be due to over destruction (disassociation) of the crystal and/or 
matrix phases or heat damaged layer which was poorly attached to the infra layers or 
increased luting agent thickness due to craters caused by laser pulses (Gökçe, et al., 2007).  

Erbium lasers are absorbed mainly by water and their absorption by water-free materials are 
compromised. To increase the effect of erbium lasers, covering the zirconia surfaces with 
graphite or hydroxapatite powder was recommended (Cavalcanti, et al., 2009b). Akın, et al., 
(2011) irradiated zirconia surface with Er:YAG laser and found increased surface roughness 
and surface irregularities compared to the untreated specimens. The authors used low 
power settings with water cooling and did not observe microcracks. They concluded that 
altering the zirconia surface with Er:YAG laser increased the shear bond strength of ceramic 
to dentin and found to be effective for decreasing microlekage in the adhesive-ceramic 
interface. Their results were in accordance with the study of Cavalcanti, et al. (2009a). Erdem 
& Erdem, (2011) studied the effect of Er:YAG laser irradiation with water cooling on 
zirconia and unlike forementioned resarchers they suggested that laser treatment decreased 
the bond strength of resin composite to zirconia framework. They observed microcracks 
throughout the surface in contrast with Akın, et al., (2011). They attributed the low bond 
strength values to excessively affected surfaces and crack formation which was possibly a 
result of laser irradiation. Stepped local temperature changes and pressurized water followed 
by thermocycling could be responsible for low temperature degredation of zirconia resulting 
in low bond strengths (Erdem & Erdem, 2011). They might have also induced phase 
transformation (Cavalcanti, et al., 2009a). The microcrack formation and sizes enlarged as the 
laser intensity increased (Cavalcanti, et al., 2009b). Stübinger, et al., (2008) demonstrated that 
Er:YAG and CO2 lasers adversely affected the zirconia implant surfaces. They found crack 
formations up to 100 μm depth and large grains in blackened areas under SEM evaluation. 
Excessive power settings shown to be deterious to zirconia and their use for zirconia surface 
conditioning was questionable (Cavalcanti, et al. 2009b; Navarro, et al., 2010).  

Subaşı & İnan, (2011), evaluated the Er:YAG laser treated zirconia with AFM and SEM. AFM 
and SEM results of lased surfaces revealed similar texture to that of the control group with 
the exception that sharp peaks formations of the lased surfaces. Cavalcanti, et al. (2009b) 
also demonstrated that increased laser energy levels increased surface roughness of zirconia. 
Melting, excessive loss of mass, and the presence of smooth areas surrounded by cracks 
were observed. Lower energy intensities (200 mj) had milder effect with smaller cracks 
along with melting, solidification and color changes without loss of structure compared to 
higher intensities (400 and 600 mj) (Cavalcanti, et al., 2009b). 200 mj irradiation also 
provided alterations similar to sandblasting. Effect of Nd:YAG laser (100 mj) and Er:YAG 
laser (200 mj) exhibited similar topographies although the Nd:YAG laser had a totally 
different target interaction compared with the Er:YAG laser (Da Silveira, et al., 2005; 
Cavalcanti, et al., 2009b).  
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There is no consensus about energy levels of Er:YAG laser that could be used to modify the 
zirconia surface. 400 mj at 10 Hz (Subaşı & İnan, 2011), 150 mj at 10 Hz (Akın, et al., 2011), 
200 mj at 10 Hz (Erdem & Erdem, 2011), 200 mj at 10 Hz (Cavalcanti, et al., 2009a); 200 mj, 
400 mj, 600 mj at 10 Hz (Cavalcanti, et al., 2009b), 300 mj at 10 Hz (Şen & Ceylan, 2010) were 
chosen to roughen zirconia surfaces. Besides different methods have been chosen to 
evaluate the bond strength and surface topography. Therefore it is difficult to compare the 
results of the studies reviewed.  

3.1 Morphological analysis of Er:YAG laser treated and hydroflouric acid etched Li-
Disilicate material 

SEM evaluations of 9.5% Hydrofluoric acid and Er:YAG laser Li-disilicate material revealed 
different surface morphologies, depending on the surface conditioning methods.  

3.1.1 SEM evaluation before shear bond strength testing 

 
Fig. 19. The untreated surface showing intact glassy phase without any apparent crystals. 

 
Fig. 20. 9.5% HF, 30 seconds. The surface has both apparent Li-disilicate crystals and glassy 
matrix. Glass matrix phase could not be completely removed if not applied homogenously 
and might lead to ill penetration of silane and the adhesive.  
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Fig. 21. 9.5% HF, 30 seconds. Visible Li-disilicate crystals. Completely removed glassy 
matrix. Appropriate etching pattern and surface for adhesive cementation (Gökçe et al., 
2007). 

  
Fig. 22. Er:YAG laser, 300 mj, 10 Hz. Affected (a) and unaffected (u) areas of lased surface.  

 
Fig. 23. Er:YAG laser, 300 mj, 10 Hz. Irregular Li-disilicate crystals in smaller sizes (Gökçe et 
al., 2007).  

a 

u
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Fig. 24. Er:YAG laser, 600 mj, 10 Hz. Increased surface irregularities with severely affected 
and disassociated Li-disilicate crystals (Gökçe et al., 2007). 

 
Fig. 25. Er:YAG laser, 900 mj, 10 Hz. Severely affected and disassociated Li-disilicate crystals 
(Gökçe et al., 2007). 

 
Fig. 26. Er:YAG laser, 1000 mj, 10 Hz. Melted and resolidified surface. This layer is poorly 
attached to the underlying intact phase.  
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Fig. 27. Er:YAG laser, 1000 mj, 10 Hz. Higher magnification of the surface in Fig. 26.  

3.1.2 SEM evaluation after shear bond strength testing 

SEM evaluation following shear bond strength of the untreated, HF acid etched and Er:YAG 
laser conditioned Li-Disilicate material exhibited different failure modes, indicatives of 
adhesion of the bonding agent and the luting cement (Variolink II). 

 
Fig. 28. Untreated ceramic surface. Adhesive failure inbetween the ceramic and the cement. 
No rough surfaces were noted on the ceramic (Gökçe et al., 2007). 

 
Fig. 29. 9.5% HF, 30 seconds. Good adhesion at the cement-ceramic interface with increased 
surface roughness. Mainly  cohesive failures within the cement (Gökçe et al., 2007).  

Cement

Ceramic

Ceramic

Cement
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Fig. 30. Er:YAG laser, 300 mj, 10 Hz. No visible cement on the margins, while a cement 
remnant at the center of the specimen with adhesive+cohesive failures were observed 
(Gökçe et al., 2007).  

   
Fig. 31. Er:YAG laser, 600 mj, 10 Hz. Partially delaminated cement surfaces can be observed 
with adhesive failures (Gökçe et al., 2007). 

 
Fig. 32. Er:YAG laser, 900 mj, 10 Hz. Adhesive failure between cement and ceramic. 
Decreased irregularities and severe effects of laser on the ceramic surface (Gökçe et al., 
2007). 

Ceramic
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3.2 Morphological analysis of sandblasted and Er: YAG laser-roughened alumina 
material 

 
Fig. 33. Untreated In-Ceram Alumina (Şen, 2010). 

 
Fig. 34. In-Ceram Alumina. Airborne particle abrasion (110μm Al2O3). Affected and rougher 
surface compared to untreated surface with shallow pits (Şen, 2010).  

 
Fig. 35. In-Ceram Alumina. Er:YAG laser, 150 mj at 10 Hz with water cooling. Locally 
affected points on the surface due ton on homogenous application of the laser (Şen, 2010).  
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Fig. 36. In-Ceram Alumina. Er:YAG laser, 250 mj at 10 Hz with water cooling. Generalized effect 
of laser rougher surface compared to untreated and 150 mj laser applied surfaces (Şen, 2010).  

 
Fig. 37. In-Ceram Alumina. Er:YAG laser, 400 mj at 10 Hz with water cooling. Serrated and 
smoothened surface by resolidification of melted areas. This resolidified layer might be 
poorly attached to the underlying material (Şen, 2010).  

3.3 Morphological analysis of sandblasted, silica coated and Er: YAG laser-roughened 
zirconia 

3.3.1 SEM evaluation before shear bond strength testing 

  
Fig. 38. Untreated zirconia. 2000x (left) and 5000x (right) magnifications (Erdem & Erdem, 2011). 
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Fig. 39. Sandblasted (particle size 110 µm) zirconia. 2000x (left) and 5000x (right) 
magnifications. Increased roughness compared to untreated zirconia (Erdem & Erdem, 2011). 

 
Fig. 40. Sandblasted (particle size 180 µm) zirconia. 500x magnification. Similar texture with 
the 110 µm air abraded surface.  

  
Fig. 41. Silica coated (Rocatec Pre110 µm and Rocatec Soft 30 µm) zirconia. 2000x (left) and 
5000x (right) magnifications. Increased roughness similar to sandblasting and silica 
deposition on the surface can be observed (Erdem & Erdem, 2011).  
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Fig. 42. Silica coated (Rocatec Pre110 µm and Rocatec Soft 30 µm) zirconia. 500x magnification. 
Increased roughness similar to particle abrasion with aluminum oxide (Şen, 2010).  

  
Fig. 43. Graphite coated and lased (200 mj, 10 Hz) zirconia. 2000x (left) and 5000x (right) 
magnifications. Rough and severely affected appearance with irregular surface  (Şen, 2010) 
with micro cracks (Erdem & Erdem, 2011).  

3.3.2 SEM evaluation after shear bond strength testing 

 
Fig. 44. Untreated zirconia. 2000x (first line) and 5000x (second line) magnifications. No 
cement retention was observed on untreated zirconia (Erdem & Erdem, 2011).  
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Fig. 45. Sandblasted (particle size 110 µm) zirconia. 2000x (first line) and 5000x (second line) 
magnifications. Two of the cements tested exhibited both adhesive and cohesive failures. (Z: 
Zirconia, C: Cement) (Erdem & Erdem, 2011). 

 
Fig. 46. Silica coated (Rocatec Pre110 µm and Rocatec Soft 30 µm) zirconia. 2000x (first line) 
and 5000x (second line) magnifications. Similar results with sandblasting was oserved after 
shear bond strength testing (Z: Zirconia, C: Cement) (Erdem & Erdem, 2011). 

 
Fig. 47. Graphite coated and lased (200 mj, 10 Hz) zirconia. 2000 (first line) and 5000 (second 
line) magnifications. Adhesive failures observed in all cement groups. No cement retention 
on any of the groups. (X: severely affected area, C: Cement) (Erdem & Erdem, 2011). 
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4. Conclusion  

There are many techniques to condition dental hard tissues and luting surfaces of indirect 
restorations prior to bonding. Operators find it difficult to decide which technique offers 
better results, and are also uncertain about the factors that might influence their techniques 
of choice. However micromechanical retention of luting materials to acid etched conditioned 
dental hard tissues is currently seems to be the most successful and reliable approach for 
dental bonding. But surface characteristics of Er:YAG lased enamel and dentin are 
responsible for considering this surface adequate for resin bonding.  

It is assumed that the ablation rate of lasers on the dental materials is strongly influenced by 
the differences in composition and microstructure of the material and the presence of water. 
In spite of its great potential for ablation, Er:YAG laser effectiveness and safety is also 
directly related to adequate setting parameters. Power settings, frequency and durations of 
laser irradiation play an important role to obtain optimum bond strength and roughness 
values.  

Future studies are needed to evaluate the superficial and sub-superficial layers of irradiated 
dental hard tissues and materials in order to develop new agents that can interact properly 
with lased substrate. In my opinion, in the near future, 9.6 μm CO2 laser with an adequate 
delivery system that has the absorption peak in hydroxyapatite will replace many dental 
hard tissue lasers, which are currently being used. In the presented chapter, the 
morphological assessment of Er:YAG lased dental hard tissues and materials have been 
discussed under the light of the current literature. 
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Gaggl, A.; Schultes, G.; Müller, WD. & Kärcher, H. (2000). Scanning electron microscopical 
analysis of laser-treated titanium implant surfaces–a comparative study. 
Biomaterials, Vol.21, pp. 1067–1073 

Gökçe, B.; Özpınar, B.; Dündar, M.; Çömlekoglu, E.; Sen, BH. & Güngör, MA. (2007). “Bond 
Strengths of All Ceramics: Acid vs Laser Etching”. Operative Dentistry, Vol.32, pp. 
168-173.  

Guazzato, M.; Albakry, M.; Ringer, SP. & Swain, MV. (2004). Strength, fracture toughness 
and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based 
dental ceramics. Dental Materials, Vol.20, pp. 449–456. 

www.intechopen.com



Effects of Er:YAG Laser Irradiation on 
Dental Hard Tissues and All-Ceramic Materials: SEM Evaluation 

 

207 

Harashima, T.; Kinoshita, J. & Kimura, Y.; Brugnera, A.; Zanin, F.; Pecora JD. & Matsumoto, 
K. (2005). Morphological comparative study on ablation of dental hard tissues at 
cavity preparation by Er:YAG and Er,Cr:YSGG lasers. Photomedicine and Laser 

Surgery, Vol.23, No.1, pp. 52–55. 
Haselton, DR.; Diaz-Arnold, AM. & Hillis, SL. (2000). Clinical assess- ment of high-strength 

all-ceramic crowns. Journal of Prosthetic Dentistry, Vol.83, pp. 396–401. 
Hibst, R. & Keller, U. (1989). Experimental studies of the application of the Er:YAG laser on 

dental hard substances: I. Measurement of the ablation rate. Laser in Surgery and 

Medicine, Vol.9,  No.4 , pp. 338– 344. 
Hossain, M.; Nakamura, Y.; Yamada, Y.; Kimura, Y.; Nakamura, G. & Matsumoto, K. (1999). 

Ablation depths and morphological changes in human enamel and dentin after 
Er:YAG laser irradiation with or without water mist. Journal of Clinical Laser in 

Medical Surgery, Vol.17, pp. 105- 109. 
Hossain, M.; Nakamura, Y.; Kimura, Y.; Yamada, Y.; Ito, M. & Matsumoto, K. (2000). Caries-

preventive effect of Er:- YAG laser irradiation with or without water mist. Journal of 

Clinical Laser in Medical Surgery, Vol.18, pp. 61–65. 
Hossain, M.; Nakamura, Y.; Yamada, Y.; Suzuki, N.; Mur- akami, Y. & Matsumoto, K. (2001). 

Analysis of surface roughness of enamel and dentin after Er,Cr:YSGG laser ir- 
radiation. Journal of Clinical Laser in Medical Surgery, Vol.19, pp. 297–303. 

Hummel, M. & Kern, M. (2004). Durability of the resin bond strength to the alumina ceramic 
Procera. Dental Materials, Vol.20, No.5, pp. 498–508 

Jacobsen, NL.; Mitchell, DL.; Johnson, DL. & Holt, RA. (1997). Lased and sandblasted 
denture base surface preparations affecting resilient liner bonding. Journal of 

Prosthetic Dentistry, Vol.78, No.2, pp. 153–158 
Janda, R.; Roulet, JF.; Wulf, M. & Tiller, H-J. (2003). A new adhesive technology for all-

ceramics. Dental Materials, Vol.19, No.6, pp. 567–573 
Karakoca, S. & Yılmaz, H. (2009). Influence of surface treatments on surface roughness, 

phase transformation, and biaxial flexural strength of Y-TZP ceramics. Journal of 

Biomedical Materials Research Part B: Applied Biomaterials, Vol.91, No.2, pp. 930–937 
Kayano, T.; Ochiai, S.; Kiyono, K.; Yamamato, H.; Nakajima, S. & Mochizuki, T. (1989). 

Effects of Er:YAG laser irradiation on human extracted teeth. The Journal of the 

Stomatological Society, Japan, Vol.56, No.2, pp. 381–392 
Kataumi, M.; Nakajima, M.; Yamada, T. & Tagami, J. (1998). Tensile Bond strength and SEM 

evaluation of Er:YAG laser irradiated dentin using dentin adhesive. Dental 

Materials Journal, Vol.17, pp. 125–138 
Keller, U. & Hibst, R. (1989). Experimental studies of the application of the Er:YAG laser on 

dental hard substances: II. Light microscopic and SEM investigations. Lasers in 

Surgery and Medicine, Vol.9, No.4, pp. 345–351 
Kern, M. & Thompson, V.P. (1994). Sandblasting and silica coating of a glass-infiltrated 

alumina ceramic: volume loss, morphology, and changes in the surface 
composition. Journal of Prosthetic Dentistry, Vol.71, No.5, pp. 453–461 

Kern, M. & Thompson, V.P. (1995). Bonding to glass infiltrated alumina ceramic: adhesive 
methods and their durability. Journal of Prosthetic Dentistry, Vol.73, No.3, pp. 240–
249  

www.intechopen.com



 
Scanning Electron Microscopy 

 

208 

Kern, M. & Wegner, SM. (1998). Bonding to zirconia ceramic: adhesion methods and their 
durability. Dental Materials, Vol.14, No.1, pp. 64–71 

Kim, BK.; Bae, HE.; Shim, JS. & Lee, KW. (2005). The influence of ceramic surface treatments 
on the tensile bond strength of composite resin to all-ceramic coping materials. 
Journal of Prosthetic Dentistry, Vol.94, No.4, pp. 357–362 

Kim, JT. & Cho, SA. (2009). The effects of laser etching on shear bond strength at the 
titanium ceramic interface. Journal of Prosthetic Dentistry, Vol.101, No.2, pp.101–106 

Kramer, N.; Popp, S.; Sindel, J. & Frankenberger, R. (1996). Einfluss der Vorbehandlung von 
ompositinlays auf die Verbundfestigkeit. Deutsch Zahnarztl Z, Vol.51, pp. 598–601 

Kumbuloglu, O.; Lassila, L.V.; User, A. & Vallittu, P.K. (2006). Bonding of resin composite 
luting cements to zirconium oxide by two air-particle abrasion methods. Operative 

Dentistry, Vol.31, No.2, pp. 248–255 
Kutsch, VK. (1993). Lasers in dentistry: comparing wavelengths. Journal of the American 

Dental Association, Vol.124, No.2, pp.49-54  
Lee, B.S.; Lin, P.Y.; Chen, M.H.; Hsieh, TT.; Lin, CP.; Lai, JY. & Lan, WH. (2007). Tensile 

bond strength of Er,Cr:YSGG laser-irradiated human dentin and analysis of 
dentin–resin interface. Dental Materials, Vol.23, No.5, pp.570–578. 

Leinfelder, KF. (2001). Dentin adhesives for the twenty-first century. The Dental Clinics 

of North America, Vol.45, No.1, pp. 1-6 
Li, R.; Ren, Y. & Han, J. (2000). Effects of pulsed Nd:YAG laser irradiation on shear bond 

strength of composite resin bonded to porcelain. Hua Xi Kou Qiang Yi Xue Za Zhi, 
Vol.18, No.6, pp. 377–379. 

Li, Z.Z.; Code, J.E. & Van De Merwe, W.P. (1992). Er:YAG laser ablation of enamel and 
dentin of human teeth: Determination of ablation rates at various fluencies and 
pulse repetition rates. Lasers in Surgery and Medicine, Vol.12, No.6, pp. 625–630 

Liberman, R.; Segal, TH.; Nordenberg, D. & Serebro, LI. (1984). Adhesion of composite 
materials to enamel: Comparison between the use of acids lasing as pretreatment. 
Lasers in Surgery and Medicine, Vol.4, No.4, pp. 232-237 

Liu, J.F.; Liu, Y. & Stephen, H.C. (2006). Optimal Er:YAG laser energy for preventing enamel 
demineralization. Journal of Dentistry, Vol.34, No.1, pp. 62–66 

Malmström, HS.; McCormack, SM.; Fried, D. & Featherstone, JD. (2001). Effect of CO2 laser 
on pulpal temperature and surface morphology: an in vitro study. Journal of 

Dentistry, Vol.29, No.8, pp. 521-529  
Marshall Jr., GW.; Marshall, SJ.; Kinney, JH. & Balooch, M. (1997). The dentin substrate: 

structure and properties related to bonding. Journal of Dental Research, Vol.25. No.6, 
pp. 441-458 

Matinlinna, JP. & Vallitu, PK. (2007). Bonding of resin composites to etchable ceramic 
surfaces – an insight review of the chemical aspects on surface conditioning. Journal 

of Oral Rehabilitation, Vol.34, No.8, pp. 622-630 
McCormack, SM.; Fried, D.; Featherstone, JD.; Glena, RE. & Seka, W. (1995). Scanning 

electron microscope observations of CO2 laser effects on dental enamel. Journal of 

Dental Research, Vol.74, No.10, pp. 1702-1708 
Moretto, SG.; Azambuja, N.Jr.; Arana–Chavez, V.E; Reis, AF.; Giannini M.; Eduardo C de P. 

& De Freitas, PM. (2010). Effects of ultramorphological changes on adhesion to 

www.intechopen.com



Effects of Er:YAG Laser Irradiation on 
Dental Hard Tissues and All-Ceramic Materials: SEM Evaluation 

 

209 

lased dentin-Scanning electron microscopy and transmission electron microscopy 
analysis. Microscopy Research Technique, Vol.74, No.8, pp. 720–726 

Nakabayashi, N.; Kojima, K. & Mashura E. (1982). The promotion of adhesion by resin 
infiltration of monomers into tooth structure. Journal of Biomedical Materials 

Research, Vol.16, pp. 265-273 
Navarro, RS.; Gouw-Soares, S.; Cassoni, A.; Haypek, P.; Zezell, DM. & Eduardo, CP. (2010). 

The influence of erbium:yttrium-aluminum-garnet laser ablation with variable 
pulse width on morphology and microleakage of composite restorations. Lasers in 

Medical Science, Vol.25, No.6, pp. 881–889 
Noda, M.; Okuda, Y.; Tsuruki, J.; Minesaki, Y.; Takenouchi, Y. & Ban, S. (2010). Surface 

damages of zirconia by Nd:YAG dental laser irradiation. Dental Materials Journal, 
Vol.29, No.5, pp. 536-541 

Obata, A.; Tsumura, T.; Niwa, K.; Ashizawa, Y.; Deguchi, T. & Ito, M. (1999). Super pulse 
CO2 laser for bracket bonding and debonding. European Journal of Orthodontics, 
Vol.21, No.2, pp. 193–198 

Oelgiesser, D.; Blasbalg, J. & Ben-Amar, A. (2003). Cavity preparation by Er-YAG laser on 
pulpal temperature rise. American Journal of Dentistry, Vol.16, No.2, pp. 96-98 

Oliveira, MT.; Arrais, CA.; Aranha, AC.; Paula Eduardo, C.; Miyake, K.; Rueggeberg, FA. & 
Giannini, M. (2010). Micromorphology of resin–dentin interfaces using one-bottle 
etch & rinse and self-etching adhesive systems on laser- treated dentin surfaces: a 
confocal laser scanning microscope analysis. Lasers in Surgery and Medicine, Vol.42, 
No.7, pp. 662–670 

Olsen, ME.; Bishara, SE.; Damon, P. & Jakopsen, JR. (1997a) Comparison of shear bond 
strength and surface structure between conventional acid etching and air abrasion 
of human enamel. American Journal of Orthodontics and Dentofacial Orthopedics, 

Vol.112, No.5, pp. 502-506 
Olsen, ME.; Bishara, SE.; Damon, P. & Jakopsen, JR. (1997b). Evaluation of Scotchbond 

multipurpose and maleic acid as alternative methods of bonding orthodontic 
brackets. American Journal of Orthodontics and Dentofacial Orthopedics, Vol.111, No.5, 
pp. 498-501 

Özcan, M.; Alkumru, HN. & Gemalmaz, D. (2001). The effect of surface treatment on the 
shear bond strength of luting cement to a glass-infiltrated alumina ceramic. 
International Journal of Prosthodontics, Vol.14, No.4, pp. 335–339  

Özcan, M. (2002). The use of chairside silica coating for different dental applications: a 
clinical report. The Journal of Prosthetic Dentistry, Vol.87, No.5, pp. 469–472 

Özcan M. (2003). Adhesion of resin composites to biomaterials in dentistry: an evaluation of 
surface conditioning methods. PhD Thesis, University of Groningen, Groningen, 
The Netherlands 

Parker, S. (2004). The use of lasers in fixed prosthodontics. Dental Clinics of North America, 

Vol.48, No.4, pp. 971-998  
Pashley, DH. (1992). The effects of acid etching on the pulpodentin complex. Operative 

Dentistry, Vol.17, pp. 229-242 
Pashley, DH. & Carvalho, RM. (1997). Dentin permeability and dentin adhesion. Journal of 

Dentistry, Vol.25, pp. 355-372 

www.intechopen.com



 
Scanning Electron Microscopy 

 

210 

Phark, JH.; Duarte S, Jr.; Blatz, M. & Sadan, A. (2009). An in vitro evaluation of the long-term 
resin bond to a new densely sintered high-purity zirconium-oxide ceramic surface. 
The Journal of Prosthetic Dentistry, Vol.101, No.1, pp. 29–38 

Ramos, A.C.; Esteves-Oliveira, M., Arana-Chavez, V.E. & de Paula Eduardo, C. (2010). 
Adhesives bonded to erbium: yttrium–aluminum–garnet laser-irradiated dentin: 
transmission electron microscopy, scanning electron microscopy and tensile bond 
strength analyses. Lasers in Medicine and Science, Vol.25, No.2, pp. 181–189 

Reynold, IR. (1975). A review of direct bonding. British Journal of Orthodontics, Vol.2, pp. 171-
180 

Roberts-Harry, DP. (1992). Laser etching of teeth for orthodontic bracket placement: A 
preliminary clinical study. Lasers in Surgery and Medicine, Vol.12, No.5, pp. 467-470 

Sakakibara, Y.; Ishimaru, K. & Takamizu, M. (1998). A study on bond strength to dentin 
irradiated be Erbium:YAG laser. The Japanese Journal of Conservative Dentistry, 
Vol.41, pp. 207-219 

Sasaki, LH.; Lobo, PD.; Moriyama, Y.; Watanabe, IS.; Villaverde, AB.; Tanaka, CS.; 
Moriyama, EH. & Brugnera A, Jr. (2008). Tensile bond strength and SEM analysis of 
enamel etched with Er:YAG laser and phosphoric acid: a comparative study in 
vitro. Brazilian Dental Journal, Vol.19, No.1, pp. 57-61 

Sato, H.; Yamada, K.; Pezzotti, G.; Nawa, M. & Ban, S. (2008). Mechanical properties of 
dental zirconia ceramics changed with sandblasting and heat treatment. Dental 

Materials Journal, Vol.27, No.3, pp. 408–414  
Schein, MT.; Bocangel, JS.; Nogueira, GE. & Schein, PA. (2003). SEM evaluation of the 

interaction pattern between dentin and resin after cavity preparation using 
ER:YAG laser. Journal of Dentistry, Vol.31, No.2, pp. 127-135 

Schmage, P.; Nergiz, I.; Herrmann, W. & Özcan, M. (2003). Influence of various surface-
conditioning methods on the bond strength of metal brackets to ceramic surfaces. 
American Journal of Orthodontic Dentofacial Orthopedic, Vol.123, No.5, pp. 540-546 

Sen, D.; Poyrazoglu, E.; Tuncelli, B. & Goller, G. (2000). Shear bond strength of resin luting 
cement to glass-infiltrated porous aluminum oxide cores. The Journal of Prosthetic 

Dentistry, Vol.83, No.2, pp. 210–215 
Şen S & Ceylan G. (2010) The Effects of Different Surface Treatments on the Bond Strength 

of Zirconium-Oxide Ceramic and Adhesive Resin. PhD Thesis. Ondokuz Mayıs 
University, School of Dentistry Department of Prosthodontics, Samsun, Turkey. 

Sharpe, AN. (1967). Influence of the crystal orientation in human enamel on its reactivity to 
acid as shown by high resolution microradiography. Archieves of Oral Biology, 
Vol.12, No.5, pp. 583-591 

Sindel, J.; Gehrlicher, S. & Petschel, A. (1996). Untersuchungen zur Haftung von 
Kompositan VMK-Kerakim. Deutsch Zahnarztl Z., Vol.51, pp. 712–716 

Spohr, AM.; Borges, GA.; Júnior, LH.; Mota, EG. & Oshima, HM. (2008). Surface 
modification of In-Ceram Zirconia ceramic by Nd:YAG laser, Rocatec system, or 
aluminum oxide sandblasting and its bond strength to a resin cement. 
Photomedicine and Laser Surgery, Vol.26, No.3, pp. 203-208 

www.intechopen.com



Effects of Er:YAG Laser Irradiation on 
Dental Hard Tissues and All-Ceramic Materials: SEM Evaluation 

 

211 

Stern, RH.; Vahl, J. & Sognnaes, RF. (1972). Lased enamel: ultrastructural observations of 
pulsed carbon dioxide laser effects. Journal of Dental Research, Vol.51, No.2, pp. 455-
460 
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