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1. Introduction 

Rapid increase of human population together with global climate variability resulted in 
increased demand of plant based food and energy sources (Varshney et al., 2011). Fruits and 
nuts have essential role to enhance quality of humankind life since a diet based on cereal 
grains, root and tuber crops, and legumes is generally lacked a wide range of products such 
as fiber, vitamin, provitamins or other micronutrients and compounds exist in fruit and nut 
species (Heslop-Harrison, 2005). According to last FAOSTAT statistics, totally about 594.5 
million t fruit crops (except melons) were produced in the world in 2009 
(http://faostat.fao.org). Because an increase demand exists in global food production, many 
economically important fruit crops production need to be improved, however, conventional 
breeding is still limited due to genetic restrictions (high heterozygosity and polyploidy), 
long juvenile periods, self-incompatibility, resources restricted to parental genome and 
exposed to sexual combination (Akhond & Machray, 2009; Malnoy et al., 2010; Petri et al., 
2011). Thus, there is an urgent need for the biotechnology-assisted crop improvement, 
which ultimately aimed to obtain novel plant traits (Petri & Burgos, 2005).  

Plant genetic engineering has opened new avenues to modify crops, and provided new 
solutions to solve specific needs (Rao et al., 2009). Contrary to conventional plant breeding, 
this technology can integrate foreign DNA into different plant cells to produce transgenic 
plants with new desirable traits (Chilton et al., 1977; Newell, 2000). These biotechnological 
approaches are a great option to improve fruit genotypes with significant commercial 
properties such as increased biotic (resistance to disease of virus, fungi, pests and bacteria) 
(Ghorbel et al., 2001; Fagoaga et al., 2001; Fagoaga et al., 2006; Fagoaga et al., 2007) or abiotic 
(temperature, salinity, light, drought) stress tolerances (Fu et al., 2011); nutrition; yield and 
quality (delayed fruit ripening and longer shelf life) and to use as bioreactor to produce 
proteins, edible vaccines and biodegradable plastics (Khandelwal et al., 2011).  
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Currently, public concerns and reduced market acceptance of transgenic crops have 
promoted the development of alternative marker free system technology as a research 
priority, to avoid the use of genes without any purpose after the transformation protocol 
as selectable and reporter marker genes. Typically, it is employed for the selection 
strategy that confers resistance to antibiotics and to herbicides (Miki & McHugh, 2004; 
Manimaran et al., 2011). A large proportion of European consumers considered 
genetically modified crops as highly potential risks for human health and the 
environment. European laws are restrictive and do not allow the deliberate release of 
plant modified organism (Directive 2001/18/EEC of the European Parliament and the 
Council of the European Union). Under these premises, great efforts have also been 
realized to develop alternative marker free technologies in fruit species. Recently, it was 
demonstrated in apple and in plum, that transgenic plants without marker genes can be 
recovered and confirmed its stability by molecular analysis (Malnoy et al., 2010; Petri et 
al., 2011). In 2011, for first time it was described authentically “cisgenic” plants in apple 
cv. Gala (Schouten et al., 2006a,b; Vanblaere et al., 2011).  

Efficient regeneration systems for the generation of transgenic tissues still appear as an 
important bottleneck for most of the species and cultivars. In the literature, different 
protocols were described to transform fruit cells using various DNA delivery techniques, 
however the attempts generally focused on transformation via Agrobacterium or 
microprojectile bombardment. In this chapter, a detailed application of these techniques in 
fruit transformation is summarized together with usage of proper marker and selection 
systems and in vitro culture techniques for regeneration of the transgenic plants.  

2. Techniques used to transform fruit species 

Improvement of the plant characteristics by transfer of selected genes into fruit plant cells is 
possible mainly through two principal methods: Agrobacterium-mediated transformation 
and microprojectile bombardment (also called “biolistic” or “bioballistic”). Soil-borne Gram 
negative bacteria of the genus Agrobacterium infect a wound surface of the plants via a 
plasmid called Ti-plasmid containing three genetically important elements; Agrobacterium 
chromosomal virulence genes (chv), T-DNA (transfer DNA) and Ti plasmid virulence genes 
(vir) that constitute the T-DNA transfer machinery. Since Ti plasmid encodes mechanisms of 
integration of T-DNA into the host genome, it is used as a vector to transform plants.  

Since direct gene transfer procedures involve intact cells and tissues as targets, in some 
species breaching of the cell wall is needed in order to enable entrance of DNA to cell 
(Petolino, 2002). This is accomplished by making some degree of cell injury or totally 
enzymatic degradation of the cell wall. Advantages of microprojectile bombardment can be 
summarized as i) transfer of multiple DNA fragments and plasmids with co-bombardment, 
ii) unnecessity pathogen (such as Agrobacterium) infection and usage of specialized vectors 
for DNA transfer (Veluthambi et al., 2003). Although microprojectile bombardment 
eliminates species-dependent and complex interaction between bacterium and host genome, 
stable integration is lower in this technique in comparison to Agrobacterium-mediated 
transformation (Christou, 1992). Moreover, the existence of truncated and rearranged 
transgene DNA can also lead transgene silencing in the transgenic plants (Pawlowski & 
Somers, 1996; Klein & Jones, 1999; Paszkowski & Witham, 2001). On the other hand, other 
important requirement for this technique is that the explants or target cells have to be 
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physically available for the bombardment (Hensel et al., 2011). Also, it was described that 
transgenic explants regenerated can be chimeric (Sanford et al., 1990). Nevertheless, 
application of both of the techniques for the transfer of foreign DNA results in “transient” or 
“stable” expression of the DNA fragment. In the following sections, recent advances in 
genetic transformation of fruit species via Agrobacterium-mediated and direct gene transfer 
techniques are presented. 

2.1. Agrobacterium-mediated gene transfer 

2.1.1 A complex relationship 

In the decade of the 80´s, the first reports were published related to the introduction of 

foreign DNA in plant genome thanks to the Ti plasmid of Agrobacterium tumefaciens (De 

Block et al., 1984; Horsch et al., 1985). After more than 25 years, Agrobacterium-mediated 

gene transfer is still the most used method for fruit species transformation including apple, 

almond, banana, orange, grapevine, melon etc. (Table 1; Rao et al., 2009).  

Plant transformation by using Agrobacterium has some advantages since the technique is 

relatively simple; transfer and integration of foreign DNA sequences with defined ends (left 

and right borders of T-DNA) is precise; stable transformation is high; transgene silencing is 

typically low and long T-DNA sequences (>150 kb) can be transferred (Veluthambi et al., 

2003). However, it is still far from to be a routine transformation application in plants 

because of its host-range restrictions (Gelvin, 1998).  

The initial drawback of Agrobacterium-mediated transformation method is the host-range 
restrictions. However, the bacterium and the target tissue can be manipulated to overcome 
this obstacle (Trick & Finer, 1997). These authors proposed a new approach to facilitate 
Agrobacterium penetration into plant tissues, the sonication assisted Agrobacterium-mediated 
transformation (SAAT) method. This method consists the use of ultrasounds to produce 
cavitations on and below the plant surfaces and into the membrane cells, wounding the 
tissues to enhance Agrobacterium infection (Trick & Finer, 1997, 1998).. Also, this method can 
be combined with vacuum infiltration to promote bacteria agglutination around the tissues 
to increase the Agrobacterium infection as it was demonstrated in kidney bean (Liu et al., 
2005) and in woody plants as Eucalyptus (Villar et al., 1999; Gallego et al., 2002; Gallego et al., 
2009). Today, application of these modifications solely or in combination with other 
approaches has made it possible to transfer foreign DNA via Agrobacterium even to 
monocots (Hiei et al., 1994; Ishida et al., 1996; Hensel et al., 2011) which were initially 
transformed with direct gene transfer methods since Agrobacterium is not a natural host. 
Following its first successful usage in soybean and Ohio buckeye (Trick & Finer, 1997), 
SAAT was also applied recently to fruit species including orange (Oliveira et al., 2009); 
banana (Subramanyam et al., 2011) and grapevine (Gago et al., 2011). In the last paper the 
developed efficient methodology that combined SAAT with vacuum infiltration allowed to 
obtain reporter gene expression in different newly formed organs such as stems, petioles 
and leaves. Expression was related to vascular tissues due to the EgCCR promoter of 
Eucalyptus gunnii and demonstrated that its activity is conserved and fully functional in 
grapevine as it was shown by uidA (GUS) and gfp reporter marker genes. Transgenic 
grapevine lines were verified by Southern blot analysis in five randomly chosen transgenic 
lines showing simple integration patterns in four lines with different band length indicating 
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independent transformation events into the grapevine genome. We also applied the 
optimized protocol to pistachio nodes to reveal out if this method of transformation and 
vascular-specific promoter of eucalyptus, also works in this species. Histological 
observations of GFP activity presence in vascular bundles and leaves (Fig. 1) together with 
PCR amplification of 858 bp fragment of nptII and 326 bp of uidA (Fig. 2) genes confirmed 
not only gene integration but also showed that SAAT in combination with vacuum 
infiltration and vascular specific promoter could also be used for pistachio transformation. 
With PCR amplification, four out of five GFP+ putative transgenic shoots showed the 
amplified bands of nptII and uidA genes (Fig 2). 

 

Fig. 1. Expression of GFP in pistachio transformed with EgCCR-GFP-GUS construct. 
Fluorescent images of different tissues and organs were taken 6 months after Agrobacterium-
mediated transformation. GFP fluorescence in shoot apex (A-B, bars represent 5µm) and 
transverse section of the transgenic microshoot (C-D, bars represents 100µm) were carried out 
using a 480/40 nm exciter filters, and two-barrier filter >510 nm (wide range) and 535/550 nm 
(specific filter for GFP fluorescence). (Abbreviations: vascular bundles (vb), pith, p; cortex, c). 
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Fig. 2. Analysis of putative transgenic pistachio plants by PCR amplification using primers 
designed for 858 bp fragment of the nptII gene (A) and for a fragment of 326 bp of uidA gene 
(B). (M: DNA 1000 bp ladder, C+: positive control, C-: untransformed plant, T1-T5 putative 
transgenic shoots lines).  

Agrobacterium-mediated transformation is highly genotype dependent for many plants 
(Pérez-Piñeiro, 2012) but also for fruit species. Different reports described that some 
cultivars were completely found to be as highly recalcitrant for transformation process 
whereas others are completely successful (Galun & Breiman, 1998; Petri & Burgos, 2005). 
This problem is widely described in different fruit species as apricot, grapevine and others 
(López-Pérez et al., 2008; Wang, 2011). López-Pérez and collaborators (2009) described that 
grapevine cultivars “Crimson Seedless” and “Sugraone” obtained different transformation 
efficiencies depending on the optical densities tested. Transformation of hypocotyls 
obtained from germination of mature seeds and nodal explants of apricot cultivars Dorada, 
Moniquí, Helena, Canino, Rojo Pasión and Lorna resulted in different transformation 
efficiencies (Wang, 2011). Some authors pointed out that one of the main goals of plant 
genetic engineering must be the development of genotype-independent transformation 
procedures, however due to this highly complex plant-pathogen interaction it will be very 
difficult to achieve this with the currently available technologies (Petri & Burgos, 2005). 

 

Species Aim Plasmid Transgenes References 

Apple 

Malus x 
domestica 

Method optimisation pBIN6 nptII, nos 
James et al., 

1989 

M. x 
domestica 

Investigation of early
events in transformation

pDM96.0501 
sgfp, 

gusA,nptII 
Maximova et 

al., 1998 
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Species Aim Plasmid Transgenes References 

M. x 
domestica 

Investigation of 
influence of rolA gene on

shoot growth 
pMRK10 rolA, nptII 

Holefors et 
al., 1998 

M. x 
domestica 

Scab resistance 
p35S-ThEn42, 
pBIN19ESR 

ech42, nptII
Bolar et al., 

2000 

M. x 
domestica 

Resistance to fireblight pLDB15 
attE, nptII, 

gusA 
Ko et al., 2000 

M. x 
domestica 

Improve rooting ability pCMB-B 
rolB, nptII, 

gusA 
Zhu et al., 

2001 

M. x 
domestica 

Scab resistance pBIN(Endo+Nag) 
ech42, nag70,

nptII 
Faize et al., 

2003 

M. x 
domestica 

Self-fertility pGPTV-KAN 
S3RNase, 

nptII 
Broothaerts et 

al., 2004 

M. x 
domestica 

Method optimisation 
Enhance rooting 

pCMB-B 
rolB, nptII, 

gusA 

Radchuk & 
Korkhovoy, 

2005 

M. x 
domestica 

Method optimisation pNOV2819 
pmi, nptII, 

gusA 
Degenhardt 
et al., 2006 

M. x 
domestica 

Investigation of function 
of ARRO-1 in 

adventitious rooting 
pK7GWIWG2 (II) 

ARRO-1, 
nptII 

Smolka et al., 
2009 

M. x 
domestica 

Stability of scab 
resistance 

pMOG402.hth.gus.intron
Hth, nptII, 

gusA 
Krens et al., 

2011 

M. x 
domestica 

Development of 
selection system 

pCAMBIAVr-ERE-GUS
VrERE, 

gusA 
Chevreau et 

al., 2011 

M. x 
domestica 

Transformation without 
selectable marker gene 

pPin2Att.35SGUSint+.n 
pPin2MpNPR1.GUS−.n

ptII 
 

Malnoy et al., 
2010 

Almond     

Prunus 
dulcis 

Method optimisation 
pBI121mgfp-5-ER 

pNOV2819 
nptII 
pmi 

Ramesh et al., 
2006 

Avocado 

Persea 
americana 

Mill. 
Method optimisation pMON9749, pTiT37-SE nptII, gusA

Cruz-
Hernandez et 

al., 1998 

Banana 

Musa spp. 
Method optimisation 

(Agro + SAAT+ Vacuum
infiltration) 

pCAMBIA1301 hptII, gusA
Subramanya
m et al., 2011 

Musa spp. 
Resistance to Fusarium 

wilt 
pBI121-PFLP pflp, nptII 

Yip et al., 
2011 

Blueberry 

Vaccinium 
spp. 

Method optimisation p35SGUS-int gusA 
Cao et al., 

1998 
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Species Aim Plasmid Transgenes References 

Blueberry 

V. 
corymbosu

m L. 
Method optimisation pBISN1 nptII, gusA 

Song & Sink, 
2004 

Grapevine 

Vitis 
vinifera 

Method optimisation Nr gusA, nptII 

Nakano et 
al., 1994; 

Gago et al., 
2011 

V. 
rootstocks 

Resistance to viruses and
crown gall 

pBIN19 
pGA482G 

mutant virE2,
nptII 

GLRaV-3cp 

Xue et al., 
1999 

V. vinifera 
Resistance to fungal 

pathogens 
pBI121 

nptII
rice chitinase 

gene 

Yamamoto 
et al., 2000 

V. vinifera Fungal resistance pGJ42 
chitinase, rip, 

nptII 
Bornhoff et 

al., 2005 

V. vinifera Method optimisation pGA643 
nptII, 

GFLVCP 
Maghuly et 

al., 2006 

V. vinifera Method optimisation Nr egfp, nptII 
Dutt et al., 

2007 

V. vinifera 
Resistance to powdery

mildew 
pGL2 

ricechitinase 
gene, hgt 

Nirala et al., 
2010 

V. vinifera Method optimisation pBin19-sgfp nptII, sgfp 
Pérez-López 
et al., 2008 

V. vinifera Method optimisation pSGN nptII, egfp Li et al., 2006 

V. vinifera Method optimisation pCAMBIA2301 nptII, gusA 
Wang et al., 

2005 

Grapefruit   

Citrus 
paradisi 

Resistance to Citrus
tristeza virus 

pGA482GG 
CP, RdRp, 
gusA, nptII 

Febres et al., 
2003 

C. paradisi 
Resistance to Citrus

tristeza virus 
pGA482GG 

CP, gusA, 
nptII 

Febres et al., 
2008 

Kiwifruit 

Actinidia 
spp. 

Hairy root induction 
A722,C58, ICMP8302,

ICMP8326, ID1576, 
LBA 4404, A4T 

gusA, nptII 
Atkinson et 

al., 1990 

Actinidia 
spp. 

Method optimisation pLAN411, pLAN421 gusA, nptII 
Uematsu et 

al., 1991 

A.deliciosa Improved rooting pBIN19 
nptII, rol 

A,B,C 
Rugini et al., 

1991 

A. eriantha Method optimisation pART27-10 gusA, nptII 
Wang et al., 

2006 

A. 
deliciosa 

Manipulation of plant
architecture 

pBI121 İpt 
Honda et al., 

2011 
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Species Aim Plasmid Transgenes References 

Mango 

Magnifera 
indica L. 

Method optimisation pTiT37-SE::pMON9749 nptII, gusA 
Mathews et 

al., 1992 

M.indica 
L. 

Methodoptimisation pGV3850::1103 nptII 
Mathews et 

al., 1993 

M.indica 
L. 

Mediate ethylene 
biosynthesis 

pBI121 

nptII, gusA
antisense 

ACC oxidase, 
antisense 

ACC synthase

Cruz 
Hernandez 
et al., 1997 

M. indica 
L. 

Rooting enhancement Nr rol B 
Chavarri et 

al., 2010 

Melon 

Cucumis 
melo 

Resistance to ZYMV, 
TEV, PVY 

FLCP core AS 
nptII, ZYMV 

coatpr. 

Fang & 
Grumet, 

1993 

C. melo Salt resistance pRS655 
nptII, gusA, 

hal1 
Bordas et al., 

1997 

C. melo Resistance to ZYMV pBI-ZCP3’UTR 
nptII, ZYMV 

coatpr. 
Wu et al., 

2009 

Nectarberry 

Rubus 
arcticus 

Method optimisation pFAJ3001 gusA 
Kokko & 

Kärenlampi, 
1998 

Orange 

Citrus 
sinensis 

Method optimisation
(Agro + SAAT+ vacuum 

infiltration) 
pGA482GG gusA, nptII 

Oliveira et 
al., 2009 

C. sinensis 
Research on expression

of Mt-GFP 
pBI. mgfp4.coxIV Mt-gfp 

Xu et al., 
2011 

C. sinensis 
Influence of methylation

on gene expression 
pBIN.mgfp5-ER gfp, nptII 

Fan et al., 
2011 

C. sinensis 
Modification of 

gibberellin levels 

pBinJIT-CcGA20ox1-
sense 

pBinJITCcGA20ox1- 
antisense 

nptII, 
CcGA20ox1 

nptII, 
CcGA20ox1

Fagoaga et 
al., 2007 

C. sinensis Resistance to fungi pBI121.P23 nptII, PR-5 
Fagoaga et 

al., 2001 

C. 
aurantifolia 

Resistance to virus pBin19-sgfp 
nptII, sgfp, 

p23 
Fagoaga et 

al., 2006 

Poncirus 
trifoliate 

Enhanced salt tolerance pBin438 
nptII, 

AhBADH 
Fu et al., 

2011 

Papaya 

Carica 
papaya 

Resistance to PRSV pRPTW 
PRSV

replicase gene,
neo 

Chen et al., 
2001 
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Species Aim Plasmid Transgenes References 
Pear 

Pyrus 
communis 

Alter growth habit pGA-GUSGF 
rolC, gusA,

nptII 
Bell et al., 

1999 
P. 

communis 
Method optimisation 

pPZP
pME504

gusA, nptII 
Yancheva et 

al., 2006 
P. 

communis 
Method optimisation PBISPG nptII, gusA 

Sun et al., 
2011 

Peanut 

Arachis 
hypogaea 

Production of edible
vaccines for Helicobacter 

pylori
pBI121.Oleosin-UreB ureB, nptII 

Yang et al., 
2011 

A. 
hypogaea 

Improvement of salt and
drought resistance

pGNFA-(pAHC17) AtNHX1 
Asif et al., 

2011 

A. 
hypogaea 

Production of vaccines
for Peste des petits 
ruminants (PPR) 

pBI121 Hn 
Khandelwal 
et al., 2011 

Plum 

Prunus 
armeniaca 

Method optimisation pBIN19-sgfp nptII, gfp 
Petri et al., 

2004 

P. 
armeniaca 

Method optimisation 
pBIN19-sgfp,
p35SGUSint 

nptII, gfp/nptII, 
gusA 

Petri et al., 
2008 

P. 
domestica 

Transformation of 
marker free plants 

pCAMBIAgfp94(35S)
/ pGA482GGi 
ihpRNAE10´

nptII, gfp, gusA, 
ppv-cp 

Petri et al., 
2011 

P. 
domestica 

New selection system
with hygromycin 

pC1381, pC1301,
pC2301 

gusA, hpt, nptII
Tian et al., 

2009 

P. 
domestica 

Control of PPV infection pGA482GG 
nptII, gusA, 

PRVcp 
Scorza et al., 

1995 

P. salicina Method optimisation pCAMBIA2202 nptII, gfp 
Urtubia et al., 

2008 

Pomegranate 

Punica 
granatum 

Method optimisation pBIN19-sgfp nptII, gfp 
Terakami et 

al., 2007 

Strawberry 
Fragaria 

spp. 
Method optimisation pBI121 nptII, gusA 

Barcelo et al., 
1998 

Fragaria x 
ananassa 

Duch. 

Modulation of fruit 
softening 

pBI121 
antisense of 
endo--1,4-
glucanase

Lee & Kim, 
2011 

White mulberry

Morus 
alba 

Method optimisation pBI121 nptII, gusA 
Agarwal & 

Kanwar, 2007 

 

Table 1. Some important reports on genetic transformation of fruit species via A. tumefaciens 
or A. rhizogenes. 
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Some abbreviations: AtNHX1: a vacuolar type Na+/H+ antiporter gene; gfp: green fluorescent 
protein coding gene; hal1: yeast salt tolerance gene; hpt: hygromycin phosphotransferase 
coding gene; ipt: isopentyl transferase gene; neo: neomycin phosphorate transferase coding 
gene; nos, nopaline synthase coding gene; nptII, neomycin phosphtransferase II coding gene; 
pmi: phosphomannose isomerase coding gene; ppv: Plum pox virus; prsv: papaya ringspot 

virus; pvy: potato virus Y; tev: tobacco etch virus; gusA (uidA): -glucuronidase coding gene; 
UreB: antigen gene; zymv: zucchini yellow mosaic virus. 

2.2 Direct gene transfer 

Direct gene transfer techniques include microprojectile bombardment, microinjection, 
electroporation, and usage of whiskers. Among them, microprojectile bombardment is an 
alternative technique of Agrobacterium-mediated transformation since its physical nature 
overcomes biological barriers and enables naked DNA delivery directly into host genome or 
alternatively into mitochondria and chloroplasts. In this technique, plasmid or linearized 
DNA-coated metal microparticles (gold or tungsten) at high velocity is bombarded to intact 
cells or tissues (Sanford et al. 1987; Klein et al. 1987; Sanford, 1988). Furthermore, biological 
projectiles such as bacteria (i.e., E. coli, Agrobacterium), yeast and phage associated with 
tungsten can also be used in microprojectile bombardment (Bidney, 1999; Kikkert et al. 1999). 

Microprojectile bombardment was developed in the 1980s for transformation of plants which 
were recalcitrant to Agrobacterium–mediated transformation (Paszkowski et al., 1984) such as 
agronomically important cereals. Following the development of the first particle delivery 
system (Sanford et al. 1987; Sanford 1988), different effective devices such as PDS-1000/He, 
Biolistic® particle delivery system; particle inflow gun; electrical discharge particle 
acceleration; ACCELL™ technology and microtargeting bombardment device were also 
evolved to improve transformation capacity. Among them, PDS-1000/He, Biolistic® particle 
delivery system (BIO-RAD), which is a modified version of Sanford’s system, is the most used 
system for biolistic transformation due to its efficient and relatively simple application and 
acquisition of reproducible results between laboratories (Taylor & Fauquet, 2002). Particle 
inflow gun can be an alternative to other biolistic systems due to its very low cost and it was 
used successfully in banana transformation (Becker et al., 2000). Electrical discharge particle 
acceleration, ACCELL™ technology uses high voltage electrical discharge into a droplet water 
to generate shock waves and project microprojectiles to different cell layers of target tissues 
(McCabe & Christou, 1993). Microtargeting bombardment device was designed for shoot 
meristem transformations (Sautter, 1993) but it is not widely used for plant transformation. All 
of the microprojectile bombardment systems are not depend on any plant cell type but target 
cells which will be bombarded need to be physically accessible (Hensel et al., 2011).  

Particle bombardment were carried out not only to optimize plant transformation but also to 
transfer gene constructs encoding for various antimicrobial peptides or proteins for fungal 
resistance against to Fusarium oxysporum f. sp. cubense and Mycospaerella fijiensis or 
preharvest and postharvest diseases Verticillium theobromae or Trachysphaera fructigen (i.e., 
Remy et al., 2000; Sagi et al., 1998; Tripathi, 2003), virus (i.e., Fitch et al., 1992; Tennant et al., 
1994; Gonsalves et al., 1994; Scorza et al., 1996), pest (i.e., Serres et al., 1992) and herbicide 
tolerance (i.e., Zeldin et al., 2002). This technique has been applied to transformation of 
various fruit species including banana, cranberries, citrus, grapevine, melon, papaya and 
peanut (Table 2). 
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Species Aim Transfer system Plasmid Transgenes References 
Apple 

Malus x 
domestica 

Method
optimisation

PEG-mediated pKR10 Gfp 
Maddumage 

et al., 2002 
Banana 

Musa spp. 
Method 

optimisation
Particle 

bombardment 

pUbi-
BtintORF1 

pBT6.3-Ubi-
NPT 

pUbi-
BTutORF5 

pBT6.3-Ubi-
NPT 

pUGR73 
pDHkan

nptII, gusA, 
BBTV 

Becker et al., 
2000 

Musa spp. 
Tolerance to

Sigatoka 
leaf spot

Particle 
bombardment 

pYC39 
ThEn-42, 

StSy, Cu, Zn-
SOD 

Vishnevetsky 
et al., 2011 

Musa spp. 
Resistance

to virus
Particle

bombardment
pAB6,

pAHC17,pH1
gusA, bar,ubi,
BBTV-G-cp 

Ismail et al., 
2011 

Cranberry 

Vaccinim 
macrocarpon 

Method
optimisation 

& 
Pest control

Particle 
bombardment 

pTvBTGUS 
nptII, gusA, 

Bt 
Serres et al., 

1992 

V. 
macrocarpon 

Herbicide
resistance

Particle
bombardment

pUC19 bar, aphII 
Zeldin et al., 

2002 
Grapevine 

Vitis 
vinifera 

Method
optimisation

Biolistic pBI426 nptII, gusA 
Hebert et al., 

1993 

V. vinifera 
Method 

optimisation

Particle
bombardment & 

Agro
pGA482GG 

nptII, gusA 
TomRSV-CP

Scorza et al., 
1996 

V. vinifera 
Method

optimisation
Biolistic pSAN237 

nptII,
magainin,PGL

Vidal et al., 
2003 

V. vinifera 

Comparison 
of minimal 

cassette with 
standard 
circular 

plasmids

Biolistic 
pSAN168, 
pSAN237 

Magainin, 
nptII 

Vidal et al., 
2006 

Kiwifruit 
Actinidia 

spp. 
Method

optimisation
PEG 4000 pDW2 Cat 

Oliveira et 
al., 1991 

Actinidia 
spp. 

Method
optimisation

Electroporation 
pB1121,

pTi35SGUS
gusA, nptII 

Oliveira et. 
al., 1994 

A. deliciosa 
Method

optimisation
PEG 4000 p35SGUS gusA 

Raquel & 
Oliveira, 1996 
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Species Aim Transfer system Plasmid Transgenes References 
Melon 

Cucumis 
melo 

Protection 
against 

Particle
bombardment 
İnfection & Agro

pGA4822GG/
CP 

nptII, gusA, 
CMV-WLCP

Gonsalves et 
al., 1994 

Papaya 
Carica 
papaya 

PRV
resistance

Particle
bombardment

pGA482GG PRV, nptII 
Fitch et al., 

1992 

C. papaya 
PRV

resistance
Particle

bombardment
pGA482GG 

nptII, gusA,
cpPRVHA 

Tennant et 
al., 1994 

C. papaya 
Control of 

PRSV 
Particle 

bombardment 
pGA482GG 

cpPRSV-
pHA5, nptII, 

gusA

Cai et al., 
1999 

C. papaya 
Method 

optimisation
Particle 

bombardment 

pCAMBIA130
3 

pML202

hpt, nptII, 
mgfp5’ 

Zhu et al., 
2004 

C. papaya 
Use of

PMI/Man
Particle

bombardment
pNOV3610 Pmi 

Zhu et al., 
2005 

Table 2. Some important reports on genetic transformation of fruit species via direct gene 
transfer. 

A successful protocol was studied very recently in banana cv. Williams apical meristems with 
microprojectile bombardment of a new construct pRHA2 plasmid containing bar and coat 
protein of banana bunchy top nanovirus (BBTV-cp) genes that encoded the viral coat protein 
by using BiolisticTM PDS-1000/He system, 650 psi helium pressures and 5 µg DNA/shot for 
acquisition of virus resistance (Ismail et al., 2011). After bombardment, 62% of apical 
meristems were survived on the selective medium and 80% of explants produced shoots in the 
following first subculture and all shoots were rooted (Ismail et al., 2011). In addition to those 
disease-based studies, others were also carried out in order to develop efficient transformation 
protocols via biolistic transformation (Sagi et al., 1995; Becker et al., 2000). Among them, Sagi 
and co-workers (1995) reported the transformation of embryogenic cell suspensions of cooking 
banana ‘Bluggoe’ (ABB genome) and plantain ‘Three Hand Planty’ (AAB genome) via particle 
bombardment. Then, Cavendish banana cv. Grand Nain embryogenic suspension cells were 
co-bombarded with the plasmid containing nptII selectable marker gene under the control of 

BBTV promoter or the cauliflower mozaic virus (CaMV) 35S promoter, the -glucuronidase 
(gusA) reporter gene and BBTV genes under the control of the maize polyubiquitin promoter 
by using particle inflow gun and stably integration was obtained in all of the tested 
transformed plants (Becker et al., 2000). Very recently, microprojectile bombardment was also 
applied to induce tolerance to Sigatoka leaf spot caused by Mycosphaerella fijiensis in banana by 
transferring endochitinase gene of ThEn-42 from Trichoderma harzianum together with the 
grape stilbene synthase gene (StSy) under the control of 35 S promoter and the inducible PR-10 
promoter, respectively (Vishenevetsky et al., 2011). Moreover, in order to improve scavenging 
of free radicals generated during fungal attack, the superoxide dismutase gene (Cu, Zn-SOD) 
of tomato was also included to this gene cassette under the control of ubiquitin promoter. Both 
PCR and Southern blot analysis confirmed the stable integration of the transgenes and 4-year 
field trial showed that several transgenic banana lines had improved tolerance not only to 
Sigatoka but also other fungus such as Botrytis cinerea. Gene transfer via microprojectile 

www.intechopen.com



 
Recent Advances in Fruit Species Transformation 

 

39 

bombardment was also carried out in American cranberry (Vaccinium macrocarpon) firstly to 
increase productivity by transferring Bacillus thuringiensis subsp. Kurstaki crystal protein 
gene (Bt) for pest resistance (Serres et al., 1992), and latter on, by bar gene to confer tolerance 
to the phosphinothricin-based herbicide glufosinade (Zeldin et al., 2002). Although 
preliminary bioassays for efficiency of the Bt gene against an important lepidopteran 
demonstrated no consistently effective control in former, stable transmission and expression 
of herbicide tolerance was observed in both inbred and outcrossed progeny of cranberry 
trans clone in latter. 

In tangelo (Citrus reticulata Blanco × C. paradisi Macf.) cv. Page embryogenic suspension cells 
were bombarded with tungsten coated plasmid containing gusA and nptII genes (Yao et al., 
1996). Following to bombardment, 600 transient and 15 stable transformants were obtained 
and integration of the interest genes confirmed by PCR and Southern blot analyses. A large 
of kanamycin-resistant embryogenic calli showed also GUS activity. In another study, 
Kayim and associates (1996) bombarded tungsten-coated plasmid (pBI221.2) containing the 
gusA gene into lemon cv. Kütdiken nucellar cells by biolistic device and expression of the 
gusA gene was histochemically confirmed.  

Feronia limonia L. is important fruit tree because of its edible fruits. It is suitable for 

cultivation in semi-arid tropics and also can be used for reforestation and wasteland 

reclamation projects (Sing et al., 1992; Purohit et al., 2007). Feronia limonia L. hypocotyl 

segments were also bombarded with tungsten-coated plasmid pBI121 having gusA reporter 

gene driven by CaMV35S promoter and nptII as a selective marker under control of nos 

promoter using BiolisticTM PDS-1000/He particle delivery system at different rupture disc 

pressures (1100 and 1350 psi) and target distances (6 and 9 cm) (Purohit et al., 2007). This 

study revealed that 1100 psi/6 cm and 1350 psi/9 cm were the optimal bombardment 

condition with supplying a maximum 90% of GUS transient expression. 

In grapevine, the initial transformation studies via microprojectile bombardment were 

performed for method optimization with transferring nptII and gus genes as selective and 

reporter marker genes, respectively (Hebert et al., 1993; Kikkert et al., 1996; Scorza et al., 

1996). Later, Vidal and co-workers (2003) studied the efficiency of biolistic cotransformation 

in grapevine for multiple gene transfer of nptII and antimicrobial genes (magainin and 

peptidyl-glycine-leucine). The stable transformation was confirmed by gus gene expression, 

followed by PCR and Southern blot analyses of nptII and antimicrobial genes showed. Three 

years later, same research group (Vidal et al., 2006) reported the efficient biolistic 

transformation of grapevine by using minimal gene cassettes, which are linear DNA 

fragments lacking the vector backbone sequence. 

Papaya is economically important and preferred another fruit species because of its 

nutritional and medicinal properties grown in tropical and subtropical regions (Tripathi et 

al., 2011). Papaya ringspot virus (PRSV) is major limiting factor in papaya production in 

Hawaii (Gonsalves, 1998; Fuchs & Gonsalves, 2007). First PRSV resistant papaya plants (cv. 

SunUp) were obtained by PDS/1000-He particle bombardment device of cv. Sunset with the 

transformation vector pGA482GG/cpPRV4 containing the prsv coat protein (CP) gene (Fitch 

et al., 1992). The PRSV resistant papaya has been commercialized, reached to end user and 

improved papaya is now under production in Hawaii (Tripathi et al., 2008). This study was 

followed by other reports mainly on improvement of PRSV tolerance in papaya via 
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microprojectile bombardment-based transformation (Tennant et al., 1994; Cai et al., 1999; 

Guzman-Gonzalez et al., 2006). The deployment of transgenic papayas has showed that 

virus CP protein supplies durable and stable resistance to homologous strains of PRSV 

(Fermin et al., 2010). Moreover, no ecological influence of transgenic papayas on adjacent 

non-transgenic papaya trees, microbial flora and beneficial insects was evident 

(Sakuanrungsirikul et al., 2005). However, political and social factors have negatively 

affected the technology in Thailand (Davidson, 2008).  

Although there are various wild peanut species having disease resistance traits, 
hybridization between wild and cultivars is difficult due to self-incompatibility, low 
frequency of hybrid seed production and linkage drag (Stalker & Simpson, 1995) and 
because of that genetic transformation is a practical tool to improve disease resistant 
cultivars. Singsit and associates (1997) transformed peanut somatic embryos with gold-
coated plasmid constructs containing both Bacillus thuringiensis cryIA(c) and hph genes 
driven by CaMV35S promoters by PDS 1000 He biolistic device for resistance lepidopteran 
insect larvae of lesser cornstalk borer. The embryogenic cell lines showed hygromycin 
resistance and integration of hph and Bt genes were confirmed by PCR and/or Southern blot 
analyses in regenerated plants and a progeny. 18% CryIA(c) protein of total soluble protein 
was detected by ELISA immunoassay in the hygromycin resistant plants. Production of 
peanut stripe virus (PStV) resistant peanut is another attempt for biotechnologists since the 
virus negatively affects seed quality and yield in Asia and China (Higgins et al., 1999). 
Somatic embryos of peanut cv. Gajah and cv. NC-7 were transformed by co-bombardment 
of hph gene and one of two forms of the PStV coat protein genes and both of the transgenic 
plants showed high level resistance to the homologous virus isolate (Higgins et al., 2004). 
Transfer of anti-apoptotic genes originated from mammals, nematods or virus into plants is 
another approach for enhancement of plant resistance against to biotic and abiotic stresses 
(Chu et al., 2008a). With this aim, peanut cv. Georgia Green embryogenic callus was 
bombarded with anti-apoptotic Bcl-xL gene by microprojectile bombardment. Although Bcl-
xL protein was detected in four transgenic lines, just one transgenic line (25-4-2a-19) had 
stable protein expression and showed tolerance to 5µM paraquat (commercial herbicide) 
(Chu et al., 2008a). Around 0.6% of total population in USA is affected of IgE-mediated 
allergic reaction following to peanut consumption (Sicherer et al., 2003). To produce 
hypoallergenic peanut, peanut cv. Georgia Green embryogenic cultures were also 
transformed via microprojectile bombardment and silenced peanut allergens (Ara h 2 and 
Ara h 6) by RNA interference. Expression of these allergens was not decreased effectively 
but, binding of IgE to the two allergens, significantly declined (Chu et al., 2008b). 

Apart from microprojectile bombardment, electroporation (Oliviera et al., 1994) and PEG-

mediated transformation were also carried out in apple (Maddumage et al., 2002) and 

kiwifruit (Raquel & Oliveira, 1996) in order to optimize transformation protocol by 

transferring gusA, gfp and/or nptII.  

3. Markers and selection of transformants  

3.1 Reporter genes  

Reporter genes or non-selectable marker genes are commonly used components of the 
plasmid constructs allowing the verification of transformation and the detection of the 
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putative transformed cells. In many fruit transformation studies, histochemical analyses of 

transformed cells are visualized by using -glucuronidase (GUS) expression as a reporter 
gene (Jefferson, 1987; Table 1). This enzyme is encoded by E. coli uidA (gusA) gene and 
histochemical localization of the gene expression is detected in subcellular levels (Daniell et 
al., 1991). High levels of GUS is not toxic for plant and the enzyme is very stable in cells, 
however, the assay is destructive to plants (Miki & McHugh, 2004). gusA generally co-
transformed with other selective marker genes to enable the selection of transformants. The 
gene gfp encodes for the protein green fluorescent protein (GFP) (Chalfie et al., 1994). This is 
one of the mostly used reporter marker gene in fruit transformation protocols for 
monitoring transformed cells in vivo and in real time just by application of UV-light for the 
excitation of the fluorescent protein. GFP has not any cytotoxic effect on transformed plant 
cells (Stewart, 2001; Manimaran et al., 2011). In vivo detection may permit the manual 
selection of transformed tissues with focusing in the areas where the signal is more brightly. 
Fusion of GFP with other proteins of interest provides precise visualizing of intracellular 
localization and transport in transformed plant (Miki & McHugh, 2004; Manimaran et al., 
2011). In some fruit species, it is reported that chlorophyll red autofluorescence can mask 
GFP expression making the detection really difficult or even impossible in species as apricot, 
peach and plum (Billinton & Knight, 2001; Padilla et al., 2006; Petri et al., 2008; Petri et al., 
2011). However, it was described as an efficient reporter gene in other woody fruit plants, 
such as citrus (Ghorbel et al., 1999) and peach (Pérez-Clemente et al., 2004). These contrary 
results confirm the highly variability of the reporter gfp gene which is described by Hraška 
and co-workers (2008). Other reporter gene, luciferase (luc) (Gould & Subramani, 1988) also 
let the monitorization of the transgene putative cells in living tissues, however, it is not so 
widely employed as the gfp (van Leeuwen et al., 2000; Miki & McHugh, 2004). 

3.2 Selection systems, a critical step 

Selection of transformed regenerants is a critical step in any transformation procedure 
(Burgos & Petri, 2005). Selection systems can be classified as positive or negative, and 
conditional or non-conditional. Positive selection systems are those that promote the growth 
of transformed cells and tissues, by the contrary, negative selection systems are those that 
promote the death of the transgenic cells. Both systems can be conditioned by an external 
substrate to perform their activity. Currently, negative selection systems are used in 
combination with positive selection systems to eliminate transformed cells with incorrect 
molecular programmed excision of the T-DNA (Schaart et al., 2004; Vamblaere et al., 2011). 
Typically, in positive conditional selection systems the selectable marker gene encodes for 
an enzyme conferring resistance to some specific toxic substrate that enable the growth of 
the transformed cell, tissues and inhibiting or killing non transformed tissues (more 
information in the comprehensive review of Miki & McHugh, 2004). In the literature 
approximately 50 selection marker genes are described for genetic plant transformation, 
however, just only three genes of positive conditional selection system (nptII and hpt, 
resistance to the antibiotics kanamycin and hygromycin, respectively, and bar gene encoding 
resistance to herbicide phosphinothricin) are commonly employed in more than 90% of the 
papers (Miki & McHugh, 2004). These three selectable genes are also the most used ones to 
transform fruit species as it can be seen in Table 1 and Table 2. Escherichia coli nptII gene 
(also known neo) encoded protein (neomycin phosphotransferase, NPTII) inactives 
aminoglycoside antibiotics such as kanamycin, neomycin, geneticin (G418), and 
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paramomycin that inhibit protein translation in the transformed cells (Padilla & Burgos, 
2010). Hygromycin B is another aminoglycoside antibiotic that inhibits protein synthesis 
with a broad spectrum activity against prokaryotes and eukaryotes and especially it is very 
toxic in plants. Escherichia coli hpt (aphIV, hph) gene codes for the hygromycin 
phosphotransferase to detoxify hygromycin B by phosphorylation via an ATP-dependent 
phosphorylation of a 7’’-hydroxyl group and it is generally used as another selection marker 
gene when nptII was not effective in plant transformation studies (Twyman et al., 2002; Miki 
& McHugh, 2004).  

Similar to antibiotics, herbicides have different specific target sites in plants. The resistance 
can be achieved by various mechanisms such as usage of natural isozyme or generation of 
enzyme mutagenesis or detoxification of the herbicides by metabolic processes. 
Phosphinothricin (PPT; ammonium glufosinate) is an active component of commercial 
herbicides formulations and analogous to glutamate, the substrate of glutamate synthase. In 
plants, this enzyme catalyzes the conversion of glutamate to glutamine by removing 
ammonia assimilation from the cell. Inhibition of the enzyme results in ammonia 
accumulation and disruption of chloroplast and finally cell death due to photosynthesis 
inhibition (Lindsey, 1992; OECD, 1999). In plant transformation studies, as herbicide 
resistance selection marker gene, pat from S. viridochromogenes (Wohlleben et al., 1988) and 
bar gene from S. hygroscopicus (bialophos resistance; Thompson et al., 1987) encoding the 
enzyme phosphinothricin N-acetyltransferase (PAT) are extensively used for resistance to 
PPT. PAT converts PPT to a non-herbicidal acetylated form by transferring the acetyl group 
from acetyl CoA to the free amino group of PPT (Miki & McHugh, 2004).  

Currently, an alternative to these highly employed “toxic” approaches conditional positive 

selection markers based on the promotion of a metabolic advantage to transformed cells are 

used. Some authors mentioned that this kind of selection can improve considerably the 

selection of the transformants, since others such as antibiotics generally cause considerable 

necrosis (produced by the death of non-transformed cells) that often inhibits regeneration 

from adjacent tissues (Petri & Burgos, 2005). Previously, results obtained with this approach 

demonstrated higher yields than when the toxic selective agents were employed, and seems 

to be broadly applicable to crop plants (Miki & McHugh, 2004). Some of the most widely 

used are the AtTPS1/glucose (Leyman et al., 2006); galT/galactose (Joersbo et al., 2003); 

xylose isomerase (Haldrup et al., 1998); D-aminoacid/dao1 (Alonso et al., 1998) and the 

pmi/mannose (Joersbo et al., 1998). Probably, one of the most used one in fruit species is the 

gene pmi that encodes the enzyme phosphomannose isomerase (EC 5.3.1.8) that catalyzes 

the reversible interconversion of mannose 6-phosphate and fructose 6-phosphate. This 

enzyme is present in bacteria as E. coli and also, in humans, however it is not present in 

plants, as exception of soybean and other legumes. Using a media with mannose as the 

unique carbon source, only transformed cells can grow and develop. Glycolysis is inhibited 

due to the accumulation of mannose-6-phosphate converted from mannose by hexokinase 

with preventing cell growth and development in non-transformed cells (Miki & McHugh, 

2004). Sensitivity to the toxic effect of mannose-6-phosphate is different between species, 

and can be avoided by combining with other sugars such as sucrose, maltose and fructose 

(Joersbo et al., 1999). Diverse fruit trees were selected with this system, alone or in 

combination with sucrose, i.e., 12 g/L mannose and 5 g/L sucrose in orange (Ballester et al., 

2008); 30 g/L mannose without any sugar more in papaya (Zhu et al., 2005); 2,5 g/L 
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mannose and 5 g/L sucrose in almond (Ramesh et al., 2006) or 1-10 g/L mannose and 5-30 

g/L in apple (Degenhardt et al., 2006). In Citrus sinensis, the best results were obtained when 

13 g/L mannose as unique source of carbon was added into the selection media. Mannose 

combined with other sugars promoted reduction in transformation efficiencies and escapes 

(Boscariol et al., 2003). Apricot cv. Helena and Canino required the lower combination of 

mannose with sucrose (1,25 g/L mannose and 20 g/L sucrose) in comparison with other 

woody fruit trees to obtain the most effective selection procedure. Moreover, safety 

assessments were revealed that there is no any adverse effect of the enzyme on mammalian 

allergenicity and toxicity (Reed et al., 2001). 

Other selective strategies were developed as positive non-conditional systems, or in other 
words, using selectable marker genes that “promote” plant regeneration. Currently, there is 
more information about the genetic and biochemical control of organogenesis than 
embryogenesis for plant regeneration. Because of this, commonly genes related with 
cytokinins synthesis are employed for shoot organogenesis. More efforts are required to 
discover molecular mechanisms of embryogenesis to use these strategies in species highly 
dependent on embryogenesis regeneration to develop transgenic plants. Genes as cki1 or the 
most employed isopentenyl transferase ipt gene encoding the enzyme IPT, catalyze the 
synthesis of isopentyl-adenosine-5-monophosphate, which is the first step in cytokinin 
biosynthesis (Miki & McHugh, 2004). This gene modify the endogenous balance between 
cytokinins and auxins, stimulating cell division and differentiation of the cells that promote an 
altered morphology, development and physiology of transgenic plants (Sundar & Sakthivel, 
2008). Some authors observed that the ipt gene improved transformation efficiency in apricot 
leaf explants in comparison with the selection through nptII (López-Noguera et al., 2009).  

3.3 A differential transgene expression: Constitutive versus specific promoters 

Currently, an important debate is carrying out about the risks of the “unpredictable” 
behavior and recombinogenic potential of constitutive promoters (Gittins et al., 2003) and to 
avoid the public concerns about the risks of ubiquitous transgene expression in crops. 

Commonly, most of the fruit species have been transformed with plasmidic constructions 

harbouring constitutive or ubiquitous promoters, as the Cauliflower Mosaic virus 35S 

(CaMV35S). In this sense, different authors described that constitutive expression may be 

harmful for the host plant, causing sterility, retarded development, abnormal morphology, 

yield penalty, altered grain composition or transgene silencing (Cai et al., 2007 and 

references therein) and its expression level is dependent on the cell type, the developmental 

stage and on the perception of environmental triggers (Hensel et al., 2011). Moreover, under 

constitutive promoters reporter and selectable marker, and genes of interest are expressed 

continuously in all tissues without any temporal control. In this sense, specific-promoters 

appear as an alternative approach to avoid the undesirable side effects of constitutive 

promoters and to target transgene expression in a spatial or temporal specific way (Gago et 

al., 2011; Hensel et al., 2011).  

Recently, vascular specific promoter EgCCR from Eucaliptus gunnii was checked in pistachio 
in this study as mentioned above as well as other fruit species such as kiwifruit and 
grapevine (Paradela et al., 2006; Gago et al., 2011) and results demonstrated that this 
promoter is conserved and fully functional in these species. Vascular promoters can drive 
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resistance to biotic or abiotic stresses related with vascular tissues. Specific promoters could 
be useful to synchronize transgene activity spatially and/or temporally to control with more 
accuracy the pathogenic process (Gago et al., 2011). 

3.4 Alternative transformation systems: Transgenics without marker genes 

A highly desirable approach to promote public acceptation for future commercialization of 
transgenic plants and products is focused on the elimination of marker genes from 
transformed plants or the direct production of marker-free transgenics (Kraus, 2010). These 
newly and promising approaches are highly dependent on previously established highly 
efficient regeneration protocols that may be based on organogenesis or embryogenesis (Petri 
et al., 2011). There are various technologies such as homologous recombination, co-
transformation, site-specific recombination (Cre/loxP site specific recombination system, 
R/RS system, FLP/FRT system etc) or marker elimination by transposons to remove 
selective marker genes (Hao et al., 2011; Manimaran et al., 2011). However, there are still 
few marker-free fruit species transformation protocols.  

Strawberry leaf explants were transformed with site-specific recombinase for the precise 
elimination of undesired DNA sequences and a bifunctional selectable marker gene used for 
the initial positive selection of transgenic tissue and subsequent negative selection for fully 
marker-free plants (Schaart et al., 2004).  

MAT (multi-auto-transformation) (Ebinuma et al., 1997) combined with the Agrobacterium 
oncogene ipt gene, for positive selection with the recombinase system R/RS for removal of 
marker genes acting as “molecular scissors” after transformation were used as alternative 
approach in citrus plants (Ballester et al., 2007; 2008). Also, in apricot (López-Noguera et al., 
2009) a similar strategy was used. Regeneration of apricot transgenic shoots was 
significantly improved to non-transformed plants (regenerated in non-selective media). 
Moreover, it was significantly higher in comparison with previous published data using 
resistance to kanamycin mediated by nptII gene. The lack of ipt differential phenotype 
promoted difficulties to assess the excision of the marker genes, that require periodic assays. 
Complete excision of marker genes ranged from 5 to 12 months, however, only 41% of the 
regenerated transgenic shoots R-mediated recombination occurs correctly. In Citrus sp., it 
was also reported that anomalous excision of marker genes promoting failures in the 
expression of the reporter genes (Ballester et al., 2007, 2008).  

Apple (Malnoy et al., 2010) and pineapple sweet orange (Ballester et al., 2010) 
transformation using ‘‘clean’’ binary vector including only the transgene of interest were 
carried out to create marker-free transformants. Very recently, melon (C. melo L. cv Hetao) 
was transformed with a marker-free and vector-free antisense 1-aminocyclopropane-1-
carboxylic acid oxidase construct via the pollen-tube pathway and transgenic lines are 
choosen by PCR without using any selectable marker agent (Hao et al., 2011).  

In plum (Prunus domestica), transformation was carried out without reporter or selectable 
marker genes using a high-throughput transformation system (Petri et al., 2011). Previously, 
authors checked the efficiency of the regeneration of transformed shoots using conventional 
constructs harbouring reporter marker such as gusA and gfp, and nptII gene. Transformation 
efficiency varied from 5.7-17.7%. Using a marker free construct, the intron-hairpin-RNA 
(ihpRNA) harbouring the Plum Pox Virus coat protein (ppv-cp) gene, these authors 
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regenerated five transgenic lines confirmed by Southern blot. It is important to take into 
account that this kind of free marker strategy is widely dependent on highly yields in 
regeneration systems. 

3.5 Cisgenesis, the P-DNA technology and multigene transformation 

Other relevant advance in fruit species transformation was the proposal made by Schouten 
and coworkers (2006), the “cisgenesis”. This term means the use of recombinant DNA 
technology to introduce genes from crossable donors plants, isolated from within the 
existing genome or sexually compatible relative species for centuries therefore, unlikely to 
alter the gene pool of the recipient species. Cisgenesis includes all the genetic events of the 
T-DNA as introns, flanking regions, promoters, and terminators (Vanblaere et al., 2011).  

This methodology proposes to transfer the own plant DNAs, the P-DNAs. The use of this 
technology requires the construction of whole plant derived vector from the target species. 
Within the target species genome, it must be a DNA fragment with two T-DNA border-like 
sequences oriented as direct repeats ideally about 1-2 kb apart with suitable restriction sites 
for cloning of a desirable gene.  

In the last years, different works were considered to step towards introducing regulatory 
elements and genes of interest from crossable donor plants, however with some foreign 
elements as marker genes in species as melon and apples (Benjamin et al., 2009; Joshi, 2010; 
Szankowski et al., 2009). Up to 2011 there is no any report of real “cisgenesis” plantlets, in 
agreement with Schouten et al. (2006) definition of the topic. In 2011, Vanblaere and 
coworkers developed apple cv. Gala cisgenic plants by expressing the apple scab resistance 
gene HcrVf2 encoding resistance to apple scab. Marker-free system was employed for the 
development of three cisgenic lines containing one insert of the P-DNA after removing by 
recombination with using chemical induction. These lines were not observed different from 
non-transformed cv. Gala plants.  

Cisgenic plants are essentially the same as the traditionally bred varieties, and they might be 
easier to commercialise than the “problematic” transgenic plants (Schouten et al., 2006; 
Rommens et al., 2007). Critical opinions to these proposals also were clearly exposed, the 
uncontrolled P-DNA integration into the plant target genome can cause mutations or affect 
to the expression of other native genes, altering the behaviour of that cisgenic plants in an 
unpredictable manner (Schubert & Willims, 2006; Akhond & Machray, 2009). Recently, 
interesting approaches are being proposed for genome editing using ZFNs (Zinc finger 
nucleases) that can promote induction of double-strand breaks at specific genomic sites and 
promote the replacement of native DNA with foreign T-DNA (Weinthal et al., 2010). 

The multigen transfer (MGT) methodology consist in introducing more than one gene at 
once. Commonly, most of the transgenic plants are generated by introducing just one single 
gene of interest, but now MGT are being developed to obtain more ambitious phenotypes as 
the complete import of metabolic pathways, whole protein complex and the development of 
transgenic fruit species with various new traits simultaneously transferred (Naqvi et al., 
2009). In this sense, this technology would be highly desirable for commercial fruit species 
cultivars to obtain new traits related with large fruit size, high coloration of the fruit 
epidermis, flesh firmness and virus resistance (Petri et al., 2011) at the same time without the 
need of several rounds of introgressive backcrossing. 
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4. In vitro culture techniques for the recovery of transgenic plants 

Plants are complex, diverse organisms and have adapted evolutionarily to almost every 
ecological niche on the planet. Development of successful transformation protocol depends 
on a reliable and highly efficient regeneration system. Explant types are highly variable 
since it depends on the selected organogenetic process optimized for each species. 
Commonly, the genetic transformation protocols of fruit species employed explants such as 
ovules, anthers, seedlings, zygotic and somatic embryos, cotyledons, epicotyles, 
hypocotyles, leaf pieces, roots, meristems (Fagoaga et al., 2007; Lopez- Perez et al., 2008; 
Petri et al., 2008; Husaini, 2010; Malnoy et al., 2010; Bosselut et al., 2011; Petri et al., 2011; 
Gago et al., 2011). Typically, it is recommended that those tissues have high and active cell 
division to enhance the regeneration of the transgenic lines (Mante et al., 1991; Schuerman & 
Dandekar, 1993; Wang, 2011). Ideally, fruit species transformation must be done with 
somatic tissues such as leaves and roots to transform varieties already well known and 
accepted in the market by the consumers. Recently, some authors also proposed the 
possibility of the use of transgenic seedlings to develop new fruit varieties through 
subsequent cross-breeding. These transgenic seedlings can add new traits impossible to 
obtain in the species genome-pool (Petri et al., 2011). 

Organogenesis was the strategy selected in different species to develop most of the known and 
efficient regeneration protocols for fruit species, concretely for fruit trees (Petri et al., 2011). 
Almond (Costa et al., 2006); apple (Smolka et al. 2009; Lau & Korban, 2010; Vanblaere et al., 
2011); banana (Subramanyam et al., 2011); fig (Yancheva et al., 2005); kiwifruit (Tian et al., 
2011); peach (Padilla et al., 2006); strawberry (Mercado et al., 2010); peanut (Asif et al., 2011); 
watermelon (Huang et al., 2011) and pear (Sun et al., 2011) are some examples of transformed 
cultivars for some fruit species that the transformed tissues were regenerated via 
organogenesis. Since organogenesis protocols are developed for many different fruit species, it 
is easier to adapt the regeneration system into genetic transformation methods (Frary & Eck, 
2005). However, some risks also are assumed in using this regeneration system. Generally, it is 
considered that the origin of the new adventitious shoots is based on the involvement of few 
cells (George et al., 2008), enhancing the risks of chimera development.  

Somatic embryogenesis that leads the formation of an embryo from somatic cells is another 
procedure to regenerate fruit transformants such as banana (Vishnevetsky et al., 2011); 
papaya (Zhu et al., 2001); grapevine (Nirala et al., 2010) and mango (Chavarri et al., 2010). 
Regeneration from transformed embryos can be achieved via direct germination or shoot 
organogenesis and the method is useful for large-scale and rapid propagation of 
transformants. In grapevine most of the approaches are being performed by using 
embryogenic cultures from different tissues such as zygotic embryos, leaves, ovaries and 
anther filaments to provide cells amenable to gene insertion and regeneration (Mezzetti et 
al., 2002; Dutt et al., 2007; López-Noguera et al., 2009). However, these techniques are highly 
genotype dependent and for many cultivars they have been difficult to obtain successful 
results (Dutt et al., 2007). Moreover, it is considered that anther filaments, as commonly 
employed in grapevine for embryogenic calli, are laborious, cultivar-dependent, depend on 
availability of immature flowers and may affect strongly the phenotype of the regenerated 
plantlets (Mezzetti et al., 2002). However, it is really interesting to take into account that 
regeneration from somatic embryos and secondary somatic embryos are currently assumed 
that they are derivatives of single cell origin.  
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In the decade of the 90´s some unsuccessful efforts were reported to transform meristems 

from micropropagated shoot tips due to high explant mortality and uncontrolled 

Agrobacterium overgrowth after coculture stages (Ye et al., 1994; Druart et al., 1998; Scorza et 

al., 1995). Mezzetti and co-workers (2002) described in grapevine the development of 

meristematic bulk tissues, a highly aggregate of meristematic cells produced after three 

months in increased concentrations of BA (N6-benzyladenine) and the removal of the apical 

meristem. After 90 days, under the previous conditions, these highly regenerative tissues 

produced easily adventitious shoots and can be transformed by Agrobacterium, being able to 

regenerate several transgenic lines. Other interesting approach was the genetic 

transformation of shoot apical meristems, previously subjected to a dark growth stage after 

wounding for transformation. Authors reported that 1% of shoot tips produced stable 

transgenic lines after weeks (Dutt et al., 2007). Ismail and co-workers (2011) transformed 

successfully banana apical meristems via microprojectile bombardment and regenerated 

80.3% percent of the transformed meristematic tissues. 

4.1 The chimeric question: Are my transgenic plants genetically uniform? 

This is one of the most exciting questions that plant biotechnology researchers ask to 

themselves after all the long extensive, intensive and difficult labour needed to transform most 

of the fruit species. Some of the transformed regenerants can be chimeras, a mix of 

transformed and non transformed cells in the tissues, in other words, non genetically uniform 

organisms (Hanke et al., 2007). Recently, Petri and collaborators (2011) described that most of 

the known and efficient regeneration methods for fruit trees are based on organogenesis, 

where new adventitious shoot formation is originated from a determined number of cells. So, 

it comes hard to detect non chimeric and stable transgenic lines without using a selectable 

marker gene. Very recently, different authors using marker free technology as alternative 

systems or with genetically programmed marker excision reported the appearance of chimeric 

transformants in apple, strawberry, lime, citrus or plum (Domínguez et al., 2004; Schaart et al., 

2004; Ballester et al., 2007; Malnoy et al., 2011; Petri et al., 2011).  

Strawberry is highly sensitive to kanamycin selection, and it was described that selection of 

transgenic regenerants in these sensitive tissues can be associated with chimeric shoots 

containing transgenic and non-transgenic sections (Husaini, 2010). It was observed that 

increasing antibiotic concentration gradually avoid chimerisms in strawberry (Mathews et 

al., 1998; Husaini et al., 2010). Even under this strictly methodology some authors pointed 

out the inactivation events on the selection agent must be performed through the 

transformed cells, so, non transformed cells can develop and grown (Petri & Burgos, 2005; 

Wang, 2011). A useful methodology was also proposed for the quick and low-cost 

identification of chimeras by Faize and collaborators (2010) in tobacco and in apricot based 

in quantitative real-time PCR even in early developmental stages, and also let to monitor 

their dissociation.  

5. Future perspectives and concluding remarks 

Currently, most of the fruit genetic transformation protocols integrated the new genes 

randomly and in unpredictable copy numbers influencing negatively its expression. Also 

public concerns and reduced market acceptance of transgenic crops have promoted the 
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development of alternative marker free technologies in fruit species. For those reasons 

development of protocols to obtain transgenic fruits without marker genes and the use of 

the own plant DNA resources, such as “cisgenic” fruit plants, are the big challenges. ZFNs 

have also been succesfuly used to drive the replacement of native DNA sequences with 

foreign DNA molecules and to mediate the integration of the targeted transgene into native 

genome sequences. 

Most of the fruit transgenic plants are generated by introducing just one single new 

character (gene of interest), however, some authors proposed that multigene transfer 

technology (MGT) needs to be developed to obtain new traits related at the same time. The 

combination of multiple traits can be a highly interesting approach as it could be applied to 

achieve resistance to several biotic or abiotic stresses and traits related to fruit quality such 

as large fruit size, high coloration of the fruit epidermis, increase flesh firmness to improve 

ripening without the need of several rounds of introgressive backcrossing.  

The future of fruit genetic transformation is required of genotype-independent protocols, 
accuracy molecular tools to drive the T-DNA insertion and its expression, and efficiency and 
highly-yield selection and regeneration in vitro culture methodology. But Agrobacterium-
mediated transformation procedure is a high non linear complex biological process, and its 
complexity can be understood with the composition of many different and interacting 
elements governed by non-deterministic rules and influenced by external factors. In this 
sense, the emergent technology dedicated to meta-analysis can be really useful to increase 
our understanding of fruit genetic transformation, making possible to identify relationships 
among several factors and extracting useful information generating understable and 
reusable knowledge (Gago et al., 2011; Gallego et al., 2011; Perez-Pineiro et al., 2012) Under 
these perspectives, modeling any fruit transformation procedure (Agrobacterium-mediated, 
biolistics, electroporation etc.) including the genetic engineering, in vitro plant tissue culture 
and regeneration stages will be improved for the next years. 
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