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Correcting Transport Errors  
During Advection of Aerosol and  

Cloud Moment Sequences in Eulerian Models 

Robert McGraw 
Atmospheric Sciences Division, Environmental Sciences Department 

Brookhaven National Laboratory, Upton, NY  
USA 

1. Introduction 

The method of moments (MOM) provides a highly efficient approach to tracking particle 
populations, be they aerosols or cloud droplets. In the case of aerosols the method is a 
statistically based alternative to bin-sectional and modal approaches [Wright et al., 2000]. In 
the case of clouds, where moments are often the desired product of a simulation for 
comparisons with radar and satellite observations, the MOM can replace the bin-sectional 
method. Recent studies have begun looking at the inclusion of higher-order moments, 
beyond droplet mixing ratio, for improving the representation of cloud microphysics in 
models [Van Weverberg et al., 2011; Milbrandt and McTaggart-Cowan, 2010]. 

Early applications of the MOM suffered from inability to close the moment evolution 
equations, except in the case of very special growth laws. This problem has been largely 
eliminated with introduction of the quadrature method of moments (QMOM), which allows 
one to obtain closure under very general conditions and to compute physical and optical 
properties of a particle population directly from its moments [McGraw, 1997]. Buoyed by 
this success, the attempt was made early on to incorporate the QMOM into a regional-scale 
chemical transport model (CTM) - the idea being to evolve and track the moments of several 
particle populations and transport these in the manner of chemical species during the 
advection step. Errors were soon encountered and attributed to the corruption of moment 
sequences during advective transport, which in this case was implemented using the Bott 
scheme, but any nonlinear transport scheme designed to reduce numerical diffusion would 
have the same effect. Wright examined invalid moment set generation by two representative 
advection schemes for ensembles of 104 test cases covering a range of initial moment sets 
and flow conditions. These tests revealed invalid moment set frequencies exceeding 0.7% for 
both schemes [Wright, 2007].  

The paper of Wright, in addition to presenting a clear description of the problem, also 
analyzed its first solution: “vector transport”, or VT, previously implemented in the 
chemical transport model [Wright et al., 2000]. In VT a sequence of moments is normalized 
to a selected lead tracer, typically number or volume, and only that one tracer is transported 
for each population. The remaining vector components (remaining moments) are 
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transported with the same mixing coefficients as the lead tracer, thereby preserving moment 
ratios within the sequence. The main advantages of the VT schemes are that they preserve 
valid moment sequences, and the number of transported quantities is reduced, but the 
accuracy is not as good as found when more than one moment is transported e.g. as in 
Wright’s number-volume VT scheme [Wright, 2007]. The main disadvantage, other than loss 
of accuracy, is that the VT schemes require modification of the transport algorithm to explicitly 
call out the cell-to-cell mixing coefficients at each time step. These modifications have proven 
tedious and go against the concept that aerosol and cloud modules should be interchangeable 
with any transport scheme. More recently a non-negative least squares (NNLS) method for 
preservation of moment sequences was developed and tested for transport of aerosol mixtures 
[McGraw, 2007]. The NNLS scheme makes use of all of the moments and the mixing 
coefficients (optimized in the least squares sense) are determined by the requirement that the 
final (post advection step) moment sequence be a non-negative linear combination of the 
moment sequence vectors in same cell and neighboring cells prior to the advection step – the 
idea here being based on the fact any linear combination of valid moment sequences with non-
negative coefficients is itself a valid moment sequence. The approach proved to be much less 
diffusive than the VT schemes in tests of source apportionment for aerosol mixtures [McGraw, 
2007], but has the disadvantage that valid moment sequences from the previous time step 
need to be carried forward, as these comprise the basis set for NNLS optimization of the 
updated moments. The new approaches developed here work, instead, on individual grid cells 
without requiring stored information from previous time-steps or neighboring cells. Cell-to-
cell mixing coefficients are not required as the new methods test moment sequences and 
correct failed ones in a minimally disruptive way that preserves as many of the transport 
algorithm generated moments as possible. 

2. Moment inequalities 

We are interested in tracking, in an atmospheric model, the moments of a generally 

unknown distribution function, ( )f r . The required methods are illustrated for a particle 

size distribution expressed in terms of particle radius but other coordinates, such as particle 

volume or mass, could just as easily be used. The radial moments are: 

 
0

( )k
k r f r drµ

∞
≡   (2.1) 

for 0,1,2,k =   . In order to have physical validity it is clear that both the particle 

distribution function and its domain need to be positive: ( ) 0f r ≥ ; 0r ≥ . Identification of the 

necessary and sufficient conditions for a valid moment sequence - i.e., one consistent with a 

distribution function of this type – is attributed to Stieljes and these are usually expressed as 

inequalities involving the Hankel-Hadamard determinants constructed from the moments 

[Shohat and Tamarkin, 1943]: 
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Without loss of generality we will work with normalized distribution moments ( 0 1µ = ). 

The un-normalized moments are easily restored by multiplying each moment of the 

normalized sequence by 0µ . With normalized moments, the requirement that determinant 

1 0∆ ≥ , for example, is equivalent to the requirement that the variance be positive: i.e., 
2

2 1 0µ µ− ≥ . More generally, a moment sequence is valid if and only if all inequalities 2.2a 

and 2.2b are satisfied. 

Two new approaches for testing valid moment sequences, and correcting invalid ones, are 
now presented. The first of these will be referred to as Positive Alpha Sequence Enforcement 
(PASE), where the "alpha sequence" consists of certain mathematical quantities introduced 
by Gordon [1968] that are related to the determinant sequence defined above. The PASE 
algorithm is introduced in Sec. 3. The second approach uses difference tables and has the 
advantage that it can pinpoint specific moment errors for sequences of six or more moments. 
This second approach is essentially a filtering method that smoothes moment sequences if 
and when an invalid sequence is found. The filter algorithm is introduced in Sec. 4. 

3. Correcting invalid moment sequences by positive alpha sequence 
enforcement (PASE) 

It is convenient to replace the determinants of Sec. 2 by another set of non-negative 

quantities, the alpha sequence, investigated by Gordon and generated by him using the 

product-difference (PD) algorithm [Gordon, 1968]. Inspection of the alpha sequence will (1) 

indicate immediately whether or not a given moment sequence, e.g. one obtained after the 

advection step of a model simulation, is valid and (2) provide a recipe for correction if the 

tested sequence proves to be invalid. PASE has the further advantage that it includes most 

of the steps en route to obtaining quadrature points for the weight function ( )f r  directly 

from its moments. These points can then be used to approximate the physical and optical 

properties of ( )f r while providing the moment closure needed to track the evolution of ( )f r  

directly from its lower-order moments. Indeed this is the basis of the QMOM [McGraw, 

1997]. In those cases where an invalid moment sequence is found, the (corrected) quadrature 

points easily provide corrected moments.  

Consider the following ordering of the determinants defined in Sec. 2: 

 1 1 1
0 0 1 1 2 2{ , , , , , , }e = ∆ ∆ ∆ ∆ ∆ ∆   (3.1) 

with 0 0 1µ∆ = = . The kth member of this sequence introduces the (k-1)th moment, as 

evidenced by inspection of Eqs. 2.2. Because its elements have an abundance of useful 

properties, it is more convenient to work with the alpha sequence: 

 1 2 3{ , , , }α α α α=  , (3.2) 
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This sequence can be written in terms of moments and e-sequence elements as follows: 
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   ( )≥n odd; n 5

 (3.3) 

where ne  is the nth element of sequence e. The conditions for a valid moment set (Eqs. 2a 

and 2b) are easily reformulated in terms of the alphas. Considering the order in which the 

determinants appear, it follows that the non-negativity conditions: 

 0         ( 1,2, )n nα ≥ =   (3.4) 

are equivalent to the determinant inequalities (2.2a and 2.2b). Thus a moment sequence is 

valid if and only if inequalities (3.4) hold. To show this by induction, assume non-negativity 

through 1nα − . Eq. 3.3 shows that nα  will be non-negative if and only if the determinant ne  

is non-negative – so the equivalence between inequalities 2.2a and 2.2b, and 3.4 holds also at 

the level of nα . Inspection of the determinant sequence shows that ne  is the first 

determinant to enlist the nth moment, 1nµ − . Consider the case that 1nµ −  is the first 

sufficiently corrupted moment that the sequence 1 2 1{1, , , , }nµ µ µ −  is invalid (the previous 

sequence 1 2 2{1, , , , }nµ µ µ −  is valid by assumption). In this case both ne  and nα  will be 

negative; the former because the determinant inequality on ne  is violated for the invalid 

sequence and the latter by Eq. 3.3 that defines the alpha set. The method of PASE correction 

is to set the first negative entry, here nα , and all higher values of alpha, 1 2, ,n nα α+ +   to 

zero. Because the modified alpha sequence now satisfies inequalities 3.4, a valid moment 

sequence is guaranteed. Equations 3.3 have been introduced mainly to show equivalence of 

the inequalities 2.2 and 3.4. For computational purposes handling products and quotients of 

determinants is not recommended given that a much more efficient and well-conditioned 

approach is available for generating the alpha sequence, quadrature points, and valid 

moment sets - as now described. 

Inequalities 3.4 (rather than 2.2) will be used to test for corrupted moment sets. To obtain the 

alpha sequence the widely available Numerical Recipes subroutine ORTHOG is used to first 

obtain a tridiagonal Jacobi matrix from the moment sequence. For six moments 0 1µ =  

through 5µ  this has the form: 
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1 2

3 2 2 3

3 3

0

0

a b

J b a b

b a

 
 
 =
 
 
 

 (3.5) 

where the matrix elements are computed from the moments using ORTHOG. A similar 

construction applies for 2n moments and nJ . Note that ORTHOG works with modified 

moments, which are better conditioned than powers of r, but require that the weight 

function ( )f r  be known. ORTHOG also works with the ordinary moments defined by Eq. 

2.1. For this purpose the coefficients of the modified moment recurrence relations used in 

ORTHOG need to be set to zero. Because the ordinary moments are not as well conditioned, 

only lower-order moments (powers up to about 9r ) should be used. Fortunately, even fewer 

moments have proven adequate for most applications requiring both reliable dynamics and 

accurate estimation of aerosol physical and optical properties from moments [McGraw et al. 

1995; Wright et al., 2002].  

The Jacobi matrix elements are expressed in terms of the alpha sequence as follows [Gordon, 

1968]. Note a switch in notation from Gordon’s 2
ib  to ib  in the equations below. This is 

consistent with the off-diagonal elements used in defining nJ  (Eq. 3.5) and Numerical 

Recipes [Press et al., 1992]. 
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 (3.6) 

Inverting Eq. 3.6 gives a continued fraction expansion for the alphas in terms of the Jacobi 

matrix elements: 
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 (3.7) 

This concludes generation of the alpha sequence. Quadrature abscissas and weights are 

obtained by solving the eigenvalue problem associated with the Jacobi matrix. The abscissas 

{ }ir  are just the eigenvalues of this matrix. The corresponding weights, { }iw , are given by 

squares of the first components of the corresponding eigenvectors. Thus if iw  is the weight 

corresponding to abscissa/eigenvalue ir , iv  the corresponding eigenvector, and ,1iv  its 

first component, then 2 2
0 ,1 ,1( )i i iw v vµ= = , where the second equality applies for 

normalized moments [Press et al., 1992]. As with ( )f r  (Eq. 2.1), each of the abscissas and 

weights must be non-negative for a valid moment set. Indeed, one can just as well examine 
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the quadrature points obtained form the Jacobi matrix to determine validity of a moment set 

- especially if the QMOM is already being used. Most moment sequences will pass this 

inversion test; in case an invalid set is detected, e.g., by the appearance of a negative 

eigenvalue, an alpha sequence can be generated from the matrix elements using Eq. 3.7 and 

the PASE correction applied. 

The quadrature points, obtained through ORTHOG and matrix diagonalization, give 

approximations to integrals of the form: 

 
0

1

( ) ( ) ( )
n

i i
i

I r f r dr r wσ σ
∞

=

= ≈  (3.8) 

for known kernel functions, including an n-point quadrature estimate for kµ  in the special 

case that kernel is of the form ( ) kr rσ = : 

 
1

n
k

k i i
i

r wµ
=

≈ . (3.9) 

The approximate equality of Eq. 3.9 is exact for moments 0µ  through 2 1nµ − . For 

( ) exp( )r srσ = − , in which case Eq. 3.8 defines the Laplace transform, ( )I s , of ( )f r , nested 

and rapidity convergent pairs of upper and lower bounds to ( )I s  are obtained form the 

alpha sequence [Gordon, 1968; McGraw, 2001]. Recent calculations using a model 

coagulation kernel show similar behavior, with rapid and nested convergence to benchmark 

numerical results from particle-resolved simulation [McGraw et al., 2008]. More work needs 

to be done to explore the mathematical basis for this result. 

Two test cases showing implementation of the PASE method are given in Tables 1 and 2. 

Table 1 illustrates the processing of a valid moment set. Here the alphas are non-negative 

and 3J  gives a valid set of quadrature abscissas and weights. Table 2 shows moments from 

a log-normal distribution, except that 3µ  is corrupted. Here some of the alphas are negative, 

an eigenvalue of 3J  (not shown) is negative, and PASE (corrected alpha sequence column) 

applied. Elimination of higher-order alpha values has reduce the order of the Jacobi matrix 

to 2J  and for this smaller matrix a valid set of 2 quadrature points and a valid moment 

sequence, with exact recovery of the first 3 moments, are obtained. Table 2 shows a case 

where an odd-number of moments (here 0µ  through 2µ ) passes the test. With an odd 

number of moments Eq. 3.8 describes Gauss-Radau quadrature, which places an abscissa at 

one of the boundaries of the domain of ( )f r  - in this case at 0r =  [McGraw et al., 2008]. For 

certain kernels division by zero is a problem, e.g., vapor condensation by the continuum 

particle growth law has a kernel of the form ( ) 1 /r rσ ∝ . So it is sometimes safer to work 

with even numbers of moments. Even in the most unfavorable situation two physically 

valid moments, e.g. number and radius or number and mass, always result when using a 

positive advection scheme. Transport errors in either of both of these are possible, even 

likely, but such errors will cause no violation of the moment inequalities, which only require 

that the first two moments be positive or, in the trivial case, zero (see first two inequalities of 

Eq. 2.2). 
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moments 3J  elements 

ORTHOG 

alpha sequence 
Eq. 3.7 

quadrature from 3J  

0 1µ =  1 5.0a =  1 1α =  1 15.2853r =  

1 5.0µ =  
2 2.88675b =  2 5.0α =  1 0.0283736w =  

2 33.3333µ =  2 8.33343a =  3 1.66666α =  2 7.18626r =  

3 277.778µ =  
3 4.7139b =  4 6.66677α =  2 0.452838w =  

4 2777.78µ =  3 11.6673a =  5 3.33308α =  3 2.52914r =  

5 32407.4µ =   6 8.33423α =  3 0.518788w =  

Table 1. Valid moment set from a model cloud droplet size distribution with particle radii in 
micron. 

moments 3J  elements 

ORTHOG 

alpha sequence 
Eq. 3.7 

corrected alpha 
sequence 

quadrature 

from 2J  

0ln 0µ =  1 2.71828a =  1 1α =  1 1α =  1 20.0855r =  

1ln 1.0µ =  
2 6.87089b =  2 2.71828α =  2 2.71828α =  1 0.135335w =  

2ln 4.0µ =  2 2.68355a =  3 17.3673α =  3 17.3673α =  2 0.0r =  

3ln 6.0µ =  
3 433.747b =  4 14.6837α = −  4 0α =  2 0.864665w =  

4ln 16.0µ =  3 8096.25a =  5 12812.6α = −  5 0α =   

5ln 25.0µ =   6 20908.9α =  6 0α =   

Table 2. Moment set from a log-normal distribution. The third radial moment 3µ  is 

corrupted. The natural logarithms of the corrected moments (Eq. 3.9 using the abscissas and 

weights from 2J ) are {0, 1, 4, 7, 10, 13} for moments 0 through 5, respectively. Moments of 

lower order than the corrupted moment are reproduced exactly from 2J .  

4. Correcting invalid moment sequences by the filter method 

Because corruption of moment sequences through advective transport tends to be 

infrequent, it is likely to result from improper assignment of one, or at most a few of the 

moments in the sequence. Accordingly, we would like to adjust only those moments. 

For a sufficiently long sequence the filter method is a way to achieve this goal. 

Difference tables: The construction of difference tables is especially useful for spotting errors 

in an ordered sequence of data [Lanczos, 1988]. The construction is simple and evident from 

the tables to follow. Tables 1and 2 illustrate difference tables for two sequences of six 

moments. The first column gives the 'data' to be evaluated, a sequence of values of ln kµ . 

The ith-order difference column is labeled id . Column 2 contains the first-order differences, 

1d , which are differences of the data entries in column 1. Column 3 contains the second-

order differences, 2d , which are just the first-order differences of the entries in column 2, 

etc. 
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A necessary but not sufficient criterion for a valid moment sequence is that ln kµ  be a convex 

function of index k [Feller, 1971]. This requires that the second-order differences be non-

negative. In Table 1 the ln kµ  were assigned as a quadratic function of k, as is characteristic of 

a log-normal distribution [Hinds, 1982]. In this case the second-order differences are constant 

and higher-order differences vanish. In general we cannot expect that ln kµ  will have 

quadratic form, however it is reasonable to expect a smooth function of index k and moment 

interpolation methods have been developed that exploit smoothness in ln kµ  [Frenklach, 

2002]. In Table 4 the third moment has been corrupted and the modified sequence violates 

convexity as is evident from the appearance of negative elements in the column of second-order 

differences, 2d . Note how the error propagates with amplified oscillation in sign through the 

higher-order differences. Here one sees the useful property of a difference table for spotlighting 

errors in a data sequence through inspection of higher-order differences [Lanczos, 1988]. 

log moments 1d  2d  3d  4d  5d  

0ln 0µ =  1 2 0 0 0 

1ln 1µ =  3 2 0 0 n 

2ln 4µ =  5 2 0 n n 

3ln 9µ =  7 2 n n n 

4ln 16µ =  9 n n n n 

5ln 25µ =  n n n n n 

Table 3. Moment sequence and first to fifth-order differences. In this case the moments are 

from a lognormal distribution and ln kµ  is quadratic in index k. 'n' means no entry. 

log moments 1d  2d  3d  4d  5d  

0ln 0µ =  1 2 -3 12 -30 

1ln 1µ =  3 -1 9 -18 n 

2ln 4µ =  2 8 -9 n n 

3ln 6µ =  10 -1 n n n 

4ln 16µ =  9 n n n n 

5ln 25µ =  n n n n n 

Table 4. Similar pattern as Table 3 using the moments from Table 2 with the same corrupted 

value of 3µ . 

For sequences of six or more moments, the third-order differences can be used to both 

attribute the error (i.e. identify the index of the miss-assigned moment) and provide an 

optimal correction in the sense of minimizing the sum of the squared differences of the 

elements in column 2d so as to restore smoothness. Note that the sum of squared differences 

of elements in column 2d  is just the squared magnitude of the vector { 3,9, 9}= − −a  

containing the third-order differences listed in column 3d  of Table 4. Our strategy will be to 

minimize the magnitude of the vector of these third-order differences, which vanishes for 

the special case of quadratic sequence, i.e., 
2

0=a  in Table 3. 
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Description of the algorithm: The following minimum square gradient algorithm restores a 

valid moment sequence by adjusting that moment , *kµ , which after adjustment maximizes 

smoothness through minimization of 
2
a . To illustrate the method, we begin by first 

determining the response of 
2
a  to change in an arbitrary moment, kµ , and next determine 

*k . (In actual calculations these steps are reversed as described below.) Consider a change 

in the kth moment from an initial value (0)kµ  to a final value (1)kµ  and denote the ratio 

(1) / (0)k kµ µ  by kc . Note by inspection of the difference table that if (1) (0)k k kcµ µ=  or, 

equivalently, ln (1) ln ln (0)k k kcµ µ= + , then 1 0 (ln )kc− =
k

a a b  where 0a  and 1a  are, 

respectively, the initial and final vectors of third-order differences and the "response 

vectors" 
k
b  give the change in the vector of third-order differences to a unit increment in 

ln kµ . The latter are as follows: 

 1 2 3 4 5{ 1,0,0}; {3, 1,0}; { 3,3, 1}; {1, 3,3}; {0,1, 3}; {0,0,1}= − = − = − − = − = − =
0
b b b b b b ,  (4.1) 

which are related to the entries in the Pascal triangle except for oscillations in sign [Lanczos, 

1988]. Next consider the value of kc  (actually ln kc ) for which 
22

1 0 (ln )kc= +
k

a a b  is 

minimized. Inspection of Fig. 1 shows that minimization is achieved for the condition that 

0 (ln )kc+
k

a b  is orthogonal to k
b . The value of kc  that satisfied this condition is: 

 0 0
0 2

( )
ln cos( , )kc

⋅
= − = − k

k

k k

a a b
a b

b b

. (4.2) 

The last equality follows form the law of cosines, 0 0 0cos( , ) ( ) /(| || |)k k k= ⋅a b a b a b  where 

0( , )ka b  is the angle between vectors 0a  and kb . The resulting minimum squared 

amplitude satisfies: 

 2 22 2
1 0 0 0ln 1 cos ( , )kc  = + = − k k
a a b a a b  (4.3) 

which is the largest reduction in magnitude of the vector of third-order differences 

achievable by changing kµ  alone (Fig. 1).  

a0

 lnck bk

a1 = a0+ lnck bk

0

 

Fig. 1. Disposition of the third order difference vectors before and after correction, 0a  and 

1 0 ln kc= +
k

a a b  respectively. 
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Equation 4.3 shows that maximal smoothness is achieved by adjusting the moment, *kµ , 

corresponding to that basis vector *kb  which gives the largest 2
0cos ( , )

k
a b  for any moment 

index k. Thus by determining which k gives the maximum value of 2
0cos ( , )

k
a b , we obtain 

the index of the suspect moment, *k . That moment alone is corrected, using the factor *kc  

from Eq. 4.2, yielding an updated moment sequence. Recalling that 
k
b  gives the third-order 

difference response to a unit change in ln kµ , the actual change in the moment for *k k=  is: 

 
( )0 *

* * * * 2
*

ln (1) ln (0) ln ln (0)k k k kcµ µ µ
⋅

= + = −
k

k

a b

b
. (4.4) 

The other moments having *k k≠  are unchanged. The new moment sequence gives the 

third-order difference vector 1a  whose magnitude is in agreement with Eq. 4.3. The new 

moment sequence is in turn tested to insure that negative second-order differences have 

been removed. If not, the process is repeated, replacing 0a  by 1a , and obtaining 2a , etc. 

Equation 4.3 assures a reduction in the amplitude of the third order difference vector on 

each iteration. Thus the amplitude approaches zero after many iterations, and ln kµ  

approaches a quadratic function of index k . Typically just one or two passes through the 

algorithm suffice to obtain a valid moment sequence. 

Examples: For our first example we begin with the moments of Table 4 and show that a 

single pass through the filter restores the moment sequence of Table 3. Note that the third-

order difference vector in Table 4 satisfies 0 { 3,9, 9} 3= − − = −
3

a b . The multiplier here is 

understandable because 
3
b  gives the response to a unit change in 3ln µ  and in passing 

from Table 3 to Table 4 this quantity was changed by -3. Note also that the angle 0 3( , )a b  is 

π  and thus the maximum value of 2
0cos ( , )

k
a b , which occurs here for * 3k =  is unity. So 

1 0=a  for this case, which is the reason why a single pass through the filter restores a 

quadratic sequence in ln kµ . To correct the third moment, we evaluate the right hand side of 

Eq. 4.2 to obtain  

2 2
3 0ln ( ) / ( 3 ) / 3c = − ⋅ = − − ⋅ =3 3 3 3 3a b b b b b . 

Finally from Eq. 4.4 we obtain 3 3 3ln (1) ln (0) ln 6 3 9cµ µ= + = + =  showing restoration of the 

moment sequence of Table 3. 

For our second example, consider the moment sequence ln {0,  1,  4,  6,  16,  22}kµ =  for 

moments 0µ  though 5µ , respectively, where moments 3µ  and 5µ  both differ from the 

original sequence of Table 3. A check of the second-order differences shows that convexity is 

not satisfied. After one pass through the filter 3µ  is changed yielding the log moment 

sequence {0,  1,  4,  9.47368,  16,  22} . There is still a failure of convexity, although the 

sequence is smoother than before. After a second pass 5µ  has changed, yielding the log 

moment sequence {0,  1,  4,  9.47368,  16,  23.5789}  and convexity is satisfied - for this and all 

subsequent iterations. The last (two-pass) moment sequence not only satisfies convexity, it 

passes the moment inversion test to yield a valid set of three quadrature abscissas and 

weights. 
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For our final example, consider the log-moment sequence ln {0,  1,  3,  6,  9.1,  15}kµ = . Here 

is a case that satisfies convexity (the second-order differences are positive) but is still 

unphysical and fails the moment inversion test. Moments 0-3 are fine but the next moment 

( 4µ ) fails. (The PASE test of Sec. 3 also shows failure of 4µ  because 5α  is negative.) The 

filter method needs to include this possibility, which can be done using the computational 

flow scheme of Fig. 2. A single pass though the algorithm changes the failed moment from 

9.1 to 10 and a valid sequence is obtained. 

In the hypothetical extreme case that the moment sequence is so corrupted that ln kµ  versus 

k is predominantly concave, the filter can converge to a smooth function with negative 

curvature and never pass the inversion test. Then, as in the PASE method, one is forced to 

work with two moments. Since a plot of ln kµ  versus k defined by just two points is a 

straight line, the corresponding size distribution, ( )f r , is monodisperse. 

Start with moment set 
{µ0 , µ1 , µ2 ,...}

Form second-order differences in 
                  lnµk

Stop: 
These moments are 
OK

Yes

No

Satisfies convexity?

Form third-order differences in 
       lnµk  (elements ofvector a)

Determine k* for which 

Adjust µk* to get new  

moment sequence 
using Eq. 2.4

cos
2
(a,b

k *) = Max
k

cos
2
(a,b

k
)[ ]

Passes inversion 
test?

Yes

No

 

Fig. 2. Flowchart of the computations used to generate a valid moment set in the filter method. 
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5. Summary 

This paper has introduced two independent methods for testing and correcting moment 
sequences undergoing advective transport in atmospheric models. Each method has been 
design to operate on single grid cells and require no modification to the transport scheme or 
storage of information from previous time steps or neighboring grid cells. With these 
features in place, either method, incorporated as part of an aerosol or cloud module, should 
enable that module to be compatible with any transport scheme. 

The PASE method is applicable to sequences of as few as three moments - the minimum 
number for which inconsistencies of the kind described here can arise - and a corrected 
moment sequence is achieved in a single step. The filter method has the advantage of 
identifying specific corrupted moments and only correcting these, whereas the PASE 
method recomputed all moments of index greater than or equal to that of the corrupted 
moment - thus retaining less of the raw information supplied by the transport scheme. On 
the other hand the filter method may require multiple passes (if more than a single moment 
is corrupted) and needs six or more moments to operate effectively. 

Both the PASE and filter schemes appear well suited for immediate use in moment-base 

cloud simulation. Here the particles are of uniform composition (liquid water or ice) and 

thus (ignoring ice crystal shape) describable by univariate moments - ideally with a separate 

moment sequence for each phase. Aerosols, on the other hand, are complex not only with 

respect to size and shape, but also mixing state. Recent multivariate extensions of the 

QMOM have been developed that enable such complexities to be handled through the 

tracking of multivariate mixed moments [Yoon and McGraw, 2004a; 2004b]. For the purpose 

of assigning quadrature points in higher dimension the multivariate distribution function is 

treated as factorizable in the principal coordinates frame, which is continuously updated in 

time through tracking of first and second-order mixed moments. This reduction to a direct 

product of univariate distributions implies that either the PASE method or filter method can 

still be used.  

Historically, most nonlinear advection schemes in current use derive one way or another 

from the need to advect individual tracers in the presence of sharp gradients (e.g. fluid 

density in a shock front) and have not been adequately tested for transport of multiple 

correlated tracers. Moments, because they are so strongly and nonlinearly correlated, 

provide a excellent indicator of correlation failure - they serve as the "canary in the mine", so 

to speak. Other correlated tracers such as composition of aerosol mixtures and hydrometeor 

phase will also be affected and need to be considered - even if the loss of correlation is less 

obvious for these quantities. Quantitative metrics, which apply beyond moments to 

encompass these other kinds of correlated tracers, need to be developed for evaluating 

advective transport schemes if future climate models are to achieve optimum balance 

between the need to reduce numerical diffusion and the need for correlation preservation. 
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