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1. Introduction 

The Earth’s genes, species, and ecosystems are the product of over 3 billion years of 

evolution and the basis for the survival of our own species. Biological diversity, the measure 

of the variation in genes, species and ecosystems is valuable because future practical uses 

and values are unpredictable and our understanding of ecosystems is insufficient to be 

certain of the impact of removing any component. Genetic diversity is an indicator of 

ecosystem condition and sustainability. It is a fundamental component of biodiversity and it 

encompasses all of the genetically determined differences that occur between individuals of 

a species. The loss of biodiversity is due above all to economic factors, especially the low 

values given to biodiversity and ecological functions such as watershed protection, nutrient 

cycling, pollution control, soil formation and photosynthesis. Biodiversity is very much a 

cross-sectoral issue, and virtually all sectors have an interest in its conservation and the 

sustainable use of its components. Biological resources are renewable and with proper 

management can support human needs indefinitely. These resources, and the diversity of 

the systems which support them, are therefore the essential foundation of sustainable 

development.  

The past two decades have been a time of great change in the management of natural 

resources in Ontario and around the world. Ontario’s forest policy has shifted to a more 

balanced ecological approach as the forest is now viewed as part of a larger ecosystem 

OMNR, 2001). All forest policies and associated management practices in Ontario 

conform to the Policy Framework for Sustainable Forests (OMNR, 2001). Many Ontario 

communities especially in the North depend on forests. There are some 60.9 million 

hectares of forested land in the province, representing approximately 57% of the 106.8 
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million hectare provincial land base (including water). Crown forest accounts for 

approximately 91% of this forested land located mostly in the Northern Ontario region. It 

represents the boreal and the Great Lake St. Lawrence Forests that are composed mainly 

of conifer species (Natural resources of Canada, 2003; OMNR, 2001). The Forest Resource 

Inventory is the primary survey for sustainable forest management. Information 

generated by forest inventories has contributed greatly to our knowledge of one of 

Ontario’s renewable resources and continues to serve as the basis for major forest 

resource planning and policy decisions in the OMNR. But this information is not 

sufficient to ensure the sustainable management of the forest resource. To achieve this 

goal, information on genetic diversity of tree populations is essential. 

In addition, forest management practices must change to keep pace with climatically 

induced changes in forest ecosystems. The sustainability, biodiversity, health, and economic 

benefits of forests will be affected to varying degrees by climate change. A detailed analysis 

of the level of genetic variability in species and populations is essential in developing 

climate change models (Colombo et al., 1998). 

Evolutionary adaptation to new climate conditions can only occur where sufficient genetic 

variation exists to allow selective forces to discriminate between adaptive and 

maladaptive traits. Adaptation may occur more rapidly in species with shorter life cycles, 

as long as conditions are favourable for reproduction, than in long-lived species such as 

trees which will undergo a time lag response to changing conditions (Colombo et al., 

1998). Forest tree species generally have high levels of genetic variability and gene 

dispersal rates. 

On the other hand, genetic structure of Northern Ontario forests has been seriously 

affected by past forest management, mining, and forest fire activities. In an effort to 

maintain the long term viability of the forest landbase in Northern Ontario, forest 

companies and local government organizations have concentrated on artificial 

regeneration of conifer seedlings as a primary means of reforestation. To date, over nine 

millions of forest trees mostly conifers have been planted within the Greater Sudbury 

Region and surrounding areas. 

The Sudbury region in Ontario, Canada has a history over the past 100 years of logging, 

mining, and sulphide ore smelting, releasing more than 100 million tonnes of SO2 and tens 

of thousands of tonnes of cobalt, copper, nickel, and iron ores into the atmosphere from the 

open roast beds (1888-1929) and smelters (1888-present) (Freedman and Hutchison, 1980). 

These factors have caused acidification, severe metal contamination of the soils and water at 

sites within approximately 30 km of the smelters in the Sudbury region. Sudbury area is one 

of the most ecologically disturbed regions in Canada. There have been numerous studies 

documenting the effects of SO2 in the Sudbury region (Cox and Hutchinson, 1980; Amiro 

and Courtin, 1981; Gratton et al., 2000). In general, information on landscape degradation, 

soil toxicity, acidification, plant metal accumulation and forest composition in Northern 

Ontario is readily available but knowledge of genetic variation within and among forest tree 

populations is lacking. This genetic diversity information is crucial to ensure sustainability 

of the forest resource. The impoverished plant communities that are currently found in the 

Greater Sudbury Region (GSR) are not only structurally and floristically different from plant 
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communities found in uncontaminated areas in the basin, but they appear to have a 

different genetic make-up. 

Many studies have used morphological markers to assess genetic variability within and 
among species and populations. Those markers are not usually reliable since phenotypic 
variation is often related to environmental factors. Molecular markers are an important 
and very powerful tool for genetic analyses of plant species. Molecular markers such as 
Random Amplification of Polymorphic DNA (RAPD), Inter-Simple Sequence Repeats 
(ISSR), Simple Sequence Repeats (SSR), and Amplified Fragment Length Polymorphism 
(AFLP) have been successfully used to assess the genetic diversity in many plant species 
(Semagn et al., 2006; Sharma et al., 2008). Each one of these marker systems offers a unique 
combination of advantages and disadvantages (Sharma et al., 2008). They differ in the type 
of sequence polymorphism detected (insertion/deletions vs. point mutation), information 
content, the dominance relationships between alleles (dominant vs. codominant markers), 
amount of DNA required, the need for DNA sequence information in the species under 
analysis, development costs, the ease of use, and the extent to which they can be 
automated. 

The overall objective of this chapter is to provide current stage of knowledge from several 

studies on genetic variability in planted and natural fragmented conifer populations from 

Northern Ontario using ISSR and microsatellite (SSR) markers. 

2. Materials and methods  

2.1 Genetic material 

Needles from White pine (Pinus strobus), jack pine (Pinus banksiana), red pine (Pinus resinosa), 

white spruce (Picea glauca), and black spruce (Picea mariana) individual trees were sampled 

from natural (Na) and planted (P) populations. The locations of some sampling sites are 

illustrated in Figure 1. Additional samples were from the nursery used for the Sudbury land 

reclamation program and were considered as introductions. For each site, needles and seed 

samples from first and second generations trees were collected separately. In general 10% to 

20 % of each population was analyzed. For each tree, 15 grams of needles were weighed in 

duplicates, frozen in liquid nitrogen and stored at -80 oC until DNA extraction. 

2.2 Soil characterization 

Soil samples were analyzed in collaboration with TESTMARK Laboratories Ltd. Sudbury, 
Ontario, Canada. The laboratory is ISO/IEC 17025 certified, a member of the Canadian 
Council of Independent Laboratory (CCIL) and the Canadian Association of Environmental 
Analytical Laboratories (CAEAL), and is accredited by the Standards Council of Canada 
(SSC). The laboratory employs standard QA/QC procedures, involving blank and replicate 
analyses and with recovery rate of 98 ± 5% in analyses of spiked samples depending on 
element selected, in their inductively coupled plasma mass spectrometry (ICPMS) analyses 
reported here. The minimum detection limits (MDL) following microwave digestion of plant 
tissue Aqua Regia for elements reported here, were: Aluminum 0.05 µg/g (0.5 µg/g), 
Arsenic 0.05 µg/g (0.5 µg/g), Cadmium 0.05 µg/g (0.5 µg/g), Cobalt 0.05 µg/g (0.5 µg/g), 
Copper 0.05 µg/g (0.5 µg/g), Iron 1.0 µg/g (10 µg/g), Lead 0.05 µg/g (0.5 µg/g), 
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Magnesium 0.2 µg/g (2.0 µg/g), Manganese 0.05 µg/g (0.5 µg/g), Nickel 0.05 µg/g (0.5 
µg/g) and Zinc 0.05 µg/g (0.5 µg/g). These MDLs reflect actual sample weights and 
dilutions; instrument detection limits were lower. 

The data for the metal levels in soil samples were analyzed using SPSS 7.5 for Windows. All 

the data were transformed using a log10 transformation to achieve a normal distribution. 

Kruskal-Wallis test the non-parametric analog of a one-way ANOVA was used to compare 

independent samples, and tests the hypothesis that several populations have the same 

continuous distribution. ANOVA followed by Tukey’s HSD multiple comparison analysis 

were performed to determine significant differences (p < 0.05) among the sites. 

2.3 DNA extraction 

The total cellular DNA from individual samples was extracted from seedling tissue using 

the method described by Nkongolo (1999), with some modifications. The modification 

involved addition of PVP (polyvinylpyrrolidone) and β-mercaptoethanol to the CTAB 

extraction buffer. The DNA concentration was determined using the fluorochrome Hoechst 

33258 (bisbensimide) fluorescent DNA quantitation kit from Bio-Rad (cat. # 170-2480) and 

the purity was determined using a spectrophotometer (Varian Cary 100 UV-VIS 

spectrophotometer). 

 

     Picea glauca  ; Site 1: Lively; Site 2: Coniston; Site 3: ≈ 40 km from Sudbury HW144 North towards 
Timmins; Site 4: ≈ 16 km from site 3 HW144 North; Site 5 (control): ≈ 35 km from Site 4 HW144 North.. 
     Pinus strobus: Site 1: Daisy Lake (HW17 Bypass); Site 2: Coniston (HW17); Site 3: Hagar ≈ 60km from 
Sudbury; Site 4: Markstay ≈ 38km from Sudbury; Site 5: Kukagami Road (≈ 9 km from HW17). 

Fig. 1.  Sudbury (Ontario) map showing locations of some sampling sites. 

www.intechopen.com



Genetic Sustainability of Fragmented Conifer  
Populations from Stressed Areas in Northern Ontario (Canada): Application of Molecular Markers 

 

319 

2.4 ISSR analysis 

The ISSR amplification was carried out in accordance with the method described by 

Nagaoka and Ogihara (1997), with some modifications described by Mehes et al. (2007). All 

DNA samples were primed with each of the ten primers used (Table 1). All PCR products 

were loaded into 2% agarose gel in 1X Tris-Borate-EDTA (TBE) buffer. Gels were pre-

stained with 4 μl of ethidium bromide and run at 3.14V/cm for approximately 120 minutes. 

These agarose gels were visualized under UV light source, documented with the Bio-Rad 

ChemiDoc XRS system and analyzed for band presence or absence with the Discovery Series 

Quantity One 1D Analysis Software. 

The resulting data matrix of the ISSR phenotype was analyzed using POPGENE software 

(version 1.32) to estimate genetic diversity parameters (Yeh and Boyle, 1997a, 1997b). 

POPGENE is computer software used for the analysis of genetic variation among and within 

populations using co-dominant and dominant markers and quantitative traits. The program 

was used to determine the intra and inter-population genetic diversity parameters such as 

percentage of polymorphic loci (P%), Nei’s gene diversity (h), Shannon’s information index 

(I), observed number of alleles (Na) and effective number of alleles (Ne). The genetic 

structure was investigated using Nei’s gene diversity statistics, including the within 

population diversity (Hs) and total genetic diversity (Ht) (Nei, 1973) calculated within the 

species using the same software. The mean and the total gene diversities, the variation 

among populations and gene flow were also calculated. The genetic distances were 

calculated using Jaccard’s similarity coefficient estimated with the RAPDistance program 

version 1.04 (Armstrong et al., 1994).  

 

Primer 
identification 

Nucleotide sequence (5‘→3’) G + C content (%) 

ISSR Primers   

Echt 5 AGAC AGAC GC 60.00 

HB 13 GAG GAG GAG GC 72.70 

HB 15 GTG GTG GTG GC 72.70 

ISSR 1 AG AG AG AG AG AG AG AG RG 50.00 

ISSR 5 ACG ACG ACG ACG AC 64.28 

ISSR 9 GATC GATC GATC GC 57.14 

UBC 825 AC AC AC AC AC AC AC AC T 88.88 

UBC 841 GA AG GA GA GA GA GA GA YC 45.00 

17899A CA CA CA CA CA CA AG 50.00 

17898B CA CA CA CA CA CA GT 50.00 
 

Table 1.The nucleotide sequences of ISSR primers used to screen DNA samples of Picea 
glauca and Pinus strobus. 
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2.5 Microsatellite analysis  

The microsatellite analysis involved three species (Pinus banksiana, Pinus resinosa, and Picea 

mariana). Ten microsatellite primers, synthesized by Invitrogen, were chosen for 

amplification of DNA from Pinus banksiana and P. resinosa populations. These primers 

described in Vandeligt et al. (2011) include PtTX 3013, PtTX 3030, PtTX 3098, PtTX 309, PtTX 

2123, PtTX 3088, RPS 2, RPS 20, RPS 25b, and RPS 84. For Picea mariana, the primers used are 

described in Dobrzeniecka et al. 2009. DNA amplification was performed following the 

procedure described by Mehes et al. 2009. The Popgene software, version 1.32 (Yeh and 

Boyle, 1997) was used to assess the intra- and interpopulation genetic diversity parameters 

such as the mean number of alleles (NA) across loci, the total number of alleles (NT) per 

locus and Shannon’s information index (i)(Yeh and Boyle, 1997). The observed and expected 

heterozygosities (HO and HE respectively) were calculated using the Genepop software, 

version 3.4 (Raymond and Rousset, 1995). The probability test was computed using the 

Markov chain method (1000 iterations) in order to determine populations in Hardy-

Weinberg Equilibrium (Genepop). Hardy-Weinberg equilibrium deviations were tested 

using alternative hypotheses, deficiency and excess of heterozygotes, for each locus and 

across loci and populations using Fisher’s method. A test for null allele was also done using 

the EM algorithm of Dempster et al. (1977). The average effective number of migrants 

exchanged between populations in each generation, or gene flow (NM) is estimated from FST 

(subdivision among populations). 

3. Results 

3.1 Soil analysis 

Recovery and precision for all elements in reference soil samples were within acceptable 

range. The estimated levels of metal content in different sites from the Greater Sudbury 

Region in Canada are illustrated in Table 2. The levels of the metals measured were low in 

the control sites. Overall, the results indicated that nickel and copper continue to be the 

main contaminants of top soil (Table 2) in sites near the smelters (site 1 and 2). The values 

ranged from 30.9 to 1600.0 mg kg-1 and from 52.3 to 1330.3 mg kg-1 for nickel and copper 

respectively (Table 1). Arsenic concentration exceeded the OMEE (Ontario Ministry of 

Environment and Energy) guidelines in site 1 and manganese level exceeded the guideline 

in site 2. Their concentration ranged from 2.2 to 46.0 mg kg-1 and 163.6 to 6610.3 mg kg-1 for 

arsenic and manganese, respectively (Table 2). 

Aluminum, iron and magnesium concentrations were significantly higher in sites 1 to 4 (top 

layer, Table 2) compared to the control site 5. The values ranged from 1673.3 to 9193.3 mg 

kg-1, 2193.3 to 31433.3 mg kg-1 and 349.6 to 6866.6 mg kg-1 for aluminum, iron and 

magnesium, respectively (Table 2). Cadmium, cobalt, lead and zinc levels were within the 

OMEE guideline. The values for these metals ranged from 0.3 to 2.1 mg kg-1, 1.6 to 37.9 mg 

kg-1, 18.2 to 176.0 mg kg-1 and 52.0 to 86.8 mg kg-1 (Table 2). The control site 5 was always 

among the least contaminated for the metals analysis. All the metal concentrations obtained 

from the bottom layer (5 – 20 cm) were within the OMEE guideline (data not shown). 

Surprisingly, the data from tailings were similar or significantly lower than other 

contaminated sites. The pH for all the sites including the controls were low (acidic). 
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*Means in columns with a common subscript are not significantly different based on Tukey multiple comparison 

test (P ≥ 0.05). Site 1: Lively; Site 2: Coniston (close to HW17); Site 3: ≈ 40 km from Sudbury HW144 towards 

Timmins; Site 4: ≈ 16km from site 3 HW144 towards Timmins; Site 5 (control): ≈ 35km from Site 4 HW144 

towards Timmins. Tailings data represent means of two tailings located near smelters. 

 

Table 2. Metal concentrations in top layer (0 – 5 cm) of soil from the Sudbury region sites, 

concentrations are in mg kg-1, dry weight*. 

3.2 Analysis of populations using ISSR markers 

Ten ISSR oligonucleotides (Table 1) were used for the amplification of spruce and pine 

populations. For each population in each species, the levels of polymorphism for the two 

generations analyzed were similar. Thus, the data were compiled and analyzed per 

population. 

3.2.1 Pinus strobus (white pine) 

The percentage of polymorphic loci within each population varied between 22% observed in 

the site 5 (control) to 36% in site 4 (Table 2). The level of genetic variation was similar 

between natural and planted populations in site 1. For site 2, the polymorphic loci were 

significantly higher in planted populations compared to the natural population. Data for the 

Nei’ gene diversity (h) ranged from 0.05 (S5) to 0.14 (S4) with a mean of 0.19. A similar 

pattern was observed for the Shannon’s information index (I), with the high value of 0.20 

observed in S4 and a low value of 0.08 observed in S5. The observed number of alleles (Na) 

and the effective number of alleles (Ne) ranged from 1.22 to 1.36 and 1.08 to 1.25 

respectively. The genotype diversity among population (Ht) was 0.15 and the within 

population diversity (Hs) was 0.09. Mean coefficient of gene differentiation (Gst) was 0.366 

indicating that 63.4% of the genetic diversity resided within the population. The observed 

structure of genetic variability shows that there is a low level of differentiation among the 

Pinus strobus populations. The overall rate of gene flow (Nm) among population was 0.87. 
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Population* P (%) Na Ne h I 

      

S1P 30 1.30 1.14 0.08 0.13 

S1Na 30 1.30 1.18 0.10 0.15 

S2P 34 1.34 1.21 0.12 0.18 

S2Na 22 1.22 1.12 0.07 0.11 

S3M 32 1.32 1.19 0.11 0.17 

S4M 36 1.36 1.25 0.14 0.20 

S5M 22 1.22 1.08 0.05 0.08 

Mean 29 1.29 1.17 0.10 0.15 

*Population: P represents Plantation and Na represents Natural populations. M represents mixed 
populations including natural and planted trees. 

Table 2. Genetic diversity parameters of Pinus strobus based on ISSR data. 

3.2.2 Pinus banksiana (jack pine) 

For Jack pine, a low to moderate levels of genetic variation was revealed within each 

population. The percentage of polymorphic loci (P %) ranged from 14.6 % to 45.8 % with a 

mean of 31.6 %. The mean level of polymorphism for the eight populations from the greater 

Sudbury area was 27.6% while this value was higher for populations from the nurseries 

with an average of 42.4% detected polymorphic loci. The levels of genetic variation detected 

in populations from metal-contaminated areas were similar to those found in control sites. 

The Nei’s gene diversity (h) for all jack pine populations analyzed varied from 0.046 to 0.169 

with an average of 0.100, and Shannon’s index (I) ranged from 0.070 to 0.250 with an 

average of 0.153. The mean observed number of alleles (Na) ranged from 1.146 to 1.458, 

while the mean effective number of alleles (Ne) varied from 1.107 to 1.31 (Table 3). 

 

Populations P (%) h I Ne Na 

Nursery 1 (Introduction 1)  39.58 0.0961 0.1535 1.1579 1.3958 

Nursery 2 (Introduction 2) 41.67 0.1380 0.2106 1.2248 1.4167 

Nursery 3 (Introduction 3) 45.83 0.1687 0.2501 1.2946 1.4583 

Inco 1 31.25 0.1120 0.1653 1.2035 1.3125 

Inco 2 31.25 0.1171 0.1727 1.2061 1.3125 

Falconbridge 1 14.58 0.0456 0.0701 1.0756 1.1458 

Falconbridge 2 27.08 0.0995 0.1467 1.1758 1.2708 

Falconbridge 3 20.83 0.0630 0.0982 1.1004 1.2083 

Inco Tailing 35.42 0.0977 0.1552 1.1514 1.3542 

Temagami (control) 29.17 0.0818 0.1284 1.1310 1.2917 

Low Water Lake (control) 31.25 0.0812 0.1297 1.1256 1.3125 

Mean 31.63 0.1001 0.1528 1.1679 1.3163 

P represents percentage of polymorphic loci; h, Nei’s gene diversity; I, Shannon’s information index; 
Ne, effective number of alleles; Na, observed number of alleles. 

Table 3. Genetic variability parameters of Pinus banksiana populations growing in the 
Sudbury area based on ISSR data. 
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3.2.3 Pinus resinosa (red pine) 

The level of genetic variation was much lower in the red pine populations. For this species, 

the level of polymorphic loci varied from 4.55 % to 27.27 % (Table 4). The mean level of 

polymorphic loci for populations from the greater Sudbury region excluding the population 

from the nursery was only 8.3%. Like in jack pine populations, the polymorphism detected 

in contaminated populations was similar to that found in non contaminated site used as a 

control. Overall, the mean for Nei’s gene diversity and Shannon’s information index, were 

0.034 and 0.053, respectively for all the red pine populations analyzed. The mean observed 

number of alleles (Na) ranged from 1.045 to 1.27 while the mean effective alleles (Ne) varied 

from 1.00 to 1.17 (Table 4). The highest genetic diversity values were observed in the 

populations used for the Sudbury reforestation program. High levels of metal content did 

not affect the level variation for both species. 

 

Population P (%) h I Ne Na 

Near Falconbridge 4.55 0.0044 0.0092 1.0049 1.0455 
Very near Falconbridge  13.64 0.0411 0.0638 1.0672 1.1364 
Falconbridge 4.55 0.0226 0.0314 1.0450 1.0455 
Coniston 9.09 0.0180 0.0309 1.0244 1.0909 
Daisy Lake 9.09 0.0272 0.0433 1.0389 1.0909 
Verner (control) 9.09 0.0267 0.0423 1.0398 1.0909 
Introduction 1 (control) 27.27 0.0988 0.1465 1.1710 1.2727 

Mean 11.04 0.0341 0.0525 1.0559 1.1104 

P represents percentage of polymorphic loci; h, Nei’s gene diversity; I, Shannon’s information index; 

Ne, effective number of alleles; and Na, observed number of alleles. 

Table 4. Genetic variability parameters of Pinus resinosa populations growing in the Sudbury 
area based on ISSR data. 

3.2.4 Picea glauca (white spruce) 

All the selected primers amplified 11 to 21 fragments across the six populations studied. The 

amplified fragment size ranged from 170 bp to 2,240 bp. The percentage of polymorphic loci 

within each population varied between 50% observed in the natural site 5 Na (control) to 

61% in site 1, P (Table 5). Nei’ gene diversity (h) ranged from 0.17 (site 1, P) to 0.21 (site 5, 

Na; control) with a mean of 0.19. A similar pattern was observed for the Shannon’s 

information index (I), with the highest value of 0.32 observed in the planted population of 

site 1P and the lowest value of 0.26 observed in site 5Na (control). The observed number of 

alleles (Na) and the effective number of alleles (Ne) ranged from 1.50 to 1.61 and 1.29 to 1.37 

respectively. The genotype diversity among population (Ht) was 0.19 and the within 

population diversity (Hs) was 0.23. The mean coefficient of gene differentiation (Gst) was 

0.168 indicating that 83.2% of the genetic diversity resided within the population. The 

observed structure of genetic variability shows that there is a low level of differentiation 

among the Picea glauca populations in the target regions even when the populations located 

as far as 100 km from the Sudbury were included. The overall rate of gene flow (Nm) among 

population was 2.47. 
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3.2.5 Picea mariana (black spruce) 

The genetic diversity within each population was high. For each population, the percentage 

of polymorphic loci was the same for the parental and the offspring generations analyzed. 

Thus, the data from the two generations were combined. The percentage of polymorphic 

loci (P%) ranged from 65% to 90 % with a mean of 75% . Nei’s gene diversity (h) varied from 

0.264 to 0.359 with an average of 0.310, and Shannon’s index (I) ranged from 0.381 to 0.524 

with an average of 0.449 (Table 6). The mean observed number of alleles (Na) ranged from 

1.650 to 1.900, while the mean effective number of alleles (Ne) varied from 1.168 to 1.632 

(Table 6). Among the nine populations investigated, the highest genetic diversity was 

observed in population 9 from lowland in Timmins while the lowest level of diversity was 

detected in population 4 from upland in Chelmsford. Overall, the average level of 

polymorphic loci was much higher in lowlands (85%) than in uplands (68%). There was no 

difference between metal contaminated and uncontaminated sites for genetic variation. 

 

Population* P (%) Na Ne h I 

Site 1 (P) 61 1.61 1.37 0.22 0.32 
Site 2 (P) 53 1.53 1.33 0.19 0.29 
Site 3 (Na) 55 1.55 1.32 0.19 0.29 
Site 4 (Na) 53 1.53 1.33 0.19 0.28 
Site 5 (control) (Na) 50 1.50 1.30 0.18 0.26 
Nursery 57 1.57 1.35 0.20 0.30 

Mean 55 1.55 1.33 0.19 0.29 

*Population: P represents Plantation and Na represents Natural populations 

Table 5. Genetic diversity parameters of Picea glauca based on ISSR data. 

 

Populations P (%) h I Ne Na 

Site 1 80 0.328 0.473 1.603 1.800 
Site 2 85 0.350 0.508 1.630 1.850 
Site 3 70 0.269 0.396 1.473 1.700 
Site 4 65 0.264 0.381 1.490 1.650 
Site 5 75 0.317 0.456 1.582 1.750 
Site 6 70 0.274 0.402 1.482 1.700 
Site 7 70 0.308 0.441 1.567 1.700 
Site 8 70 0.325 0.459 1.168 1.700 
Site 9 90 0.359 0.524 1.632 1.900 

Mean 75 0.310 0.449 1.514 1.750 

P represents percentage of polymorphic loci; h, Nei’s gene diversity; I, Shannon’s information index; 
Na, observed number of alleles; and Ne, effective number of alleles. 

Table 6. Genetic variability parameters of black spruce (Picea mariana) populations growing 
in the Sudbury area based on ISSR data. 

3.2.6 Genetic differentiation among populations 

For Pinus banksiana, the mean gene diversity within populations (Hs) and the total gene 
diversity (Ht) were 0.100 and 0.1438, respectively. The variation among populations (Gst) 
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was 0.304 indicating that 30.4 % of total genetic diversity were attributed to the differences 
among populations. The observed structure of genetic variability shows that there is a 
sensitive level of differentiation among the jack pine populations in the target regions. The 
overall rate of gene flow (Nm) among populations was 1.144. For Pinus resinosa the Hs and 
HT values were 0.0341 and 0.0437, respectively. About 22% of the total genetic diversity in 
Pinus resinosa was attributed to differences among populations. For Pinus strobus, the 
genotype diversity among population (Ht) was 0.15 and the within population diversity (Hs) 
was 0.09. Mean coefficient of gene differentiation (Gst) was 0.366 indicating that 63.4% of the 
genetic diversity resided within the population. The observed structure of genetic variability 
shows that there is a low level of differentiation among the Pinus strobus populations. The 
overall rate of gene flow (Nm) among population was 0.87. 

For Picea glauca Ht and Hs were 0.19 and 0.23, respectively. The mean coefficient of gene 

differentiation (Gst) was 0.168 indicating that 83.2% of the genetic diversity resided within 

the population. The observed structure of genetic variability shows that there is a low level 

of differentiation among the Picea glauca populations in the target regions even when the 

populations located as far as 100 km from the Sudbury were included. The overall rate of 

gene flow (Nm) among population was 2.47. 

For P. mariana, the mean gene diversity within populations (Hs) and the total gene diversity 

(Ht) were 0.310 and 0.385, respectively. The variation among populations (Gst) was 0.19. 

This indicates that 19.3% of total genetic diversity was attributed to the differences among 

populations. Like in P. glauca, the observed structure of genetic variability shows that there 

is a low level of differentiation among the P. mariana populations. The overall rate of gene 

flow (Nm) among populations was 2.088. 

3.3 Genetic relationships among conifer populations based on ISSR analysis 

3.3.1 Pinus banksiana, Pinus strobus, and Pinus resinosa 

Because of limited genetic variation in Pinus resinosa samples analyzed, the genetic 
relatedness was analyzed only for Pinus banksiana and Pinus strobus populations The Jaccard 
similarity coefficients and genetic distance were calculated using ISSR data. The genetic 
distance scale runs from 0 (identical) to 1 (different for all criteria). In general, the genetic 
distance values were low as they ranged from 0.06 to 0.21 for Pinus strobus and from 0.037 to 
0.365 (Table 7) for Pinus banksiana. Overall the genetic distance values revealed that all the 
eleven P. banksiana and P. strobus populations were genetically closely related (Table 7). For 
P. banksiana, the two populations from control site (uncontaminated), Low Water Lake and 
Temagami were the most closely related. The largest genetic distance was observed between 
population 5 from INCO 2 and the new population used in 2006 for reclamation (called 
introduction 2 in the present study). The dendrogram constructed, based on ISSR data 
revealed a particular clustering (Fig. 2). All the populations from the greater Sudbury that 
we analyzed clustered together while the three newly introduced populations from 
nurseries were grouped in a separate cluster (Fig. 2). For Pinus strobus the genetic distance 
values ranged from 0.06 (S1P and S2P) to 0.21 (S2P and S2Na) (Table 8). Dendrogram was 
not constructed considering the low levels of genetic distances. For Pinus resinosa, the level 
of genetic variation was too low to calculate genetic distance among populations or to 
construct a dendrogram. 
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 1 2 3 4 5 6 7 8 9 10 11 

1 0 0.132 0.229 0.243 0.321 0.321 0.333 0.250 0.259 0.247 0.280 

2  0 0.186 0.273 0.365 0.345 0.356 0.277 0.286 0.274 0.306 

3   0 0.219 0.341 0.321 0.333 0.250 0.280 0.268 0.280 

4    0 0.225 0.250 0.198 0.175 0.185 0.195 0.207 

5     0 0.134 0.146 0.190 0.221 0.188 0.179 

6      0 0.085 0.085 0.096 0.084 0.073 

7       0 0.120 0.108 0.096 0.108 

8        0 0.038 0.049 0.038 

9         0 0.037 0.049 

10          0 0.037 

11           0 

1 represents introduction 1; 2, Introduction 2; 3, Introduction 3; 4, Inco 1 site; 5, Inco 2 site ; 6, 
Falconbridge 1 site; 7, Falconbridge 2 site; 8, Falconbridge 3 site; 9, Inco Tailing; 10, Temagami site; and 
11, Low Water Lake site. 

Table 7. Distance matrix generated using bulk sample analysis from various populations of 

Pinus banksiana ISSR data (RAPDistance version 1.04). 

 
 
 
 

 
 
 

Fig. 2. Dendrogram of the genetic relationships among Pinus banksiana populations based on 

Jaccard similarity matrix using ISSR data. The values above the branches indicate the 

patristic distances based on the neighbor-joining (NJ) analysis. 
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 S1P S1Na S2P S2Na S3M S4M S5M 

ISSR        

S1P 0.0000 0.1489 0.0667 0.1956 0.1304 0.1739 0.2128 

S1Na  0.0000 0.1702 0.1778 0.1111 0.1556 0.1956 
S2P   0.0000 0.2174 0.1522 0.1556 001956 
S2Na    0.0000 0.0714 0.1191 0.2045 
S3M     0.0000 0.0930 0.1778 
S4M      0.0000 0.1818 
S5M       0.0000 

Population: P represents Plantation and Na represents Natural populations. M represents mixed 
populations including natural and planted trees. Site 1: Daisy Lake (HW17 Bypass); Site 2: Coniston 
(HW17 Hydro Dam ≈ 10 km from Bypass); Site 3: Hagar ≈ 60 km from Sudbury; Site 4: Markstay ≈ 38km 
from Sudbury; Site 5: Kukagami Road (≈ 9 km from HW17). 

Table 8. Distance matrix generated from ISSR data using the Jaccard similarity coefficient 
analysis for Pinus strobus populations (Free Tree Program). 

3.3.2 Picea glauca and Picea mariana 

The genetic distance values were close to 0 as they varied between 0.02 (site 3, Na and site 4, 

Na) and 0.07 (site 2, P and site 5, Na) (Table 9) for Picea glauca. For Picea mariana, the genetic 

values ranged from 0.171 to 0.351 (Table 10). Overall the genetic distance values revealed 

that all the populations were genetically closely related (Table 10) for each of the Picea 

species. For P. mariana, the dendrogram constructed, based on ISSR data revealed a 

particular clustering between upland (dry) and lowlands (wet lands) (Figure 3). With the 

exception of site 7, no upland (dry land) population clusters with a population from a 

lowland (wet land). For example, the low – land (wetland) population 1 from Falconbridge 

clusters with the lowland (wetland) population 9 from Timmins; the upland (dry land) 

population 4 from Chelmsford clusters with the upland (dry land) population 8 from 

Timmins; the lowland (wetland) population 2 from Falconbridge clusters with the lowlands 

(wetland) population 5 from Cartier; and the up-land (dry land) population 3 from Capreol 

clusters with the upland (dry land) population 6 from Cartier. 

 

 
Site 1 Site 2 Site 3 Site 4 

Site 5 
(control) 

Nursery 

ISSR       
Site 1 (P) 0.0000 0.0520 0.0417 0.0417 0.0626 0.0209 

Site 2 (P)  0.0000 0.0729 0.0729 0.0737 0.0316 

Site 3 (Na)   0.0000 0.0213 0.0632 0.0417 

Site 4 (Na)    0.0000 0.0632 0.0417 

Site 5 (Na)     0.0000 0.0625 

Nursery      0.0000 

Population: P represents Plantation and Na represents Natural populations 

Table 9. Distance matrix generated from ISSR data using the Jaccard similarity coefficient 
analysis for Picea glauca populations. 
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 Site1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 

Site 1 0 0.236 0.235 0.171 0.282 0.270 0.307 0.222 0.212 
Site 2  0 0.324 0.263 0.230 0.307 0.256 0.350 0.351 
Site 3   0 0.235 0.297 0.181 0.324 0.235 0.225 
Site 4    0 0.325 0.270 0.263 0.171 0.314 
Site 5     0 0.236 0.230 0.325 0.324 
Site 6      0 0.263 0.222 0.264 
Site 7       0 0.307 0.351 
Site 8        0 0.314 
Site 9         0 

 

Table 10. Distance matrix generated using the neighbour-joining analysis from Picea mariana 
ISSR data (RAPDistance version 1.04). 

 
 
 
 

 

 
 

Fig. 3. Dendrogram of the genetic relationships among Pinus banksiana populations based on 
Jaccard similarity matrix using ISSR data. The values above the branches indicate the 
patristic distances based on the neighbor-joining (NJ) analysis. 
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3.4 Analysis of populations using microsatellites 

3.4.1 Genetic diversity  

The microsatellite loci analyzed in Pinus banksiana and P. resinosa populations are summarized 

in Table 11. For P. banksiana, the mean number of alleles per locus was 9 and the mean effective 

number of alleles was 3.5 (Table 11). The mean number of alleles across loci per population 

ranged from 3.00 to 4.67 with the samples from the INCO 3 (site 4) and the introduction 3 

(population or site 11) having the highest allelic diversity. The lowest allelic diversity was 

observed in samples from the INCO tailing (site 7) populations (Table 11). 

For Pinus resinosa the mean number of alleles per locus was six and the mean effective number 

of alleles was 2.50. The mean number of alleles across loci per population ranged from 2.33 to 

3.00 for the P. resinosa populations (Table 11). The highest allelic diversity was observed the 

samples from site 2 near Falconbridge and site 7 located in Verner. The lowest allelic diversity 

was found in the samples from site 4 in Coniston/Wahnipitae and the newly introduced 

population (introduction or site 2) from nursery 2 identified as population or site 8 (Table 11). 

 

Species/Population NA NAp HO HE i 
Pinus banksiana      
Val Caron (site 1) 4.3333 3.3604 0.6667 0.6983 1.2967 
Introduction 1 (site 2) 4.0000 2.7951 0.4667 0.6096 1.1051 
Introduction 2 (site 3) 4.0000 2.6056 0.4000 0.5850 1.0650 
Inco 3 (site 4) 4.6667 2.9764 0.7333 0.6133 1.1734 
Inco 1 (site 5) 4.0000 2.9054 0.5000 0.6500 1.1727 
Inco 2 (site 6) 3.6667 2.7763 0.6333 0.5367 0.9716 
Inco tailing (site 7) 3.0000 2.1221 0.3333 0.5129 0.8551 
Falconbridge (site 8) 3.6667 2.1973 0.5852 0.5421 0.9443 
Temagami (site 9) 4.0000 2.6277 0.6333 0.6050 1.1054 
Low Water Lake(site 10) 3.6667 2.7987 0.2593 0.6235 1.1098 
Introduction 3 (site 11) 4.6667 3.7420 0.4000 0.7283 1.3936 
Introduction 4 (site 12) 3.6667 2.0854 0.2583 0.4554 0.8578 
Mean 4.0000 2.7422 0.4912 0.7194 1.5155 
Standard error ±0.4678 ±0.1723 ±0.3679 ±0.0133 ±0.0939 
Pinus resinosa      
Introduction 1 (site 1) 2.6667 2.0994 0.1000 0.4150 0.7118 
Falconbridge (site 2) 3.0000 2.1847 0.5506 0.4258 0.7809 
Falconbridge (site 3) 2.6667 1.8039 0.1667 0.3267 0.5926 
Falconbridge (site 4) 2.6667 1.9750 0.1333 0.3748 0.6653 
Coniston(site 5) 2.3333 1.7365 0.0667 0.3431 0.5497 
Daisy Lake (site 6) 2.6667 1.7188 0.0667 0.3346 0.5914 
Verner (site 7) 3.0000 1.5541 0.1000 0.3017 0.5459 
Introduction 2 (site 8) 2.3333 1.7060 0.0667 0.2783 0.5041 
Mean 2.6667 1.8473 0.0892 0.4606 0.9477 
Standard error ±0.2520 ±1.3076 ±0.0941 ±0.3992 ±0.828 

NA = mean allele number per locus; NAp = mean number of polymorphic alleles per locus; HO = 
observed heterozygosity; HE = expected heterozygosity; I = Shannon’s information index;  

Table 11. Genetic diversity estimates for 12 Pinus banksiana and 8 Pinus resinosa populations 
from the Sudbury, Ontario region using microsatellite primers. 
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The observed heterozygosity (HO) at the population level ranged from 0.26 to 0.67 and the 
expected heterozygosity (HE) varied from 0.46 to 0.72 for Pinus banksiana populations. The 
samples from INCO 3 (site 4) produced the highest HO values and the samples from Low 
Water Lake (site 10) used as control showing the lowest observed heterozygosity (Table 11). 
The degree of population differentiation (FST) was 17 % for P. banksiana. For Pinus resinosa, 
the observed heterozygosity (HO) at the population level, ranged from 0.07 to 0.55. Samples 
from site 2 located near Falconbridge produced the highest heterozygosity and the samples 
from nursery 2 (introduction 2) called population or site 8 showing the lowest values (Table 
11). HE values ranged from 0.28 to 0.43. The degree of population differentiation (FST) was 
23.9 % for P. resinosa. 

For Picea mariana, the microsatellite analysis confirmed the high level of genetic diversity 
within each population but revealed no significant difference between wetland and upland 
populations for all the genetic parameters analyzed. Overall, 11% of the total genetic diversity 
was attributed to differences among populations. The mean number of alleles and effective 
number of alleles per locus were 10.3 and 5.6, respectively. The observed and expected 
heterozygosity values ranged from 0.425 to 0.732 and 0.584 to 0.768, respectively (Table 12). 

 

Population NA NAp HO HE I 
Site 1 (wetland) 5.67 5.33 0.482 0.619 1.333 
Site 2 (wetland) 5.33 5.33 0.587 0.752 1.512 
Site 3 (dryland) 5.67 5.67 0.652 0.768 1.572 
Site 4 (dry land) 5.33 5.33 0.641 0.740 1.503 
Site 5 (wetland) 6.33 6.33 0.648 0.729 1.532 
Site 6 (dry land) 3.67 3.33 0.577 0.584 1.040 
Site 7 (dry land) 6.00 6.00 0.559 0.744 1.541 
Site 8 (dryland) 6.00 6.00 0.732 0.740 1.540 
Site 9 (wet land) 5.67 5.67 0.425 0.772 1.585 
Mean 5.52 5.44 0.589 0.717 1.462 
Standard dev. ±0.765 ±0.867 ±0.094 ±0.067 ±0.175 

NA = mean allele number per locus; NAp = mean number of polymorphic alleles per locus; Ho = 
observed heterozygosity; HE = expected heterozygosity (Nei 1973); I = Shannon's information index; FIS 

= measure of heterozygote deficiency or excess (Wright 1978). 

Table 12. Genetic diversity estimates for black spruce (Picea mariana) populations using 
microsatellite primers. 

After the correction for null alleles, exact test for Hardy-Weinberg Equilibrium revealed, the 
majority of the populations deviated significantly from the Hardy Weinberg Equilibrium. The 
results revealed that the null allele frequency estimates were negligible for all populations 
(data not shown). The HWE deviation for these populations might be the result of other factors 
than null alleles. The global tests revealed significant heterozygote deficiency for most 
populations. Overall, the present study indicates that the long-term exposure of P. mariana 
populations to metal (more than 30 years) is not associated with the level of genetic diversity. 

3.4.2 Gene flow 

The gene flow estimates were considered low for both species, Nm = 1.21 for Pinus banksiana 
and Nm = 0.79 for P. resinosa based on Slatkin (1985). There was also no significant 
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difference in the inbreeding coefficients among the stands within the same species. The 
mean inbreeding coefficients were considered high for P. resinosa and low for P. banksiana. 

4. Discussion 

Loss of rare alleles, lower heterozygoty and directional selection have been concerns of plant 
populations (Slatkin, 1985; Bergmann and Scholz, 1989). Most of the forest ecosystems within 
the Sudbury area have improved considerably during the last 30 years (Dudka et al., 1995; 
Gratton et al., 2000). Vascular and nonvascular plants such as conifers, birches and lichens 
have re-invaded semi-barren landscapes. More than nine millions trees mostly conifers have 
been planted in the Greater Sudbury Region. Genetic diversity is the foundation for forest 
sustainability and ecosystem stability. Bench marking genetic diversity in forest tree 
populations can provide resource managers with an indicator of long-term forest sustainability 
and ecosystem health (Mosseler and Rajora, 1998; Rajora and Mosseler, 2001a, 2001b). 

For Pinus banksiana and Pinus glauca, the levels of genetic variation were low to moderate. In 
fact, genetic variation in Pinus strobus (White pine) studied varied from 24 to 40%. The 
newly planted populations of Pinus banksiana and Pinus glauca revealed a higher level of 
genetic variation compared to natural populations. The genetic distances among the pine 
populations growing in the Greater Sudbury area revealed that all the populations analyzed 
were genetically close to each other. The highest genetic diversity values were observed in 
new plantations being developed by the Sudbury reforestation program (Ranger et al., 
2007). The level of genetic variation was low (less than 10%) for P. resinosa. This was 
attributed to other events that took place during the history of this species in North America 
(Mosseler et al., 1992). 

Genetic variation and genetic structure of P. mariana (black spruce) populations growing in 
wet and dry lands with different levels of metal contaminations was high in all the 
populations analyzed with the percentage of polymorphic loci (P %) ranging from 65% to 90 
%. For Picea glauca populations polymorphism levels ranged from 50% to 61% for ISSR 
markers and from 70% to 80% for RAPD markers. The level of variation in newly introduced 
populations of P. mariana and P. glauca from the Sudbury Reclamation program was also 
high. Variation within populations accounts for most of total genetic variation. Moreover, 
genetic tests with species-specific molecular markers revealed that all the trees from P. 
mariana and P. glauca planted and natural populations were pure genotypes with no 
introgression of other species. 

In all the conifer species, metal content in soil was not associated with the level of diversity 
in populations analyzed. Within each species, the different populations studied were 
genetically closely related. Overall, the results of the present study indicate that the conifer 
populations from the Greater Sudbury region and other surrounding areas meet most 
genetic criteria of sustainability. Moreover, the levels of genetic variation observed in the 
targeted species were similar to data reported for other fragmented populations across 
Canada for the same species (Mehes et al., 2007). 

Elevated accumulations of metal accumulations in soils and vegetation have been 
documented within short distances of the smelters in Sudbury compared to control sites 
(Freedman and Hutchinson, 1980; Gratton et al., 2000; Nkongolo et al., 2008). Among the 
sites analyzed in the present study, the highest level of metal content in soil and plant 
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tissues were detected in samples from populations 1 and 2 located near Falconbridge 
Smelters in Sudbury (Gratton et al., 2000; Nkongolo et al. 2008). These populations showed 
the highest level of genetic variability for Picea mariana for example along with the control 
population 9 from Timmins. The same level of genetic variation was observed in parents 
and progenies within the same populations. This clearly indicated that the exposure to 
metals for more than 30 years has no effect on genetic structure and diversity of black spruce 
populations in Northern Ontario. This lack of association between the level of genetic 
variation and metal content can be attributed to the long life span of conifer species. In fact, 
the populations analyzed were only the first and second generations of progenies from 
parents exposed to metal contamination 

This is in contrast to data observed in herbaceous species such as Deschampsia cespitosa 
where the level of metal accumulation reduced significantly the level of genetic variation 
(Nkongolo et al. 2008). Metals impose severe stress on plants, especially in the rooting zone, 
which has led to the evolution of metal-resistant ecotypes in several herbaceous species like 
D. cespitosa (Cox and Hutchinson 1980). Evidence of loss of genetic variation based on 
enzymatic analysis at the population level caused by pollution has been demonstrated in 
some species (Lopes et al. 2004; Prus-Glowacki et al. 2006; van Straalen and Timmermans 
2002). But, plants possess homeostatic cellular mechanisms to regulate the concentration of 
metal ions inside the cell to minimize the potential damage that could result from the 
exposure to nonessential metal ions. These mechanisms serve to control the uptake, 
accumulation and detoxification of metals (Foy et al. 1978). This might be the case in black 
spruce trees exposed to certain levels of metals. 

Genetic variation is the foundation for ecosystem stability and population sustainability. In 
tree populations this information is an indicator of long term population sustainability and 
health. For example, environmental stressors, such as anthropogenic factors, can affect the 
genetic frequencies by increasing mutation or selection. This further leads to differences 
among populations and increase uniformity within a population, thus increasing 
homozygosity and inbreeding (Dimsoski and Toth, 2001). Studies of genetic variation of 
impacted and unimpacted populations have defined a positive relationship between the 
exposure to the stressor and diversity. 

Using various types of markers, several authors have reported differences in genetic 
structure of plants growing in contaminated areas (Muller-stark, 1985; Scholz and 
Bergmann, 1984). Enzymatic studies of Picea abies (Norway spruce) revealed genetic 
differences between groups of sensitive trees in polluted areas (Scholz and Bergmann, 1984). 
Higher heterozygosity was reported in tolerant plants of European beech in Pinus sylvestris 
(Scots pine) in Germany and Great Britain (Muller- starck, 1985; Geburek et al., 1987). 
Berrang et al., (1986) also reported a high heterozygosity in Populus tremuloides (Trembling 
aspen) and Acer rubrum (Red maple) populations in the USA. 

No significant differences were observed among natural and planted Picea glauca populations. 
All the populations revealed high levels of polymorphic loci for the ISSR markers. This 
suggests that the Picea glauca populations are likely sustainable in long term. For Pinus strobus, 
the levels of genetic variations were in general low to moderate. The newly introduced 
populations revealed higher levels of polymorphic loci compared to natural populations. This 
confirms that the land reclamation by planting Pinus strobus trees and other pine species is 
increasing the sustainability of pine populations in the Sudbury region.  
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Genetic distance values were calculated according to the Jaccard similarity coefficient. In 
general, the genetic distance values revealed that the different Pinus spp. and Picea spp. 
populations were genetically closely related. Overall, the genetic distance analysis showed a 
high level of homogeneity among populations which could be due to the species 
characteristics. In fact, the relative small genetic distance values reported in the present 
analysis are consistent with other studies on Picea glauca populations in various provinces 
that used various molecular markers and allozymes (Rajora et al., 2005; Tremblay and 
Simon, 1989; Alden and Loopstra, 1987). In general, the genetic similarity among the 
populations suggests that these populations could have originated from a common 
source. In addition, Picea glauca is an anemophilous species and its pollen is transported 
over great distances. The fact that Picea glauca populations are fairly distributed should 
promote the exchange of genes among populations. Hence, it is rare to find alleles that are 
unique to a given populations, and the frequencies of the main alleles are generally 
similar from one population to another (Rajora et al., 2005; Tremblay and Simon, 1989; 
Alden and Loopstra, 1987). 

In Sudbury (Canada) during the last 25 years, production of nickel, copper and other metals 

has been maintained at high levels while industrial sulphur dioxide (SO2) emissions have 

been reduced by approximately 90% through combination of industrial technological 

developments and legislated controls. This has allowed for some degree of recovery to occur 

such as improved air quality and natural recovery of damaged ecosystems during this 

period of reduced emissions at Sudbury. The recovery has been further done through the 

reforestation program by planting over 9 million trees such as conifers in the Sudbury 

region. On the other hands, the African Copper belt, on the border between Zambian and 

DR-Congo, are among the ten most polluted areas worldwide (The Blacksmith institute, 

2008; Banza et al., 2009). Like in many other regions producing heavy metals, such as 

Senegal, Tanzania, China, Russia, Romania, India, Philippines, Thailand, Indonesia etc.,. 

there are virtually no controls on the discharge of pollutants from mining and smelters. 

There are no land reclamation programs and environment degradations from past mining 

activities have not been addressed. Studies on the effect of metal contamination on genetic 

diversity of plant populations in those regions are limited. Prus-Glowack et al. (2006) 

demonstrated in a small scale study in Poland that the stress resulting from gaseous 

pollution and contamination of the soil with heavy metals exerts a significant effect on 

phenotype of individuals and on genetic structure of Pinus sylvestris L populations. Such 

data needs to be validated at larger scale using molecular markers.  

5. Conclusion 

The present study indicates that Pinus spp and Picea spp. populations from the Sudbury 
region, Ontario, are genetically variable. Metal contamination levels were not associated 
with genetic variation in Picea glauca populations. Overall, the results indicate that the 
conifer populations from the Greater Sudbury region and other surrounding areas meet 
most genetic criteria of sustainability. This conclusion was confirmed by molecular analysis 
using ISSR, SSR markers, and cytological studies. The effects of metals, if any, may require 
several generations to be detected. The reclamation of Sudbury forest lands with new 
populations increases the sustainability specifically for Pinus (Pine) species. Since Sudbury is 
not among the ten most polluted areas in world, a replication of this study in areas with 
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higher soil metal content is recommended to validate the effects of metal populations in tree 
populations.  
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