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1. Introduction

Dynamic recrystallization (DRX) is a strain restoration and grain refinement mechanism that
occurs in high-temperature dislocation creep of metals and minerals (Humphreys & Hatherly,
2004). Microstructures indicative of DRX are commonly observed in rock-forming minerals
that have been subjected to natural deformation in the Earth’s crust and mantle (Fig. 1).

Laboratory studies have revealed that the average size d of recrystallized grains approaches a
steady-state value, which is determined by the applied stress and is independent of the initial
grain size. Twiss (1977) proposed a stress–grain size relation of the following form:

d

b
= K

(

σ

µ

)−p

(1)

where σ is the flow stress, µ is the shear modulus, b is the length of the Burgers vector, and
K is a non-dimensional constant. The grain size exponent p ranges between 1 and 1.5 for
most materials. Empirically determined σ–d relations of minerals have been used to estimate
the stress states in the Earth’s interior. However, detailed studies of a Mg alloy (De Bresser
et al., 1998) and NaCl (Ter Heege et al., 2005) revealed that K has a weak dependence on
temperature. Derby & Ashby (1987) modeled the DRX processes of metals and predicted the
temperature dependence of the recrystallized grain size, but they failed to account for the
observed range of exponent p (Derby, 1992; Shimizu, 2011).

In this chapter, we focus on deformation and recrystallization processes in minerals and
examine the effects of stress and temperature on the steady-state grain size.

2. Recrystallization mechanisms in minerals

DRX was first observed in hot deformation of cubic metals such as Cu, Ni, and austenitic
iron. A simplified description of DRX in these metals is as follows. Strain-free new grains are
usually formed by bulging of pre-existing grain boundaries and they grow at the expense of
old grains to reduce the dislocation energy of the material (Sakai, 1989; Sakai & Jones, 1984).
As the dislocation density of the new grains increases, they cease to grow and new nucleation
events occur at their margins. These processes repeat cyclically during dislocation creep.
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2 Recrystallization

Fig. 1. Optical micrograph of a thin section of a quartz schist (Sanbagawa metamorphic belt,
Japan) under polarized transmitted light with a sensitive color plate. Blue and red represent
the orientation of the crystallographic c-axis of quartz grains. New small grains form at the
margins and interiors of larger grains.

In contrast to the classical view of DRX described above, syndeformational recrystallization
of minerals such as quartz, calcite, and olivine proceeds with progressive misorientation of
subgrain boundaries (Poirier, 1985). Subgrain rotation (SGR) recrystallization also occurs in
some metals such as Mg and Al alloys and is termed continuous DRX, whereas DRX in the
original sense is currently referred to as discontinuous DRX (Humphreys & Hatherly, 2004).
At low temperatures (T) and high strain rates (ε̇), SGR is localized at grain margins (Hirth
& Tullis, 1992; Schmid et al., 1980); however, intracrystalline SGR becomes more important
and grain boundary migration (GBM) occurs at high T and low ε̇ (Hirth & Tullis, 1992; Rutter,
1995) (Fig. 2). Consequently, the recrystallized grain size is much larger than the subgrain size
(Guillopé & Poirier, 1979; Karato et al., 1980).

For both discontinuous and continuous DRX, grain size reduction occurs at nucleation events,
whereas strain-induced GBM leads to overall coarsening. The steady-state grain size is
determined by the dynamic balance between nucleation and grain growth (Derby & Ashby,
1987).

3. Grain size distribution

In the σ–d relation (Eq. 1), the steady-state microstructure is represented by a single value of
the ‘average’ grain size d, but dynamically recrystallized materials generally have wide grain
size distributions. As a simplified model of DRX, Shimizu (1998a; 1999; 2003) considered
following nucleation and growth processes and analyzed the evolution of the grain size
distribution:

1. Nucleation occurs at a constant rate I per unit volume.

2. Nucleation sites are randomly distributed.

3. Each grain grows with a radial growth rate Ṙ.
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Steady-State Grain Size in Dynamic Recrystallization of Minerals 3

Fig. 2. Nucleation and growth in continuous DRX. Solid lines represent grain boundaries and
thin dotted lines represent subgrain boundaries. Nucleated grains (yellow) are formed by
SGR and grow in the deformed matrix.

4. Newly crystallized grains replace older grains.

In the steady state, the grain size has a nearly a log-normal distribution and many newly
crystallized grains coexist with a few old grains in a certain population balance. The average
grain size satisfies

d = a

(

Ṙ

I

)

1
4

(2)

where a is a scaling factor; a = 1.14 for a 3D distribution and a = 1.12 for a distribution
measured in a 2D section. Shimizu (1998b; 2008; 2011) considered strain-induced grain growth
for Ṙ (Sec. 4) and SGR nucleation for I (Sec. 5) and derived the σ–d relation for continuous
DRX (Sec. 6). In Sec. 7, we revise the theoretical model to incorporate the influence of the
surface-energy drag.

4. Strain-induced grain growth

4.1 Dislocation energy

During high-T dislocation creep of minerals, dynamic recovery cooperates with continuous
DRX and assists subgrain formation. Unrecovered microstructures such as tangled
dislocations are rarely observed in recrystallized grains (Hirth & Tullis, 1992). Hence,
the strain energy (Estrain) is given by a sum of the energies of isolated dislocations and
sub-boundaries (Edisl and Esub, respectively):

Estrain = Edisl + Esub (3)
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4 Recrystallization

The free dislocation energy per unit volume is

Edisl = ρζ (4)

where ρ is the dislocation density and ζ is the dislocation line tension. When the internal
stress around dislocations is equilibrated with the applied stress σ, the following equation
holds (Nabarro, 1987):

σ = αµbρ
1
2 (5)

where α is a constant that depends on the configuration of the dislocation arrays. Hence,

ρ =

(

σ

αµb

)2

(6)

The dislocation line tension is given by (Hirth & Lothe, 1982)

ζ =
µb2χ

4π
ln

(

βr

b

)

(7)

where r is the characteristic radius of the elastic field around the dislocation core and the
constant β is typically in the range 3–4. The parameter χ depends on the dislocation
configuration:

⎧

⎨

⎩

χ = 1; for a screw dislocation

χ =
1

1 − ν
; for an edge dislocation

(8)

where ν is Poisson’s ratio. For a first-order approximation, we assume that all dislocations are
edge dislocations. Considering that the elastic field around a dislocation is canceled by other
dislocations at half the distance between them, r is scaled as

r =
1

2
ρ−

1
2 (9)

Substituting Eqs. (6) and (9) into Eq. (7) yields

ζ =
µb2

4π(1 − ν)
ln

(

βαµ

2σ

)

(10)

Substituting Eq. (10) into Eq. (4) and using Eq. (6) again, we have

Edisl =
σ2

4πα2µ(1 − ν)
ln

(

βαµ

2σ

)

(11)

4.2 Sub-boundary energy

Consider nearly spherical subgrains with a diameter d′ that occupy a deformed matrix (Fig.
2a). The number density of subgrains is

N =
6

πd′3
(12)
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Steady-State Grain Size in Dynamic Recrystallization of Minerals 5

and the area of subgrain boundaries per unit volume is

A = N · πd′2 ·
1

2
=

3

d′
(13)

The factor 1/2 is included because the area of each subgrain wall is counted twice. The energy
of sub-boundaries in a unit volume of the material can thus be written as

Esub =
3γ

d′
(14)

where γ is the sub-boundary energy per unit area.

The theory of dislocations gives

γ =
µb2

4π(1 − ν)h
ξ(η) (15)

ξ(η) ≡ η coth η − ln(2 sinh η) (16)

η ≡
πb

βh
(17)

where h is the mean dislocation spacing (Hirth & Lothe, 1982).

For a tilt boundary (Fig. 3), h and the misorientation angle θ are related by (Poirier, 1985)

b

h
= 2 tan

(

θ

2

)

≃ θ (18)

The last approximation is justified for low-angle boundaries. Then, Eq. (17) becomes

η =
π

β
θ ≪ 1 (19)

Hence, the following approximations can be applied to Eq. (16):

coth η ≃
1

η
, sinh η ≃ η (20)

Then, Eq. (15) becomes

γ =
λ

2
µbθ (21)

where

λ ≡
1

2π(1 − ν)

[

1 − ln

(

2πθ

β

)]

(22)

The subgrain size is empirically expressed as (Takeuch & Argon, 1976; Twiss, 1977)

d′

b
= K′

(

σ

µ

)−1

(23)
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6 Recrystallization

where K′ is a constant. A theoretical expression for K′ is given below. Substituting Eqs. (21),
(22), and (23) into Eq. (14), we have

Esub =
3λθσ

2K′
(24)

4.3 Subgrain size

We consider a recovery process in which free dislocations with a dislocation density ρ

rearrange into sub-boundaries. Conservation of the total dislocation length during subgrain
formation requires

ρ =
A

h
(25)

The right-hand side represents the length of dislocations in sub-boundaries. Using Eqs. (13)
and (18), the above expression is modified to become

ρ =
3θ

d′b
(26)

Subgrains are formed if the total sub-boundary energy is smaller than the free dislocation
energy (Twiss, 1977):

Edisl ≥ Esub (27)

The equality represents the critical state for the initiation of subgrain formation. From Eqs. (4)
and (14), this condition can be written as

ρζ ≥
3γ

d′
(28)

h θ

h

b

Fig. 3. Schematic illustration of a tilt boundary with a misorientation angle θ, dislocation
spacing h, and Burgers vector b.
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Steady-State Grain Size in Dynamic Recrystallization of Minerals 7

Substituting Eqs. (6), (7), and (21)–(22) into the above expression for ρ, ζ, and γ, respectively,
Eq. (28) becomes

(

σ

αµb

)2

b ln

(

βαµ

2σ

)

≥
3

d′
θ

[

1 − ln

(

2πθ

β

)]

(29)

Equating Eqs. (26) and (6), we have

(

σ

αµb

)2

=
3θ

d′b
(30)

Then, Eq. (29) reduces to

ln

(

βαµ

2σ

)

≥

[

1 − ln

(

2πθ

β

)]

(31)

The stability limit of θ is derived as

θ ≥
e

πα

(

σ

µ

)

(32)

where e is the Napierian base. The equality gives the initial misorientation angle θi:

θi =
e

πα

(

σ

µ

)

(33)

Applying θi to θ of Eq. (30), the initial subgrain size d′i is obtained as

d′i
b

=
3eα

π

(

σ

µ

)−1

(34)

Once the subgrain boundary is established, it functions as a dislocation sink because
progressive subgrain misorientation is an energetically favorable process. We thus assume
that the subgrain size is maintained during the subsequent misorientation. Substituting
d′ = d′i into Eq. (34), we obtain Eq. (23), where

K′ =
3eα

π
(35)

Using Eqs. (22) and (35), the full expression of Eq. (24) is obtained as

Esub =
πλθσ

2eα
=

θ

4eα(1 − ν)

[

1 − ln

(

2πθ

β

)]

σ (36)

4.4 Growth kinetics

The kinetic law of grain growth is generally written as

Ṙ = MF (37)

where M is the mobility of the grain boundary and F is the driving force. M depends on T as

M =
bwDgb

kT
(38)
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8 Recrystallization
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Fig. 4. Strain energy of quartz calculated using Eqs. (11) and (36). The physical parameters of
quartz are given as (Shimizu, 2008) α = 3 (Kohlstedt & Weathers, 1980), µ = 4.2 × 104 MPa,
and ν = 0.15 (Twiss, 1977). Because no data are available for β of quartz, we apply β = 3 of
ionic crystals (Hirth & Lothe, 1982).

Dgb = D◦
gb exp

(

−
Qgb

RT

)

(39)

where w is the boundary width, k is the Boltzmann constant, Dgb is the diffusion coefficient at
the grain boundary, D◦

gb is a constant, R is the gas constant, and Qgb is the activation energy

for grain boundary diffusion.

In a single-phase material, grain growth occurs to reduce the bulk strain energy and the energy
of grain surfaces. Hence, Eq. (37) is written as

Ṙ = M(Fstrain + Fsur f ) (40)

where Fstrain and Fsur f represent the driving forces due to strain energy and surface energy
(grain boundary energy), respectively. The strain energy in dynamically recrystallized
materials is not homogeneous. The strain energy of deformed grains is given by the sum
of Edisl in Eq. (11) and Esub in Eq. (36), whereas newly recrystallized grains are almost strain
free. This difference in strain energy drives grain growth. Hence,

Fstrain = Estrain (41)

With increasing strain, free dislocations multiply and excess dislocations rearrange into
sub-boundaries. Then, θ increases and the sub-boundary energy exceeds the free dislocation
energy. Fig. 4 shows the calculations for quartz. When the average misorientation angle
reaches several degrees, the following approximation can be used instead of Eq. (3):

Estrain ≃ Esub (42)

378 Recrystallization
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Steady-State Grain Size in Dynamic Recrystallization of Minerals 9

5. Nucleation rate

In SGR nucleation, the nuclei are approximately the same size as the original subgrains. Thus,
the number of potential nucleation sites per unit volume of crystals is given by Eq. (12) for
intracrystalline nucleation and

N =
6

πdd′2
(43)

for nucleation at grain margins (Fig. 2b). The nucleation rate is scaled as

I =
N

τc
(44)

where τc is the interval of nucleation events.

The subgrain becomes a nucleus when the misorientation angle θ exceeds a critical value
θc. The flux of dislocations that move toward the sub-boundary is given by ρu, where u is
the climb velocity. The time required for dislocations to accumulate at the sub-boundary is
equal to the nucleation cycle τc. From Eq. (18), a critical nucleus has a dislocation spacing of
hc = b/θc; hence, the number of dislocations per unit area of the boundary is 1/hc = θc/b.
Dividing this value by the flux ρu, the nucleation cycle is evaluated as

τc ≃
θc

bρu
(45)

The climb velocity of dislocations is given by (Hirth & Lothe, 1982)

u =
σΩDv

lkT
(46)

where Ω is the atomic volume, Dv is the self-diffusion coefficient, and l is a length scale given
by

l ≡
b

2π
ln

( r

b

)

(47)

Using Eqs. (6) and (9), Eq. (47) can be rewritten as

l =
b

2π
ln

(αµ

2σ

)

(48)

The temperature dependence of Dv is expressed as

Dv = D◦
v exp

(

−
Qv

RT

)

(49)

where D◦
v is a constant and Qv is the activation energy for volume diffusion.

Combining Eqs. (44)–(46), approximating Ω as b3, and using Eqs. (12) and (23), we have

I =
6

πbK′3α2θc

σDv

lkT

(

σ

µ

)5

(50)
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10 Recrystallization

for intracrystalline nucleation. Using Eq. (43) instead of Eq. (12), the equation for marginal
nucleation is obtained:

I =
1

d

6

πK′2α2θc

σDv

lkT

(

σ

µ

)4

(51)

6. Scaling relation

Here, we neglect the surface energy term in Eq. (40) and assume

F = MFstrain (52)

Combining Eq. (2) with Eqs. (52), (38), (39), (41), and (42), and using Eq. (36) and either Eq.
(50) or Eq. (51), the steady-state grain size in continuous DRX is derived as

d

b
= B

(

σ

µ

)−p (wDgb

bDv

)

1
m

(53)

where

p =
5

4
= 1.25, m = 4 (54)

for intracrystalline nucleation and

p =
4

3
= 1.33, m = 3 (55)

for marginal nucleation (Shimizu, 1998b; 2008). B is a non-dimensional constant given by

B =

(

a4πK′m−2α2

4

λθθcl

b

)1/m

(56)

Using Eq. (48), Eq. (56) can be rewritten as

B =

[

a4K′m−2α2λθθc

8
ln

(αµ

2σ

)

]1/m

(57)

Although σ is included in the right-hand side, the stress dependence of B is negligibly small.
Using Eqs. (39) and (49), Eq. (53) can be re-expressed as

d

b
= K◦

(

σ

µ

)−p

exp

(

−
∆Q

mRT

)

(58)

where

K◦ = B

(

wD◦
gb

bD◦
v

)1/m

(59)

and
∆Q = Qgb − Qc (60)
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Steady-State Grain Size in Dynamic Recrystallization of Minerals 11
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Fig. 5. Schematic representation of grain size evolution due to (a) strain-energy-driven grain
growth and (b) surface-energy drag.

As Qgb is generally smaller than Qc, the recrystallized grain size is predicted to have a weak
positive dependence on T. The constant K in Eq. (1) can now be written as a function of T:

K = K◦ exp

(

−
∆Q

mRT

)

(61)

7. Influence of surface energy

We now consider the influence of surface energy (grain boundary energy). In the case
of surface-energy-driven grain coarsening in single-phase materials under static conditions
(known as normal grain growth), large grains are energetically favorable and grow at the
expense of small grains; the evolution of individual grain size has the opposite sense to that
considered for DRX in Sec. 3 (Fig. 5). Therefore, when new grains grow by the strain-energy
difference, the surface energy acts as a drag force.

In the theory of normal grain growth (Hillert, 1965), grain size evolution is described by

Ṙk = McΓ

(

1

R
−

1

Rk

)

(62)

where Rk and Ṙk are respectively the radius and the growth rate of the k-th grain and c ∼ 1 is a
statistical factor. If Rk is smaller (larger) than the mean radius R, the above expression becomes
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12 Recrystallization

negative and the k-th grain shrinks (grows). By comparison with Eq. (37), the driving force for
the growth of the k-th grain can be written as

2cΓ

(

1

d
−

1

dk

)

(63)

where dk is the diameter of the k-th grain. In the nucleation and growth processes in DRX, the
influence of the surface-energy drag is largest for small nuclei. Thus, we introduce a modified
factor c′ and express the surface-energy-driven force in Eq. (40) as

Fsur f = 2c′Γ

(

1

d
−

1

d′

)

≃ −2c′Γ
1

d′
(64)

With this equation and Eq. (42), Eq. (40) can be approximated as

Ṙ ≃ M

(

Esub −
2c′Γ

d′

)

(65)

Using this equation, Eq. (56) can be modified as follows (the parameters p, m, and ∆Q remain
the same).

B =

[

a4K′m−2α2θc

8

(

3λθ

2
−

2c′Γ

bµ

)

ln
(αµ

2σ

)

]1/m

(66)

8. Comparison of theory with experiments

8.1 Stress dependence of recrystallized grain size

In Fig. 6, p values of rock-forming minerals determined by triaxial or uniaxial or compression
tests are plotted against the n-th power of dislocation creep flow laws (ε̇ ∝ σn), which reflect
the rate-controlling processes of dislocation creep; for climb-controlled creep, n is generally
3–5. The figure also shows the experimental result for a hexagonal Mg alloy (Magnox Al80),
which was studied as a quartz analogue (De Bresser et al., 1998). The observed p values are
almost independent of the power-law exponents and are well explained by the present model
for continuous DRX.

8.2 Application to quartz

The theoretical model for the recrystallized grain size was applied to quartz using the
equations presented in Sec. 6 (Shimizu, 2008; 2011). However, the previous model accounted
only for strain energy; it neglected the effects of surface energy. Moreover, it turned out
that the previous calculation involved a numerical error; when this error is corrected, the
theoretical σ–d lines (Fig. 8 of Shimizu (2008)) shift to higher σ. Here, we recalculate the σ–d
relation of quartz using the revised equations in Sec. 7.

Because experimentally deformed quartzite samples exhibit intracrystalline SGR at moderate
stresses (Hirth & Tullis, 1992; Stipp & Tullis, 2003), we apply the intracrystalline nucleation
model (Eq. 54). In addition to the material constants given in the caption of Fig. 4, we use
b = 5× 10−4 µm (Twiss, 1977), θ = 2◦, θc = 12◦, and Dv and Dgb of oxygen in β-quartz (Farver

& Yund, 1991b; Giletti & Yund, 1984). For grain boundary energy, we use Γ = 0.27 Jm−2

382 Recrystallization
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Fig. 6. Stress exponent p of recrystallized grain size plotted against the power-law exponent
n of dislocation creep (IN: intracrystalline nucleation model; MN: marginal nucleation
model). 1: Stipp & Tullis (2003) for p, Gleason & Tullis (1995) for n, 2: Karato et al. (1980) for
p, Karato et al. (1986) for n, 3: van der Wal et al. (1993) for p, Chopra & Paterson (1984) for n,
4: Rutter (1995) for p, Schmid et al. (1980) for n, 5: Guillopé & Poirier (1979) for p and n, 6: Ter
Heege et al. (2005) for p, Carter et al. (1993) for n, 7: De Bresser et al. (1998) for p and n.
Microstructures of SGR and GBM are reported from all experiments except Ref. 3.

(Hiraga et al., 2007) and assume c′ = 1. The steady-state grain size [µm] is then expressed a
function of σ [MPa] and T [K] as

d = 1.82 × 103
× σ−1.25 exp

(

7.25 kJ/mol

RT

)

; β−quartz (67)

In this expression, the weak stress dependence of B in Eq. (66) is neglected and B = 1.01 at
σ=50 MPa is chosen as a representative value. The calculation results (Fig. 7a) agree well with
the empirical data for β-quartz (Stipp & Tullis, 2003). For comparison, the σ–d relation based
on the marginal nucleation model is also shown.

In Fig. 7(b), the theoretical model is extended to the α-quartz stability field in which Dv of
oxygen in α-quartz (Farver & Yund, 1991a) is used and α- and β-quartz are assumed to have
the same Qv/Qgb ratio. The recrystallized grain size of α-quartz is predicted to be

d = 9.98 × 102
× σ−1.25 exp

(

12.4 kJ/mol

RT

)

; α−quartz (68)

With decreasing temperature, the steady-state grain size shifts to higher stresses. If the
empirical σ–d relation is directly applied to natural rocks that have deformed under low-T
(≤ 400◦C) metamorphic conditions, the stress states will be considerably underestimated.

383Steady-State Grain Size in Dynamic Recrystallization of Minerals
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14 Recrystallization
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Fig. 7. Recrystallized grain size of quartz. (a) Theoretically calibrated σ–d relations for
β-quartz at 1050◦C and the experimental results of Stipp & Tullis (2003). Solid line:
intracrystalline nucleation model. Dotted line: marginal nucleation model. Solid circles:
recrystallized grain size at 1000–1100◦C after Stipp & Tullis (2003). Black dotted line:
empirical d–σ relation across the temperature range of 700–1100◦C after Stipp & Tullis (2003).
(b) Theoretically predicted σ–d relations for β-quartz (blue lines, 1000–600◦C) and α-quartz
(red lines, 500–300◦C) using the intracrystalline nucleation model.
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Steady-State Grain Size in Dynamic Recrystallization of Minerals 15

9. Summary

High-T dislocation creep of minerals is characterized by the occurrence of continuous DRX.
The steady-state grain size is determined by the dynamic balance between SGR nucleation
and grain growth by GBM. Surface energy acts as a drag force for strain-energy-driven
GBM. The negative dependence of recrystallized grain size on stress is well explained by a
theoretical model for continuous DRX. The theory also predicts a weak positive dependence
of recrystallized grain size on temperature.
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