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1. Introduction

An activated sludge process (ASP) is a biochemical process employed for treating sewage and
industrial waste-water, which uses microorganisms and air (or oxygen) to biologically oxidize
organic pollutants, producing a waste sludge (or floc) containing the oxidized material. The
optimal operation of the biological treatment processes is a challenging task because of the
stringent effluent requirements, the complexity of processes as an object of control and the
need to reduce the operation cost. US law has strict requirements on the effluent quality of the
ASP; similar strict requirements were adopted during the last decade in Europe and in South

Africa (Maine Department of Environmental Protection, Augusta, ME, 2010; Tzoneva, 2007).

Polluted water contains a wide range of inorganic and organic chemical species and
microorganisms, including pathogens. Filtered concentrated sludge is produced at initial

stages of the treatment. The objectives of the key subsequent stage are eliminating potential
pathogenic micro-organisms and reducing organic chemical content, which might act as a
substrate for further microbial growth, to an acceptable level. Autothermal thermophilic
aerobic digestion (ATAD) is a process that is widely used to achieve these goals. ATAD makes
use of bacterial growth within the sludge both to reduce organic chemical content and to kill
pathogenic bacteria; aeration of the sludge promotes the growth of aerobic bacteria, which
feed on and reduce the organic substrates in the sludge. A review of the ATAD origin, design
and operation can be found in Bojarski et al. (2010); Capon-Garcia et al. (2010); Graells et al.
(2010); Layden (2007); Rojas & Zhelev (2009).

1.1 Waste-water treatment plant operation

This subsection is extracted from Rojas et al. (2010).

ATAD is operated as a batch or semi-batch process. A large reactor containing sludge receives
an additional volume of untreated sludge at the start of a batch via a feed inlet (see Figures 1
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2 Will-be-set-by-IN-TECH

and 2). During the batch reaction air is pumped continuously into the reactor providing
both the oxygenation required for aerobic bacterial growth and the mechanical mixing of the
sludge. Digestion of organic substrates proceeds with bacterial growth, predominantly of
thermophiles due to elevated temperature. At the end of the batch period, a fraction of the
treated volume is removed and is immediately replaced by the next batch of intake sludge.
Thus the outflow sludge has the same composition as the sludge in the reactor at the end
of the batch reaction time t. Batch outflow and inflow cannot be opened at the same time
to prevent the untreated inflow sludge might from be drawn off with and taint the outflow
sludge. The time between successive batch intakes is typically fixed at 24 hours for staffing

Fig. 1. External view of a reactor.

Fig. 2. Scheme of the reactor for waste-water treatment.

reasons. In order to achieve the desired treatment outcomes, treatment plant designs may
include a single ATAD reactor stage (as is shown in Figure 1), or two reactors in series with
outflow from the first reactor being inflow into the second.
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Finite-Dimensional Methods for Optimal Control of Autothermal Thermophilic Aerobic Digestion 3

1.2 Models of ASP and ATAD

In order to improve efficiency of ATAD process, in recent decades various control strategies

for the ASP have been developed by engineers. Simple strategies are typically limited to
the maintenance of some desired values for easily determinable process parameters, such as
food-microorganism ratio, sludge recycle flow rate, or oxygen concentration in the aeration
basin (Holmberg, 1982). More complex models take into consideration that the process
also depends on a number of working conditions, such as air pump power to regulate the
mean oxygen concentration (Rinaldi et al., 1979). Optimal working conditions and control
strategies are usually established with a support of mathematical models (Brune, 1985;
Kobouris & Georgakakos, 1991; Moreno, 1999; Moreno et al., 2006; Tzoneva, 2007); relevant
studies and comparison of control strategies have been done by Debuscher et al. (1999);
Fikar et al. (2005); Lindberg (1998); Lukasse et al. (1998); Potter et al. (1996); Qin et al. (1997).

Obviously, a particular solution depends on the model that was employed; over the last 50
years a variety of models of different level of complexity were proposed for ASP. It should
be taken into consideration, however, that there is considerable uncertainty in inferring
both the functional description of processes and the accuracy of parameterizations when
applying laboratory-derived models to a real-life system. In particular, many existing models
of the waste-water treatment are motivated by microbiological and engineering interest
and have been constructed with an intention to incorporate as much as possible of the
apparent understanding of underlying processes. As a result, such models tend to include
too many variables, processes and parameters, which are known with a substantial degree of

uncertainty.

Laboratory scale experiments provided understanding (to varying degrees) of many of
the microbiological and chemical processes involved. By encapsulating much of this

understanding in mathematical models, engineers provided tools for computer simulations
that can be used in the design process.

The "Activated Sludge Model 1" (ASM1) (Henze et al., 2000) has achieved a broad level of

acceptance in the waste-water treatment community. Based on the dominance of the ASM1
model in the field, its extension to the ATAD process as set out by Gomez et al. (2007) appears
to create a de facto standard for modeling this process. The drawbacks of the model are
also obvious (Rojas et al., 2010). The full-scale ASM1 model incorporates large numbers
of variables and functional responses, and consequently requires many parameters. The
motivation for including these particularities in the model is predominantly microbiological,
and seems to arise from the urge to include all possible components about which there is
some knowledge. However, details for many of these functional responses are unknown,
and the accuracy of parameter values is uncertain: they are dependent on the chemical
and microbiological make-up of the particular sludge, and therefore typically used as fitting
parameters. With such a highly parameterized model, sets of parameter values can be found
to fit most data, but it is unclear whether the model remains reliable in such situations.
Applying a parameterized model under different (but physically reasonable) operating
conditions may give spurious modeling artifacts. This may also cause numerical difficulties in
attempting any optimization. Moreover, a mathematical model is not very useful, if it cannot

be completely investigated using existing optimization methods. Mathematical optimization
can be conducted with the use of optimal control theory.
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1.3 Optimal control of nonlinear models

Optimal control problem for a system of ordinary differential equations is the problem of

finding an extremum of a functional (objective function) under differential restrictions in
the infinite dimensional functional space (for example, the space of all bounded piecewise
continuous functions). This is a challenging mathematical problem. There are a number of
approaches that allow to reduce the problem to the analysis of a finite dimensional problem;
one such effective approach is the Pontryagin Maximum Principle (PMP) (Pontryagin et al.,
1962), which is a necessary condition for optimality in the original infinitely dimensional
problem. It reduces the optimal control problem to the analysis of two point boundary
value problem of the Maximum Principle. This boundary value problem is finite in the sense
that its solutions, phase vector and adjoint variable, depend either on the initial or terminal
conditions, which belong to the elements of a finite dimensional Euclidean space. The optimal
control is uniquely determined by the so-called maximum condition. Therefore, a desirable
control depends on the variables selected as the initial or terminal conditions of the phase
vector and the adjoint variable. Thus, the considered optimal control problem can be reduced
to a finite problem, and the well-known methods can be applied to solve it (Fedorenko, 1978).
Of course, these arguments exclude from considerations possibilities such as singular arcs in
the corresponding optimal control (Bonnard & Chyba, 2003), or situations when the control

has an infinite number of switchings on a finite time interval (Bressan & Piccoli, 2007).

Under the assumptions above, look at the boundary value problem of the Maximum Principle
on the other side. For a system of ordinary differential equations which is linear in controls,

the maximum condition almost everywhere uniquely determines the optimal control in the
form of a piecewise constant function with a finite number of switchings. If we take the
moments of switching as the corresponding variables, then the phase vector and adjoint
variable become dependent on these switchings, and the considered optimal control problem
becomes finite in the sense that the required control belongs to the class of piecewise constant
functions with an estimated finite number of switchings determined from the analysis of the
maximum condition. Grigorieva & Khailov (2010a;b), which are associated with the problem
of optimizing the waste-water treatment process, support these arguments. The considered
model, which is due to Brune (1985), is sufficiently simple to be investigated analytically,
while it adequately describes the principal features of the ASP and water cleaning control
process Brune (1985) formulated an optimal control problem for the minimization of the waste
concentration in the ASP and offered the PMP for its solution. However, the analysis of
the corresponding boundary value problem for the Maximum Principle was not completed;
instead the author offered a numerical solution to the problem for different piecewise constant
controls. Grigorieva & Khailov (2010a;b) deal with the complete analysis of this model for a
different objective functions. Grigorieva & Khailov (2010a) formulated the optimal control

problem of minimizing the pollution concentrations at the terminal time and found optimal
solutions for this. Authors also investigated how these optimal solutions depend on initial
conditions and conducted numerical simulation of the ASP for different parameter values.
Grigorieva & Khailov (2010b) stated an optimal control problem of minimizing the water
pollution concentrations on a given time interval. The optimal solutions for this problem
is found in two stages: firstly, the authors investigated the optimal control problem using
the PMP. Secondly, an approach based on Green’s Theorem (Hájek, 1991), was applied. As
a result of this study the authors obtained possible types of optimal solutions. This study
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reviled a possibility of the existence of singular arcs at corresponding optimal trajectories
(Bonnard & Chyba, 2003); this fact makes an analytical study of the problem extremely
difficult. However, the approach based on Green’s Theorem enabled the authors to prove the
absence of singular arcs at optimal trajectories. In the same time, this approach overestimates
the number of switchings for optimal controls. Ultimately, a combination of the results
obtained applying these different approaches allowed to solve the considered optimal control
problem analytically.

The model studied in these papers is not intended to be the finest or the most precise ASP
model; on the contrary, it is robust and rather basic. However, it includes all the essential
features of the process. Furthermore, the model is nonlinear and assumes a bounded control;
these features make the model very interesting from the mathematical point of view.

An alternative approach, which also allows a reduction of the original optimal control
problem to a finite dimensional problem, is a constructing of a finite dimensional
parametrization by the moments of switching for some piecewise constant controls of the
corresponding attainable set, which fully characterizes the behavior of the original control
system. This approach can be applied to solve a range of problems, including:

• estimating of control opportunity, that is investigating where trajectories of the system can
lead under different admissible controls;

• solving the controllability problem;

• solving optimal control problems with a terminal functional, such as the problem of
minimizing pollution at a terminal time;

• solving a time optimal control problem (that is, how to move a system from an initial state
to the terminal state for minimal time).

Methods for solving these problems, except the last one, with particular application to the
optimal control for ATAD will be discussed in this Chapter. A time optimal control problem
and optimal control problems with an integral functional, such as the problem of minimizing
pollution for a specified time interval and the problem of minimizing energy consumption for
aeration on a given time interval, are subjects of future research.

1.4 Rational and basic assumptions for modeling

The ATAD process is efficient but it can be costly, as it requires continuous aeration that
generally is energy-consuming. Optimizing the aeration can significantly reduce the cost of
operation. Existing ATAD models are far too large and complex, and this complexity prevents
the application of the usual optimization techniques. Our aim is, therefore, to construct a
model that retains the fundamental properties of the process (as well as these of the large scale

existing models) while being sufficiently simple to allow the use of optimization procedures.
With this intention in mind, we formulate and investigate a simplified model of the ATAD
reaction based on the existing ASM1 model at thermophilic temperatures.

In this Chapter we formulate a model that (in contrast to a rather complex ASP1 model) we
are capable of investigating analytically and optimizing numerically. This model includes
the essential mechanisms of the ATAD process while ignoring the issues, which, though
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microbiologically known, are not material to the process within the likely range of operating
conditions. It is our expectation that this model will describe the process with a sufficient
degree of accuracy while providing a suitable basis for optimization. A number of simplifying
assumptions permit us to reduce the complexity of the model while retaining the essential
aspects of the processes. These assumptions are summarized as follows:

• We assume that the reactor in well-stirred (as it is in practice), and hence concentrations of
the reagents are homogeneous throughout the volume.

• All the biological activity takes place only in the reactor.

• The batch outflow and inflow stages are of sufficiently short duration, and the biological
activity during these stages is negligible.

• Aeration is sufficient, and anaerobic metabolic activity is negligible.

• We consider this process as a reaction with three reagents, namely: oxygen with
concentration x(t), organic matter of concentration y(t), and bacteria of concentration z(t).

• The reaction is governed by the low of mass action.

• The aeration rate u(t) is the only control. This control function is bounded.

2. Mathematical model

In order to describe the process of aerobic biotreatment, we consider a simple mathematical
model, which represent the process as a chemical reaction with three reagents, namely the
concentration of oxygen x(t), organic matter with concentration y(t), and the thermophilic
aerobic bacteria with concentration z(t). It is assumed that the mass in the reactor is well
stirred, and hence the reactant concentrations are homogeneous in the volume. The changes of
concentrations of the reagents are described by a three-dimensional nonlinear control system

⎧
⎪⎪⎨
⎪⎪⎩

ẋ(t) = −x(t)y(t)z(t) + u(t)(m − x(t)), t ∈ [0, T],
ẏ(t) = −x(t)y(t)z(t),
ż(t) = x(t)y(t)z(t)− bz(t),
x(0) = x0, y(0) = y0, z(0) = z0, x0 ∈ (0, m), y0 > 0, z0 > 0.

(1)

Its nonlinearity is justified by the law of mass action (Krasnov et al., 1995) describing the
dependence of the rate of chemical reaction on the concentrations of initial substances. The
first equation of system (1) represents the evolution of oxygen concentration: the first term,
−x(t)y(t)z(t), describes the process of its absorption in the reaction, whereas the second term
describes influx of oxygen (by pumping) into the reactor from outside. Here, u(t) is the rate
of aeration, which at the same time is the control function. The second equation describes
a decrease of the organic matter in the reaction. The third equation of system (1) shows an
evolution of the active biomass concentration; the bacteria mass grows at the rate x(t)y(t)z(t)
and decays at a rate b. The original system also includes positive initial conditions and a
restriction on the rate of pumping air. We consider all possible Lebesgue measurable functions
u(t), which for almost all t ∈ [0, T] satisfy the inequality

0 ≤ u(t) ≤ umax, (2)
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as the admissible controls D(T).

The phase variables x, y, z of system (1) satisfy the following properties.

Lemma 1. Let u(·) ∈ D(T) be an arbitrary control. Then the corresponding solution w(t) =
(x(t), y(t), z(t))⊤ of the system (1) is defined on the interval [0, T], the components x(t), y(t), z(t) of
which satisfy the following inequalities:

0 < x(t) < xmax, 0 < y(t) < ymax, 0 < z(t) < zmax, t ∈ [0, T], (3)

where xmax, ymax, zmax - some positive constants depending on initial conditions x0, y0, z0 and
parameters m, b, umax, T of the original system.

Here and below, symbol ⊤ means transpose.

Proof. Let x(t), y(t), z(t) be solutions of system (1), which regarding the Existence and
Uniqueness Theorem for the system of differential equations (Hartman, 1964), are defined
on the biggest semi-interval ∆ ⊆ [0, T].

We will write the solution of the second equation of system (1) as

y(t) = y0e−
∫ t

0
x(ξ)z(ξ)dξ. (4)

From this formula it follows that y(t) > 0 for all t ∈ ∆.

Next, by analogy, we obtain the solution of the third equation of the considered system

z(t) = z0e
∫ t

0
(x(ξ)y(ξ)−b)dξ, (5)

from which we have that z(t) > 0 for all t ∈ ∆.

Finally, we can write the solution of the first equation of system (1) as

x(t) = e−
∫ t

0
(y(ξ)z(ξ)+u(ξ))dξ

(
x0 + m

∫ t

0
e
∫ s

0
(y(ξ)z(ξ)+u(ξ))dξu(s)ds

)
. (6)

From this formula regarding inequality (2) we find that x(t) > 0 for all t ∈ ∆.

Therefore, we obtain the inequalities:

x(t) > 0, y(t) > 0, z(t) > 0,

that are valid for all t ∈ ∆.

Further, considering positiveness of solutions x(t) and z(t), from formula (4) we find the
inequality y(t) < y0 for all t ∈ ∆.

From formula (6), positiveness of solutions y(t), z(t), and inequality (2) we obtain the
relationship

x(t) = x0e−
∫ t

0
(y(ξ)z(ξ)+u(ξ))dξ + m

∫ t

0
e−

∫ t

s
(y(ξ)z(ξ)+u(ξ))dξu(s)ds < x0 + mumaxT.
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Then we find the inequality x(t) < x0 + mumaxT for all t ∈ ∆.

Using restrictions on solutions x(t) and y(t) obtained above, from formula (5) we have the

relationship

z(t) < z0e
∫ t

0
x(ξ)y(ξ)dξ

< z0ey0T(x0+mumaxT).

Therefore, we find the inequality z(t) < z0ey0T(x0+mumaxT) for all t ∈ ∆.

Thus, solutions x(t), y(t), z(t) of system (1) on the semi-interval ∆ ⊆ [0, T] are bounded, and
so they cannot go to infinity. Regarding Corollary from Lemma (§14) (Demidovich, 1967),
solutions x(t), y(t), z(t) of considered system are defined on entire interval [0, T] and satisfy
on it inequalities (3). The proof is completed.

Restrictions on the function x(t) are specified as follows.

Lemma 2. For an arbitrary control u(·) ∈ D(T) the corresponding solution x(t) of the system (1) is
subject to the inequality

0 < x(t) < m, t ∈ [0, T].

Proof. Let ν(t) = m − x(t), t ∈ [0, T]. Then, using the first equation of system (1), for function
ν(t) we have Cauchy problem

{ ˙ν(t) = −(y(t)z(t) + u(t))ν(t) + my(t)z(t),
ν(0) = ν0 = m − x0 > 0.

Using the variation of a parameter method (Hartman, 1964) we find the solution of this
problem as

ν(t) = e−
∫ t

0
(y(ξ)z(ξ)+u(ξ))dξ

(
ν0 + m

∫ t

0
e
∫ s

0
(y(ξ)z(ξ)+u(ξ))dξy(s)z(s)ds

)
.

By Lemma 1 from this expression we have relationship ν(t) > 0 for all t ∈ [0, T], from which
the required inequality follows.

Lemmas 1 and 2 imply that for any control u(·) ∈ D(T) solutions x(t), y(t), z(t) of the system
(1) retain their physical meanings for all t ∈ [0, T].

3. Attainable set and its properties

Let X(T) ⊂ R3 be the attainable set for system (1) from an initial point w0 = (x0, y0, z0)
⊤

at the moment of time T; that is, X(T) is the set of all ends w(T) = (x(T), y(T), z(T))⊤ of
trajectories w(t) = (x(t), y(t), z(t))⊤ of system (1) under all possible controls u(·) ∈ D(T). By
Lee & Markus (1967) and Lemma 1, it follows that set X(T) is a compact set in R3 located into
the region {

w = (x, y, z)⊤ ∈ R3 : x > 0, y > 0, z > 0
}

.

We denote by ∂Q and intQ the boundary and the interior of the compact set, Q ⊂ R3,
respectively.
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Next, we study the boundary of the attainable set X(T). Consider a point w = (x, y, z)⊤,
such that w ∈ ∂X(T). It corresponds to control u(·) ∈ D(T) and a trajectory w(t) =
(x(t), y(t), z(t))⊤, t ∈ [0, T], of system (1), such that w = w(T). Then it follows from
Lee & Markus (1967) that there exists a non-trivial solution ψ(t) = (ψ1(t), ψ2(t), ψ3)

⊤, t ∈
[0, T] of the adjoint system

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ψ̇1(t) = u(t)ψ1(t) + y(t)z(t)(ψ1(t) + ψ2(t)− ψ3(t)),

ψ̇2(t) = x(t)z(t)(ψ1(t) + ψ2(t)− ψ3(t)),

ψ̇3(t) = x(t)y(t)(ψ1(t) + ψ2(t)− ψ3(t)) + bψ3(t),

(7)

for which, by Lemma 2, the following relationship is valid:

u(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0, if L(t) < 0,

∀u ∈ [0, umax], if L(t) = 0,

umax, if L(t) > 0.

(8)

Here L(t) = ψ1(t). Function L(t) is the so-called switching function and its behavior
determines the type of control u(t).

For convenience in subsequent arguments, we introduce the following auxiliary functions:

G(t) = ψ1(t) + ψ2(t)− ψ3(t), P(t) = −ψ3(t), d(t) = y(t)z(t) + z(t)x(t)− x(t)y(t), t ∈ [0, T].

Using the adjoint system (7), we write for functions L(t), G(t), P(t) the following system of
linear differential equations

⎧
⎪⎪⎨
⎪⎪⎩

L̇(t) = u(t)L(t) + y(t)z(t)G(t), t ∈ [0, T],

Ġ(t) = u(t)L(t) + d(t)G(t) + bP(t),

Ṗ(t) = −x(t)y(t)G(t) + bP(t).

(9)

The validity of the following Lemma immediately follows from the non-triviality of solution
ψ(t) = (ψ1(t), ψ2(t), ψ3(t))

⊤ of the adjoint system (7).

Lemma 3. The switching function L(t) and the auxiliary functions G(t) and P(t) are nonzero
solutions of system (9).

Lemma 3 allows us to rewrite the relationship (8) in the form

u(t) =

{
0, if L(t) < 0,

umax, if L(t) > 0.
(10)

At points of discontinuity we will define function u(t) by its limit from the left. Consequently,
the control u(t), t ∈ [0, T], corresponding to a point w ∈ ∂X(T), is a piecewise constant
function, taking values {0, umax}. Such type of control is usually called a bang-bang control.
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Next, we estimate the number of switchings of control function u(t), t ∈ [0, T]. It follows from
(10) that it is sufficient to estimate the number of zeros of the function L(t) on the interval
(0, T). The following important statement is valid.

Lemma 4. The switching function L(t) has at most two zeros on the interval [0, T].

Proof. Let us introduce for system (9) new variables:

r(t) = L(t), v(t) = G(t), µ(t) = P(t) + q1(t)L(t) + q2(t)G(t),

where functions q1(t), q2(t) must be determined. Using new variables r(t), v(t), µ(t) system
(9) has the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ(t) = u(t)r(t) + y(t)z(t)v(t),

v̇(t) = (u(t)− bq1(t))r(t) + (d(t)− bq2(t))v(t) + bµ(t),

µ̇(t) =
[
q̇1(t) + (u(t)− b)q1(t) + u(t)q2(t)− bq1(t)q2(t)

]
r(t)+

+
[
q̇2(t) + y(t)z(t)q1(t) + (d(t)− b)q2(t)− bq2

2(t)− x(t)y(t)
]

v(t)+

+ b(1 + q2(t))µ(t).

(11)

We will select such functions q1(t) and q2(t) that in system (11) the expressions inside brackets
by r(t) and v(t) are zero. Now, we have for functions q1(t), q2(t) the system of differential
equations

{
q̇1(t) + (u(t)− b)q1(t) + u(t)q2(t)− bq1(t)q2(t) = 0,

q̇2(t) + y(t)z(t)q1(t) + (d(t)− b)q2(t)− bq2
2(t)− x(t)y(t) = 0.

(12)

Then system (11) will be rewritten as

⎧
⎨
⎩

ṙ(t) = u(t)r(t) + y(t)z(t)v(t),
v̇(t) = (u(t)− bq1(t))r(t) + (d(t)− bq2(t))v(t) + bµ(t),
µ̇(t) = b(1 + q2(t))µ(t).

(13)

In system (13) we will make the following substitutions:

r̃(t) = r(t), ṽ(t) = v(t) + q3(t)r(t), µ̃(t) = µ(t),

where q3(t) is the function that must be determined. Then system (13) will be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃r(t) = (u(t)− y(t)z(t)q3(t))r̃(t) + y(t)z(t)ṽ(t),

˙̃v(t) =
[
q̇3(t)− bq1(t) + (u(t)− d(t))q3(t)+

+ bq2(t)q3(t)− y(t)z(t)q2
3(t) + u(t)

]
r̃(t)+

+ (d(t) + y(t)z(t)q3(t)− bq2(t))ṽ(t) + bµ̃(t),

˙̃µ(t) = b(1 + q2(t))µ̃(t).

(14)

100 Industrial Waste

www.intechopen.com



Finite-Dimensional Methods for Optimal Control of Autothermal Thermophilic Aerobic Digestion 11

We will choose function q3(t) so that in system (14) the expression inside brackets by r̃(t) will
become zero. Now, we have for function q3(t) the equation

q̇3(t)− bq1(t) + (u(t)− d(t))q3(t) + bq2(t)q3(t)− y(t)z(t)q2
3(t) + u(t) = 0. (15)

Then system of equations (14) will be rewritten as

⎧
⎨
⎩

˙̃r(t) = (u(t)− y(t)z(t)q3(t))r̃(t) + y(t)z(t)ṽ(t),
˙̃v(t) = (d(t) + y(t)z(t)q3(t)− bq2(t))ṽ(t) + bµ̃(t),
˙̃µ(t) = b(1 + q2(t))µ̃(t),

(16)

and the system of differential equations for functions q1(t), q2(t), q3(t), regarding
relationships (12) and (15), is following

⎧
⎨
⎩

q̇1(t) = −(u(t)− b)q1(t)− u(t)q2(t) + bq1(t)q2(t),
q̇2(t) = −y(t)z(t)q1(t)− (d(t)− b)q2(t) + bq2

2(t) + x(t)y(t),
q̇3(t) = bq1(t)− (u(t)− d(t))q3(t)− bq2(t)q3(t) + y(t)z(t)q2

3(t)− u(t).
(17)

Next, we will rewrite system (17) in a matrix form. At first, we define symmetric matrices

A1(t), A2(t), A3(t) as follows:

A1(t) =

⎛
⎝

0 b
2 0

b
2 0 0
0 0 0

⎞
⎠ , A2(t) =

⎛
⎝

0 0 0
0 b 0
0 0 0

⎞
⎠ , A3(t) =

⎛
⎝

0 0 0

0 0 − b
2

0 − b
2 y(t)z(t)

⎞
⎠ .

Then we introduce vectors b1(t), b2(t), b3(t) as:

b1(t) =

⎛
⎝

u(t)− b
u(t)

0

⎞
⎠ , b2(t) =

⎛
⎝
−y(t)z(t)
b − d(t)

0

⎞
⎠ , b3(t) =

⎛
⎝

b
0

u(t)− d(t)

⎞
⎠ .

At last, we define functions c1(t), c2(t), c3(t) by relationships:

c1(t) = 0, c2(t) = x(t)y(t), c3(t) = −u(t).

Then we obtain the following system of equations

⎧
⎨
⎩

q̇1(t) = q⊤(t)A1(t)q(t) + b⊤1 (t)q(t) + c1(t),
q̇2(t) = q⊤(t)A2(t)q(t) + b⊤2 (t)q(t) + c2(t),

q̇3(t) = q⊤(t)A3(t)q(t) + b⊤3 (t)q(t) + c3(t),

(18)

where q(t) = (q1(t), q2(t), q3(t))
⊤.

Now, we will show that for system (18) there exists a solution defined on the entire interval
[0, T]. Assume the contradiction, i. e. that an arbitrary solution q(t) of system (18) is
defined on the interval [0, t1), t1 ∈ (0, T], which is the biggest interval of the existence of this
solution. Then, from Lemma (Chapter 4, §14) (Demidovich, 1967) for solution q(t) it follows
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the relationship
lim

t→t1−0
‖q(t)‖ = +∞. (19)

Its validity leads to the existence of values ρ > 0 and t0 ∈ [0, t1), for which the inclusion
q(t) ∈ Ω holds for all t ∈ [t0, t1). Here Ω =

{
q ∈ R3 : ‖q‖ ≥ ρ

}
.

Let us evaluate on the interval [t0, t1) the derivative of function ‖q(t)‖ regarding system (18).
We have the equality

d

dt

(
‖q(t)‖

)
= ‖q(t)‖−1 ·

([
q1(t)q

⊤(t)A1(t)q(t)+

+ q2(t)q
⊤(t)A2(t)q(t) + q3(t)q

⊤(t)A3(t)q(t)
]
+

+
[
q1(t)b

⊤
1 (t)q(t) + q2(t)b

⊤
2 (t)q(t) + q3(t)b

⊤
3 (t)q(t)

]
+

+
[
c1(t)q1(t) + c2(t)q2(t) + c3(t)q3(t)

])
.

(20)

Next, we will estimate the upper boundary of the expressions inside brackets using
inequalities (2), (3).

First, we have the inequality for the terms inside the third brackets

c1(t)q1(t) + c2(t)q2(t) + c3(t)q3(t) ≤ C · ‖q(t)‖,

where

C =
√

x2
maxy2

max + u2
max.

Next, we will estimate the terms inside the second brackets. We obtain the relationship

q1(t)b
⊤
1 (t)q(t) + q2(t)b

⊤
2 (t)q(t) + q3(t)b

⊤
3 (t)q(t) ≤ B · ‖q(t)‖2,

where

B =
√

7b2 + 7u2
max + 9y2

maxz2
max + 8z2

maxx2
max + 8x2

maxy2
max.

At last, for the terms inside the first brackets we have the inequality

q1(t)q
⊤(t)A1(t)q(t) + q2(t)q

⊤(t)A2(t)q(t) + q3(t)q
⊤(t)A3(t)q(t) ≤

≤|q1(t)| · ‖A1(t)q(t)‖ · ‖q(t)‖+ |q2(t)| · ‖A2(t)q(t)‖ · ‖q(t)‖+
+|q3(t)| · |q⊤(t)A3(t)q(t)|.

(21)

Separately, for the first two terms in (21) we obtain the inequalities:

‖A1(t)q(t)‖ ≤ b

2
‖q(t)‖, ‖A2(t)q(t)‖ ≤ b‖q(t)‖.

Next, we will find the eigenvalues of matrix A3(t). We have the formulas:

λ1(t) = 0, λ2(t) =
y(t)z(t)−

√
y2(t)z2(t) + b2

2
, λ3(t) =

y(t)z(t) +
√

y2(t)z2(t) + b2

2
.
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Therefore, for the last term from (21) we find the relationship

|q⊤(t)A3(t)q(t)| ≤ λ3(t)‖q(t)‖2 ≤
ymaxzmax +

√
y2

maxz2
max + b2

2
· ‖q(t)‖2.

Finally, we obtain for expression (21) the following inequality

|q1(t)| · ‖A1(t)q(t)‖ · ‖q(t)‖+ |q2(t)| · ‖A2(t)q(t)‖ · ‖q(t)‖+
+ |q3(t)| · |q⊤(t)A3(t)q(t)| ≤ A · ‖q(t)‖3,

where

A =

√
7b2

4
+ y2

maxz2
max.

Substituting these inequalities into formula (20) we finally find a differential inequality

d

dt

(
‖q(t)‖

)
≤ A‖q(t)‖2 + B‖q(t)‖+ C, t ∈ [t0, t1). (22)

Now, we will consider the quadratic equation

AK2 − BK + C = 0. (23)

Let define the sign of its discriminant. We have a chain of equalities:

D = B2 − 4AC =

=7b2 + 7u2
max + 9y2

maxz2
max + 8z2

maxx2
max + 8x2

maxy2
max−

− 4

√
7b2

4
+ y2

maxz2
max ·

√
x2

maxy2
max + u2

max =

=
(√

7b2 + 4y2
maxz2

max

)2
+
(√

4x2
maxy2

max + 4u2
max

)2
−

−
√

7b2 + 4y2
maxz2

max ·
√

4x2
maxy2

max + 4u2
max+

+
(

3u2
max + 5y2

maxz2
max + 8z2

maxx2
max + 4x2

maxy2
max

)
.

It is easy to see that discriminant D is positive.

Now, we will introduce function V(q) = ‖q‖ + K0, q ∈ Ω, where value K0 is defined as a
biggest root of equation (23). Then, we have the formula

K0 =
B +

√
B2 − 4AC

2A
.

Let us rewrite differential inequality (22) for function V(q). We have the inequality

d

dt

(
V(q(t))

)
≤ A

(
V(q(t))− K0

)2
+ B

(
V(q(t))− K0

)
+ C.
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After necessary transformations regarding relationship AK2
0 − BK0 + C = 0, we find the

differential inequality

d

dt

(
V(q(t))

)
≤ AV2(q(t))−

(
2AK0 − B

)
V(q(t)), t ∈ [t0, t1). (24)

At last, let us consider the auxiliary Cauchy problem

{
χ̇(t) = Aχ2(t)−

(
2AK0 − B

)
χ(t), t ∈ [t0, T],

χ(t0) = χ0, χ0 ≥ K0 + ρ.
(25)

It is easy to see that for value χ0 the inequality

χ0 > 2K0 −
B

A
(26)

holds.

Let us find a solution of Cauchy problem (25). Solving the corresponding Bernoulli equation
and satisfying to the initial condition we obtain the following formula

χ(t) =
( A

2AK0 − B
+
[ 1

χ0
− A

2AK0 − B

]
e(2AK0−B)(t−t0)

)−1
, t ∈ [t0, T]. (27)

From (26) we have negativeness of the terms inside brackets in formula (27). Therefore,
function χ(t) is positive and increasing on the interval [t0, T]. Then we find the inequality

χ(t) < χ(T), t ∈ [t0, T).

Thus, from differential inequality (24), Cauchy problem (25) and the Chaplygin’s Theorem
(Tikhonov et al., 1985) regarding the condition

χ0 = V(q(t0)) = K0 + ‖q(t0)‖,

we have the inequalities:

‖q(t)‖ < χ(t)− K0 < χ(T)− K0, t ∈ (t0, t1),

that contradict to (19). Our assumption was wrong. Therefore, there exists solution q(t) of
system (17) on entire interval [0, T].

Then, the solution of system (16) is also defined on the interval [0, T]. Using in system (16) the
generalization of the Rolle’s Theorem (Dmitruk, 1992) we conclude that function L(t) = r̃(t)
has at most two zeroes on the interval [0, T]. The proof is completed.

Based on the obtained results, we formulate the following statement.

Theorem 1. Let point w = (x, y, z)⊤ belong to the boundary of the attainable set X(T). Then the
control u(t), t ∈ [0, T], which is associated with this point w, is a piecewise constant function taking
values {0, umax} and having at most two switchings on the interval (0, T).
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4. Auxiliary set and its properties

Using Theorem 1, we now can proceed to constructing a parametrization for the attainable set

X(T) with moments of switching of piecewise constant controls. For this task, we consider
the set

Λ(T) =
{

θ = (θ1, θ2, θ3)
⊤ ∈ R3 : 0 ≤ θ1 ≤ θ2 ≤ θ3 ≤ T

}
.

For every point θ ∈ Λ(T) we form the control uθ(·) ∈ D(T) by formula

uθ(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

umax, if 0 ≤ t ≤ θ1,

0, if θ1 < t ≤ θ2,

umax, if θ2 < t ≤ θ3,

0, if θ3 < t ≤ T.

(28)

We denote by wθ(t), t ∈ [0, T] the solution of system (1) corresponding to the control uθ(t).
Finally, we define the mapping F(·, T) : Λ(T) → R3 as

F(θ, T) = wθ(T), θ ∈ Λ(T).

For this mapping we have the following proposition.

Lemma 5. The mapping F(·, T) is continuous on the set Λ(T).

Proof. Let consider arbitrary values θ, τ ∈ Λ(T). We extend controls uθ(t), uτ(t), defined by
(28), to the interval (T, T + δ) for some δ > 0 by value of zero. Corresponding trajectories
wθ(t), wτ(t) of system (1) are also extended to this interval. Then we transform the Cauchy
problems (1) for trajectories wθ(t), wτ(t) to the corresponding integral equations for all t ∈
(T, T + δ). Then, by Lemma 1, we evaluate the difference ‖wθ(t) − wτ(t)‖, t ∈ (T, T + δ).
Applying the Gronwall’s inequality (Robinson, 2004), we obtain as a result the relationship

‖wθ(t)− wτ(t)‖ ≤ Lw‖θ − τ‖, t ∈ [T, T + δ),

where Lw is a positive constant. Assuming that t = T in the inequality, we find that mapping
F(·, T) satisfies the Lipschitz condition (Robinson, 2004) on the set Λ(T). The required
continuity of the mapping F(·, T) on the set Λ(T) immediately follows from this fact. The
proof is completed.

Using the mapping F(·, T), we introduce the auxiliary set Z(T) = F(Λ(T), T), which consists
of all ends wθ(T) of trajectories wθ(t) of system (1) under all possible controls uθ(t), t ∈ [0, T],
defined by formula (28). Every element of set Z(T) is a result of a bang-bang control uθ(t),
t ∈ [0, T], with at most three switchings on the interval (0, T).

Now, we have to discuss some properties of auxiliary set Z(T). Considering a point θ ∈
intΛ(T), its corresponding control uθ(t) defined by (28) and a trajectory wθ(t), t ∈ [0, T], we
can reformulate the Cauchy problem (1) in the form

{
ẇθ(t) = Awθ(t) + ϕ(wθ(t))c + uθ(t)g(wθ(t)), t ∈ [0, T],

wθ(0) = w0 = (x0, y0, z0)
⊤,

(29)
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where A is a 3 × 3 matrix, c ∈ R3, and functions g(w) and ϕ(w) are a vector and a scalar
functions, respectively, such that

A =

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 −b

⎞
⎟⎟⎠ , c =

⎛
⎜⎜⎝

−1

−1

1

⎞
⎟⎟⎠ , g(w) =

⎛
⎜⎜⎝

m − x

0

0

⎞
⎟⎟⎠ , ϕ(w) = xyz.

For the system (29), we define a function Φθ(t), t ∈ [0, T], as a solution of the matrix Cauchy
problem

⎧
⎪⎪⎨
⎪⎪⎩

Φ̇θ(t) =

(
A + c

(
∂ϕ

∂w
(wθ(t))

)⊤
+ uθ(t)

∂g

∂w
(wθ(t))

)
Φθ(t), t ∈ [0, T],

Φθ(T) = E,

(30)

where E is the identity matrix. Let us evaluate the derivatives ∂wθ
∂θi

(T), i = 1, 3. Using an
approach which is due to Hájek (1991), one can find that the derivatives satisfy the following
equalities:

∂wθ

∂θi
(T) = (−1)i−1umaxΦ

−1
θ (θi)g(wθ(θi)), i = 1, 3. (31)

Now we are in a position to state the following theorem.

Theorem 2. The following equalities hold:

F(intΛ(T), T) = intZ(T), F(∂Λ(T), T) = ∂Z(T), (32)

and the restriction of mapping F(·, T) onto the interior of set Λ(T) is one-to-one.

Proof. Firstly, we consider the set intΛ(T). The mapping F(·, T) is continuously differentiable
on the set intΛ(T), and for every point θ ∈ intΛ(T), by (31), the following equalities hold:

∂F

∂θi
(θ, T) = (−1)i−1umaxΦ

−1
θ (θi)g(wθ(θi)), i = 1, 3. (33)

The continuity of these derivatives on the set intΛ(T) is determined by a continuous
dependence of the trajectory wθ(t) and solution Φθ(t) of the matrix Cauchy problem (30)
in variables θi, i = 1, 3. It is established by arguments, which are similar to the arguments
presented in Lemma 5.

We have to show that the Jacobi matrix of the restriction of mapping F(·, T) onto intΛ(T)
is nonsingular. Suppose the opposite. Then there is a point θ̄ ∈ intΛ(T) for which vectors
∂F
∂θi

(θ̄, T), i = 1, 3, are linearly dependent. With respect to (33), it means the existence of a

nonzero vector q ∈ R3 such that the equalities:

(g(wθ(θ̄i)), η(θ̄i)) = 0, i = 1, 3, (34)
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hold. Here η(t) = (Φ−1
θ (t))⊤q. By (30), we can see that function η(t), t ∈ [0, T], satisfies the

adjoint system (7), which is written as

ψ̇(t) = −
(

A + c

(
∂ϕ

∂w
(wθ(t))

)⊤
+ uθ(t)

∂g

∂w
(wθ(t))

)⊤
ψ(t),

where ψ(t) = (ψ1(t), ψ2(t), ψ3(t))
⊤. Then, applying Lemmas 2 and 4 to the function r(t) =

(g(wθ(t)), η(t)), we find that function r(t) has two zeros on interval (0, T) at most. This fact
contradicts the equalities:

r(θ̄i) = 0, i = 1, 3,

resulting from (34). Therefore, the assumption is wrong, and hence the proposition is true.
By this and by the Theorem on the invariance of interior points (Partasarathy, 1983), the first
equality of (32) follows.

Furthermore, set intΛ(T) is a convex set, and the set intZ(T) is path connected. Indeed, the
mapping F(·, T) transforms any segment of intΛ(T) into a curve located completely inside
intZ(T). For every point of intΛ(T) the Local Theorem on an implicit function (Partasarathy,
1983) holds. Then the last statement of the proposition follows from the Global Theorem 3 on
an implicit function (Shigeo, 1985). Hence the validity of the second equality of (32) follows.
The proof is completed.

Remark. We extend by continuity the derivatives ∂F
∂θi

(θ, T), i = 1, 3 of the mapping F(·, T) onto the

boundary of the set Λ(T). As a result, we have continuous partial derivatives of the mapping F(·, T)
on the entire set Λ(T).

From the definitions of attainable set X(T) and the auxiliary set Z(T), and Theorems 1 and 2,
the following inclusions hold:

Z(T) ⊆ X(T), ∂X(T) ⊆ ∂Z(T). (35)

These explain why the set Z(T) plays such an important role in the study of the attainable set
X(T).

Further investigation of the auxiliary set Z(T) involves the study of its supplement R3 \ Z(T).
The following statement is valid.

Theorem 3. The set R3 \ Z(T) is path connected.

Proof. Let Fi(θ, T), i = 1, 3, be the components of mapping F(·, T). We define the following
values:

Fi
min = min

θ∈Λ(T)
Fi(θ, T), Fi

max = max
θ∈Λ(T)

Fi(θ, T), i = 1, 3.

By Lemma 5 and the Extension Theorem of Brouwer-Urysohn (Hausdorff, 1962), we construct

continuous mapping Π(·, T) defined on the whole space R3, which coincides with the
mapping F(·, T) for all points of the set Λ(T). In addition, for the components Πi(θ, T),
i = 1, 3, of this mapping at each point θ ∈ R3 the following inequalities hold:

Fi
min ≤ Πi(θ, T) ≤ Fi

max, i = 1, 3.
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Such bounded continuous mapping Π(·, T) is called an extension of the mapping F(·, T) from
the set Λ(T) on the whole space R3.

We now define continuous functions ξ i(θ), i = 1, 3, as

ξi(θ) =

⎧
⎪⎨
⎪⎩

θi + 1, if θi < 0,

1, if 0 ≤ θi ≤ T, i = 1, 3,

θi − T + 1, if θi > T.

With these functions, we define a continuous mapping Ψ(·, T) of the whole space R3 onto
whole space R3 as

Ψi(θ, T) = ξi(θ)Πi(θ, T), i = 1, 3,

where Ψi(θ, T), i = 1, 3, are the components of mapping Ψ(·, T).

Furthermore, the open set R3 \ Λ(T) is path connected, and hence it is a connected set
(Hall & Spencer, 1955). By Theorem 2, the continuous mapping Ψ(·, T) transfers the set
R3 \ Λ(T) onto the set R3 \ Z(T), which is also open and connected (Hall & Spencer, 1955).
Then the set R3 \ Z(T) simultaneously is a path connected set. This completes the proof.

5. Parametric description of attainable set

Finally, we now able to establish the validity of the main result of this paper.

Theorem 4. For the attainable set X(T) and the auxiliary set Z(T), the equality X(T) = Z(T) holds.

Proof. It follows from the first inclusion in (35) that in order to prove the hypothesis it is
sufficient to show the validity of the inclusion X(T) ⊆ Z(T). Let us assume the opposite, i.e.
assume that there exists a point w̃ such that

w̃ /∈ Z(T), w̃ ∈ X(T)

holds. Consider a point ŵ /∈ X(T).

The arguments presented in Theorems 2 and 3 show that the boundary of set Z(T) divides
R3 into two path connected subsets intZ(T) and R3 \ Z(T). The path connectedness of the
second set ensures the existence of a continuous curve σ(s), s ∈ [0, 1], as well as w̃ = σ(0),
ŵ = σ(1), and σ(s) /∈ Z(T) for all s ∈ (0, 1). By Theorem 36 on "transition through customs"

in (Schwartz, 1967), there is a value s⋆ ∈ (0, 1) such that σ(s⋆) ∈ ∂X(T). Therefore, there is a
defined point w̄ = σ(s⋆), such that the relationships:

w̄ ∈ ∂X(T), w̄ /∈ ∂Z(T),

simultaneously hold. This contradicts to the second inclusion in (35). Hence the assumption
is incorrect, and the required inclusion holds. The proof is completed.

We have obtained analytically the properties of the attainable set X(T). The moments of

switching of controls uθ(t) from (28), which form the set Λ(T), together with the mapping
F(·, T) play the role of parametrization for the set X(T) (its interior and boundary). This
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implies that each point on the boundary of the attainable set X(T) can be reached by a
bang-bang control uθ(t) with at most two switchings, and every point of the interior of the
set X(T) is the result of such control with precisely three switchings.

Remark. To establish these results we utilize an approach that was developed for another class of
control systems by Grigorieva & Khailov (2001; 2005).

6. Numerical simulations of attainable set

Figures 3 to 9 show examples of attainable sets X(T), constructed with MATLAB using
Theorem 4.

Fig. 3. Attainable set X(T) for Example 1.

Fig. 4. Attainable set X(T) for Example 2.
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Example 1. (Figure 3) The initial conditions and parameters of the system (1) are:

x0 = 1.00, y0 = 1.00, z0 = 1.00, m = 2.00, b = 1.00, umax = 4.00, T = 1.00.

Example 2. (Figure 4) The initial conditions and parameters of the system (1) are:

x0 = 0.0002, y0 = 30.00, z0 = 0.03, m = 0.005, b = 0.24, umax = 4.00, T = 6.00.

Example 3. (Figure 5) The initial conditions and parameters of the system (1) are:

x0 = 0.0019, y0 = 2.498, z0 = 0.0874, m = 0.048, b = 0.24, umax = 4.00, T = 6.00.

Fig. 5. Attainable set X(T) for Example 3.

Fig. 6. Attainable set X(T) for Example 4.

110 Industrial Waste

www.intechopen.com



Finite-Dimensional Methods for Optimal Control of Autothermal Thermophilic Aerobic Digestion 21

Example 4. (Figure 6) The initial conditions and parameters of the system (1) are:

x0 = 0.0011, y0 = 38.3406, z0 = 0.1643, m = 0.0274, b = 0.24, umax = 4.00, T = 6.00.

Example 5. (Figure 7) The initial conditions and parameters of the system (1) are:

x0 = 0.0192, y0 = 74.94, z0 = 0.0874, m = 0.048, b = 0.24, umax = 4.00, T = 6.00.

Fig. 7. Attainable set X(T) for Example 5.

Fig. 8. Attainable set X(T) for Example 6.

Example 6. (Figure 8) The initial conditions and parameters of the system (1) are:

x0 = 0.0019, y0 = 74.94, z0 = 0.0874, m = 0.048, b = 1.00, umax = 4.00, T = 12.00.
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Example 7. (Figure 9) The initial conditions and parameters of the system (1) are:

x0 = 0.001, y0 = 146.9694, z0 = 0.1715, m = 0.0245, b = 0.50, umax = 4.00, T = 20.00.

Fig. 9. Attainable set X(T) for Example 7.
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Fig. 10. Dynamics of the attainable set X(T).

7. Controllability problem

Let us consider for system (1) the controllability problem. To do this, we add to it given
positive terminal conditions:

x(T) = x1, y(T) = y1, z(T) = z1, x1 > 0, y1 > 0, z1 > 0. (36)

The controllability problem consists of finding the terminal time T and the control u(·) ∈
D(T), which steers system (1) from initial point w0 to the terminal point w1 = (x1, y1, z1)

⊤.
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Using terminology of the attainable set X(T), the considered problem is reformulated as
follows. It is necessary to find such terminal time T, for which the inclusion w1 ∈ X(T) holds.
Using the parametrization of the set X(T) constructed above, the controllability problem is
rewritten as the problem of finite dimensional minimization of the auxiliary function

G(θ, T) = 0.5 · ‖F(θ, T)− w1‖2 (37)

in variables θ = (θ1, θ2, θ3)
⊤ ∈ Λ(T) and T > 0.

An important property of this problem is the validity of the fact following from the arguments
above.

Lemma 6. Let the controllability problem for system (1) with condition (36) has a solution. Then the
minimum of the function G(θ, T) on the set Λ(T)× (0,+∞) equals zero.

The problem of the minimization of the function G(θ, T) is solved numerically. In order to
find the minimum of this function, the iterative gradient projection method (Vasil’ev, 2002) is
used. Corresponding numerical algorithm is written in C ++.

The rule of stop of the iterative process following from Lemma 6 is an execution on some
k-iterative step of the following condition G(θk, Tk) ≤ ε, where θk, Tk are values of variables of
the minimization on this step. Positive value ε is an accuracy of calculations of the minimum
of the function G(θ, T).

The convergence of the using method at the considered problem depends on a validity of two
following conditions:

• continuous differentiability of the function G(θ, T) in variables θ = (θ1, θ2, θ3)
⊤, T on the set

Λ(T)× [Tmin, Tmax];

• satisfaction for the gradient of the function G(θ, T) the Lipschitz condition

∥∥∥
( ∂G

∂θ
(θ2, T2),

∂G

∂T
(θ2, T2)

)
−
( ∂G

∂θ
(θ1, T1),

∂G

∂T
(θ1, T1)

)∥∥∥ ≤ LG(‖θ2 − θ1‖+ |T2 − T1|), (38)

where LG is a some positive constant. Here Tmin, Tmax are given positive parameters. From
the analysis of formula (37) it follows that the conditions formulated above hold if the function
F(θ, T) is continuous differentiable on the set Λ(T)× [Tmin, Tmax] and the Lipschitz condition
is valid for this function and its partial derivatives ∂F

∂θi
(θ, T), i = 1, 3, ∂F

∂T (θ, T):

‖F(θ2, T2)− F(θ1, T1)‖ ≤ LF(‖θ2 − θ1‖+ |T2 − T1|), (39)

∥∥∥ ∂F

∂θi
(θ2, T2)−

∂F

∂θi
(θ1, T1)

∥∥∥ ≤ Kθ(‖θ2 − θ1‖+ |T2 − T1|), i = 1, 3, (40)

∥∥∥ ∂F

∂T
(θ2, T2)−

∂F

∂T
(θ1, T1)

∥∥∥ ≤ KT(‖θ2 − θ1‖+ |T2 − T1|), (41)

where LF, Kθ , KT are also some positive constants. In the inequalities (38)-(41) the values

θ1, θ2, T1, T2 are arbitrary and satisfy the inclusions: θ1, θ2 ∈ Λ(T); T1, T2 ∈ [Tmin, Tmax].
Relationships (39)-(41) are proved by arguments, which are similar to the arguments presented
in Lemma 5 and Theorem 2.
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x1 y1 z1 θ1 θ2 θ3 T ε

Example 1 3.0625 4.3694 0.1528 0.8403 1.2201 2.2958 2.5340 0.0001

5.5556 4.5139 6.1111 0.2722 1.9042 1.9736 3.4368 0.0001

6.7361 4.8611 6.4583 0.2076 1.5896 1.9208 2.6875 0.0001

Example 2 0.0044 29.9900 0.0152 4.5649 4.5749 4.5849 4.5949 0.0001

0.0010 29.9800 0.0100 1.8849 1.8949 3.1448 4.9021 0.0001

0.0015 29.9850 0.0200 0.5756 0.5856 1.0639 3.9393 0.0001

Example 3 0.0010 2.4960 0.0500 0.0100 1.5909 1.6009 1.6109 0.0001

0.0016 2.4930 0.0600 0.0100 1.0051 1.0151 1.0337 0.0001

0.0020 2.4900 0.0070 4.4211 4.5145 4.7195 7.9649 0.0001

Example 4 0.0047 38.2000 2.2080 1.9424 1.9524 1.9624 1.9753 0.0001

0.0008 38.2500 0.1955 1.2110 1.2210 1.2310 1.3060 0.0001

0.0046 38.1764 0.2091 2.0709 2.0809 2.2736 2.3402 0.0001

Example 5 0.0012 74.6300 0.2780 1.9992 2.1024 2.1267 2.3000 0.0001

0.0001 74.7676 0.1338 1.0001 2.0999 2.2002 3.3000 0.0001

0.0001 74.8003 1.1499 0.2184 0.2284 0.8765 1.9992 0.0001

Example 6 0.0166 74.7600 0.0321 1.1003 3.1998 3.7001 4.0000 0.0001

0.0009 74.6093 0.1030 0.0997 0.2003 2.6997 3.0000 0.0001

0.0016 74.0408 0.1212 0.1000 0.2000 6.7438 7.0000 0.0001

Example 7 0.0019 146.8420 0.1684 1.4071 1.4171 1.4271 1.4371 0.0001

0.0019 146.9000 0.1700 0.7174 0.7274 0.7374 0.7474 0.0001

0.0023 146.5565 0.1667 0.1027 0.2974 5.0406 5.0506 0.0001

Table 1. Results of solving of controllability problem for Examples 1-7.

In Table 1 the results of corresponding numerical calculations are demonstrated for Examples
1-7 considered above. Here (x1, y1, z1)

⊤ are coordinates of the terminal point w1; (θ1, θ2, θ3)
⊤

are the required moments of switching of the piecewise constant control uθ(t), defined by
formula (28), which steers system (1) from initial point w0 to the terminal point w1; T is the
required terminal time such that on the interval [0, T] this transfer occurs; ε is the accuracy of
calculations of the minimum of the function G(θ, T).

For Example 1 the dynamics of the attainable set X(T) for solving the controllability problem
is shown in Figure 10.

8. Minimizing of pollution concentration at terminal time

Let us consider for system (1) the problem of minimizing of pollution concentration at the
terminal time T as

J(u) = y(T) → min
u(·)∈D(T)

. (42)

The existence of the optimal control u∗(t) and its corresponding optimal trajectory
w∗(t) = (x∗(t), y∗(t), z∗(t))⊤, t ∈ [0, T] for the problem (1), (42) follows from Lemma 1
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and (Bressan & Piccoli, 2007). We denote by J∗ the minimum of the functional J(u), i.e.
J∗ = J(u∗).

Then the optimal control problem (1), (42) we reformulate as an equivalent problem of finding
minimum on the attainable set X(T) of the type

J(w) = (p0, w(T)) → min
w∈X(T)

, (43)

where p0 = (0, 1, 0)⊤ ∈ R3.

Using the parametrization of the set X(T) constructed above, the problem (43) is rewritten as
the problem of finite dimensional minimization

J(θ) = (p0, wθ(T)) = (p0, F(θ, T)) → min
θ∈Λ(T)

. (44)

Obviously, the components θ∗i , i = 1, 3 of the vector θ∗ ∈ Λ(T) that minimize the function
J(θ) are the moments of switching of the optimal control u∗(t).

For numerical solution of the problem (44) again the iterative gradient projection method
(Vasil’ev, 2002) is used. Corresponding numerical algorithm is written in C ++. The basing
of the convergence of this method is presented in the previous section.

In Table 2 the results of the corresponding numerical solution of the optimal control problem
(1), (42) are demonstrated for Examples 1-7 considered above. Here (θ∗1 , θ∗2 , θ∗3 )

⊤ are the
required moments of switching of the piecewise constant optimal control u∗

θ (t) = u∗(t),
defined by formula (28); J∗ is the minimum of the function J(θ); ε is the accuracy of
calculations of this minimum.

θ∗1 θ∗2 θ∗3 J∗ ε

Example 1 1.0000 1.0000 1.0000 0.219408 0.0001

Example 2 6.0000 6.0000 6.0000 29.984309 0.0001

Example 3 6.0000 6.0000 6.0000 2.451992 0.0001

Example 4 6.0000 6.0000 6.0000 37.896490 0.0001

Example 5 6.0000 6.0000 6.0000 73.949615 0.0001

Example 6 12.0000 12.0000 12.0000 73.319410 0.0001

Example 7 20.0000 20.0000 20.0000 146.285096 0.0001

Table 2. Results of solving of problem of minimizing of pollution concentration at terminal
time for Examples 1-7.

In Figures 11-14 the graphs of the optimal control u∗(t) for Examples 1-7 are presented. The
graphs imply that for the considered parameters of system (1) the minimization of pollution
concentration at terminal time T can be achieved only at the maximal rate of aeration during
the entire time interval [0, T]. Numerical calculations were made for other parameters of the
system. It was found that at the given accuracy of calculations ε the corresponding optimal
control u∗(t) was a piecewise constant function with one and two switchings.
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Fig. 11. Optimal control u∗(t) for Example 1.

Fig. 12. Optimal control u∗(t) for Examples 2-5.
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Fig. 13. Optimal control u∗(t) for Example 6.

Fig. 14. Optimal control u∗(t) for Example 7.

9. Conclusions

The ultimate aim of this Chapter is to reduce the operational cost of the aerobic biotreatment
process via an increasing of its energy efficiency. In order to achieve this objective, we
attempted constructing an optimal control for this process. Results of this Chapter can
be immediately applied to practical ATAD reaction design. Having in mind the goal of
developing the optimal control, in this Chapter we analytically obtained the detailed structure
of an attainable set X(T) for the model of the process. Furthermore, we succeeded in proving
that the optimal control for this particular process is a bang-bang process, with at most two
switchings. The moments of switching of the controls uθ(t) in (28), which form the set Λ(T),
together with the mapping F(·, T), play the role of parametrization for the set X(T) (for both
its interior and boundary). We also proved that each point on the boundary of set X(T) can
be reached by a control from the above mentioned class (that is, a bang-bang control with
at most two switchings), and that every point of the interior of set X(T) is the result of a
bang-bang control with precisely three switchings. This results serve as a basis for a computer
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code, which allows to construct attainable sets for a variety of initial conditions and the system
parameters.

All these results are of instantaneous practical importance, as they, firstly, immensely narrow
the class of functions, which should be considered as candidates for optimal control. This
result is highly nontrivial, taking into consideration the nonlinearity of the model and it three
dimensions, and it enables us to use a computer-assisted design for constructing an optimal
control for a real-life situation.

In this Chapter we consider a particularly simple mathematical model of the process, which
is composed of three variables. We postulate that the reaction is governed by the mass action
law. Our objective is to present a rigorous mathematical analysis rather than a straightforward
numerical simulation of the process so that more complicated models which incorporate
specific features of ATAD are not addressed here. Nonetheless, we obtain a number of results
that are of direct relevance to common practice. It is shown that the bang-bang control is
applicable for this nonlinear model (it is a non-trivial result), and that at most two switchings
are needed. However, it can be expected that the same results will be valid for a more complex
system, such as Michaelis-Menten kinetics (functional responses with saturation) or models
with larger numbers of variables.

Applied to more complicated models, these results may significantly reduce a choice for
possible optimal controls, and thus considerably decrease the amount of computations which
are needed to find these optimal controls numerically. It is also noteworthy that the general
approach, which in this Chapter we applied to a particular problem of the optimal control
for the aerobic biotreatment process, can be successfully used for a considerably wider range
of real-life problems. Thus, this Chapter provides a general notion of how modern optimal
control theory can be used in everyday practice.
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