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1. Introduction 

While the detailed evolution of weather events may not be predictable beyond the span of 

a few days to two weeks due to the chaotic internal dynamics of atmospheric motion 

(Lorenz 1965), the statistical behavior of weather, that is the time or space averages, may 

be predictable over timescales of a season or longer due to the interaction between the 

atmosphere and the slowly varying lower boundary including ocean and land surface 

properties (Shukla 1998; Wang et al. 2009). In the past few decades, climate scientists have 

made tremendous advances in understanding and modeling the variability and 

predictability of the climate system. As a result, prediction of seasonal-to-interannual 

climate variations and the associated uncertainties using multiple dynamical models has 

become operational (Palmer et al. 2004; NOAA Climate Test Bed 2006; Lee et al. 2009). 

This chapter reviews and discusses the current status of seasonal climate prediction for 

the upper-tropospheric atmospheric circulation over the Northern Hemisphere (NH), in 

particular, using eight coupled, state-of-the art models that have participated in the Asia-

Pacific Economic Cooperation Climate Center/Climate Prediction and its Application to 

Society (APCC/CliPAS) (Wang et al. 2009; Lee et al. 2010) and ENSEMBLE-based 

predictions of climate changes and their impactS (ENSEMBLES) project (Weisheimer et al. 

2009; Alessandri et al. 2011). This is an extension of work from Lee et al. (2011), which 

addressed prediction and predictability of the NH summer upper-tropospheric 

circulation.  

The multi-model ensemble (MME) approach was designed to quantifying forecast 

uncertainties due to model formulation near the turn of this century (Krishnamurti et al. 

1999, 2000; Doblas-Reyes et al. 2000; Shukla et al. 2000; Palmer et al. 2000). The idea behind 

the MME is that if the model parameterization schemes are independent of each other, the 

model errors associated with the model parameterization schemes may be random in 

nature; thus, an averaging may cancel out the model errors contained in individual models. 

In general, the MME prediction is superior to the predictions made by any single-model 

component for both two-tier systems (Krishnamurti et al. 1999, 2000; Palmer et al. 2000; 

Shukla et al. 2000; Barnston et al. 2003) and one-tier systems (Hagedorn et al. 2005, Doblas-

Reyes et al. 2005).  
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Climate forecast skill and predictability depend on the spatial location and season. Using 14 

climate prediction models, Wang et al. (2009) showed that the one-month lead seasonal 

MME prediction is more (less) skillful in predicting wintertime atmospheric variability in 

the Pacific North America (East Asia) region compared to its summer counterpart. Jia et al. 

(2011) demonstrated that the current climate models have a season-dependent forecast skill 

regarding the dominant atmospheric circulation pattern in the NH extratropics. While the 

climate models have a significant skill for the leading atmospheric pattern and the 

associated time variation in MAM, JJA, and DJF, they have a difficulty in capturing the 

leading mode in SON.  

The source of predictability of seasonal atmospheric anomalies over the NH extratropics 

is mainly attributable to teleconnection patterns, often linked to tropical boundary 

forcing. In boreal winter, the Pacific-North American (PNA) pattern and North Atlantic 

Oscillation (NAO) tend to significantly influence surface climate conditions and they 

explain a significant part of the interannual variance of the atmospheric anomalies over 

the NH extratropics (Wallace and Guztler 1981; Barnston and Livezey 1987; Trenberth et 

al. 1998; Hoerling et al. 2001). In boreal summer, the circumglobal teleconection (CGT) 

pattern is dominant over the NH extratropics (Ding and Wang 2005), acting as a 

significant source of climate variability and predictability over the region (Lee et al. 2011; 

Ding et al. 2011).  

How to determine the signal variance (the predictable part of total variance) and 

predictability of atmospheric variability on seasonal time scale is still an open issue. 

According to the conventional signal-to-noise ratio approach determined by ensemble 

simulations of a stand-alone atmospheric model (Charney and Shukla 1981; Shukla 1998; 

Rowell 1998; Kang and Shukla 2006), the summertime atmospheric variability in the NH 

extratropics is less predictable than its winter counterpart and far less than that in the 

tropics. However, predictability obtained from the AGCM-alone approach is highly model-

dependent. To better estimate predictability of seasonal-to-interannual climate variations, 

Wang et al. (2007) and Lee et al. (2011) suggested a “predictable mode analysis (PMA)” 

approach, which relies on identification of the predictable leading modes of the interannual 

variations in observations and retrospective MME forecast. The predictability is estimated 

by the fractional variance accounted for by the predictable leading modes. This chapter uses 

the PMA approach to estimate predictability of upper-level atmospheric circulation in each 

season in comparison with Mean Square Error Method suggested by Kumar et al. (2007).  

Section 2 introduces the observational and prediction data and analysis methods used in this 

study. In Section 3, the current status of dynamical prediction of the seasonal atmospheric 

circulation is investigated using eight coupled models’ hindcast data. Section 4 is devoted to 

estimate potential predictability for seasonal-mean atmospheric circulation anomalies. The 

summary is given in section 5.  

2. Data and analysis method 

2.1 Retrospective forecast data 

This study uses one-month lead seasonal hindcast products of eight fully coupled ocean-

land atmosphere models. Table 1 lists the acronyms of the institutions and models 
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mentioned in the text. The eight coupled models are from CAWCR, NCEP, and GFDL in the 

CliPAS project (Lee et al. 2011) and CMCC-INGV, ECMWF, IFM-GEOMAR, MF, and 

UKMO in the ENSEMBLES project (Weisheimer et al. 2009). None of the coupled models 

has flux adjustments. A brief summary of the coupled models and their retrospective 

forecasts is presented in Table 2. For more models’ descriptions, refer to Lee et al. (2011) for 

the three CliPAS models and Weisheimer et al. (2009) for the five ENSEMBLES models.  

The common retrospective forecast period of the models covers the 25 years of 1981-2005. 

All models were integrated from around February 1 to at least May 31 for the boreal spring 

season (hereafter MAM), from around May 1 to at least August 31 for the boreal summer 

season (hereafter JJA), from around August 1 to at least November 30 for boreal fall season 

(hereafter SON), and from around November 1 to at least February 28 for boreal winter 

season (hereafter DJF). Each model has a different ensemble size (Table 2). The one-month 

lead MME prediction was made by simply averaging the eight coupled models’ ensemble 

means. 

2.2 Validation data 

The observed data for validating models’ performance are as follows. Data for 200-hPa 

zonal wind and 200-hPa GPH are from the NCEP/department of Energy (DOE) reanalysis II 

data (Kanamitsu et al. 2002). SST data is from the improved Extended Reconstructed Sea 

Surface Temperature Version 2 (ERSST V2) data (Smith and Reynolds 2004).  

Acronym Full names 

AMIP Atmospheric general circulation model intercomparison project 

APCC Asia-Pacific Economic Cooperation Climate Center 

CAWCR Centre for Australia Weather and Climate Research 

CFS Climate Forecast System 

CliPAS Climate Prediction and its Application to Society 

CMCC-INGV Euro-Mediterranean Centre for Climate Change 

DEMETER 
Development of a European Multimodel Ensemble System for 

Seasonal to Interannual Prediction 

ECMWF European Centre for Medium-Range Weather Forecast 

ENSEMBLES ENSEMBLE-based predictions of climate changes and their impactS 

IFM-GEOMAR Leibniz Institute of Marine Sciences at Kiel University 

GFDL Geophysical Fluid Dynamic Lab 

MF Météo France 

NCEP National Center for Environmental Prediction 

POAMA Predictive Ocean Atmosphere Model for Australia 

UKMO UK Met Office 

Table 1. Acronym names of institutions and models used in the text. 
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Institute 
Model 

Name 
AGCM OGCM 

Ensemble

member 
Reference 

CAWCR POAMA1.5
BAM 3.0d 

T47 L17 

ACOM3 

0.5-1.5o lat x 2.0o 

lon L31 

10 Zhong et al (2005) 

GFDL CM2.1 

AM2.1 

2olat x 2.5olon 

L24 

MOM4 

1/3olat x 1olon L50
10 

Delworth et al 

(2006) 

NCEP CFS 
GFS 

T62 L64 

MOM3 

1/3olat x 5/8olon 

L27 

15 Saha et al (2006) 

CMCC-

INGV 
CMCC 

ECHAM5 

T63 L19 

OPA 8.2 

2.0o x2.0o L31 
9 

Alessandri et al 

(2011) 

Pietro and Masina 

(2009) 

ECMWF ECMWF 
IFS CY31R1 

T159 L62 

HOPE-E 

1.4o x 0.3o-1.4o L29
9 

Stockdale et al. 

(2011) 

Balmaseda et al. 

(2008) 

IFM-

GEOMAR 
IFM 

ECHAM4 

T42 L19 

OPA 8.2 

2.0o lat x 2.0o lon 

L31 

9 

Keenlyside et al. 

(2005) 

Jungclaus et al. 

(2006) 

MF MF 
IFS 

T95 L40 

OPA 8.0 

182GPx152GP L31
9 

Daget et al. (2009) 

Salas Melia (2002) 

UKMO UKMO 
ECHAM5 

T42 L19 

MPI-OM1 

2.5o lat x 0.5o-2.5o 

lon L23 

9 
Collins et al. 

(2008) 

Table 2. Description of the coupled models and their retrospective forecast used in this 
study. 

2.3 Forecast quality measures 

The measure of prediction skill includes the temporal correlation coefficient (TCC) skill, 

evaluating the interannual variability, and anomaly pattern correlation coefficient (PCC) 

skill for spatial similarity. We also calculated the area-averaged TCC skill over the NH 

tropics (Eq-30°N) and extratropics (30°-80°N), respectively, taking latitudinal weight into 

account. 

We define a skill score as representing the coupled models’ capability in predicting 

empirical orthogonal function (EOF) modes in terms of the PCC score for eigenvector and 

TCC score for the principal component (PC) time series for each mode. The skill score for 

each mode (i) is calculated by  

( ) ( ) ( )Skill Score i PCC i TCC i= × . 
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The skill score ranges from 0 (no skill at all) to 1 (for perfect forecast). It should be 
mentioned that we reordered the EOF modes of the MME prediction according to the skill 
score because the order of the predicted EOF mode is not necessarily the same as its 
observed counterpart. In order to reorder the predicted EOF modes, the skill score for the 
first observed mode was calculated against all of the predicted modes and then the 
predicted mode that had the best skill score with the first observed mode was taken as the 
first predicted mode. Repeating the above process, other predicted modes were similarly 
determined. In the case of 200-hPa geopotential height (Z200) in all season, there was no 
change of mode order until the 3rd predicted mode.  

3. Dynamical prediction of seasonal-mean atmospheric circulation 

3.1 Variance 

The upper tropospheric circulation is represented by geopotential height at 200-hPa (Z200 
hereafter). Figure 1 compares the observed and hindcast interannual variance of the upper-
level circulation along with the climatological jet stream in each season. Individual ensemble 
hindcasts of each model are used to estimate standard deviation of the Z200 anomalies for 
individual models in each season. The composite of individual models’ total standard 
deviation is used for the MME. Note that the MME is able to capture the location of jet 
streams in both hemispheres and the atmospheric variability centers over the Tropics in all 
seasons. However, it has difficulty in capturing the observed variability centers particularly 
over the NH extratropics, except over the PNA region for most seasons. Models tend to 
overestimate the tropical variability and underestimate the high latitude variability. 

3.2 Season-dependence 

Season-dependent MME forecast skills are investigated for the period 1981-2005. Figure 2 

shows the TCC skill of one-month lead MME predictions for Z200 in each season. The 

skillful forecast for Z200 is primarily confined in the tropics (Fig. 2a) in all seasons that are 

consistent with earlier results (Peng et al. 2000). Nonetheless, the MME has significant skills 

over some specific geographical locations in the NH extratropics depending on season, 

suggesting that predictable patterns (or modes) of the seasonal upper-level circulation in the 

region may exist. For example, atmospheric variability over the PNA region is more 

predictable during MAM and DJF while that over the Asian region is more predictable 

during JJA and SON.  

In the tropics, the area-averaged TCC skill is the lowest in JJA and SON. On the other hand, 

in the entire NH extratropics (0-360oE, 30-80oN) TCC is the highest in JJA, although over the 

PNA region it is higher in DJF than in JJA. The TCC skill over the Southern Hemisphere 

(SH) shows a season-dependent pattern as well. The skill tends to increase in southern 

hemisphere subtropics and midlatitude during DJF and SON. The South Pacific 

convergence region tends to have higher skill than other southern hemisphere regions. 

We also investigate the TCC skill for 500-hPa geopotential height (Z500) which is often used 

for representing mid-tropospheric atmospheric circulation. Comparison between Fig. 2 and 

3 indicates that Z200 is more predictable than Z500 although the spatial pattern of the TCC 

for Z200 is very similar to that for Z500.  
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Fig. 1. Standard deviation of geopotential height (shading) anomalies and climatological 

mean of zonal wind (contour) at 200 hPa in each season obtained from (a) observations and 

(b) the one-month lead MME seasonal prediction. The units are m for geopotential height 

and m s-1 for zonal wind. 20 and 30 m s-1 zonal wind are contoured. 
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Fig. 2. The temporal correlation coefficient (TCC) skill for the one-month lead prediction of 

200-hPa geopotential height (Z200) in (a) MAM, (b) JJA, (c) SON, and (d) DJF obtained from 

the eight coupled models’ multi-model ensemble (MME) for the period of 1981-2005 in the 

Northern Hemisphere (NH). Solid (dashed) line represents statistical significance of the 

correlation coefficients at 95% (99%) confidence level. The numbers in the left upper corners 

indicate averaged correlation skill over the tropics (T: 0-360oE, Eq-30oN) and extratropics  

(E: 0-360oE, 30-80oN) in the NH. 
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Fig. 3. Same as Fig. 2 except for 500-hPa geopotential height (Z500).  

3.3 Predictable modes 

It is important to understand the source of the prediction skill in the current coupled models 

and identify predictable modes of climate variability. To this end, we evaluate how well the 

MME hindcast captures the first two dominant modes of the Z200 variability in each season. 

To identify the major modes of upper-tropospheric atmospheric circulation, we first applied 

EOF analysis, using the correlation matrix, to the seasonal Z200 over the entire NH (0-360°E, 

Eq-80°) for observations and for the MME prediction. All data were interpolated to the same 

geographic grid to avoid the latitudinal weighting effect and data were normalized by their 

own standard deviation.  
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Figures 4-7 show the first and second EOF modes of the NH Z200 variability for 
observations and the one-month lead MME prediction in each season. Similar to the major 
modes of JJA Z200 discussed in Lee et al. (2011), the first two EOF modes of the NH Z200 
variability in other seasons are also understood in terms of ENSO teleconnection dynamics. 
For all seasonal cases, a strong positive (negative) phase in the first mode tends to occur 
simultaneously or after the mature phase of La Niña (El Niño), and is thus driven by 
prolonged impacts of the ENSO from the preceding SON to following JJA. The second 
mode, on the other hand, is regulated by the developing phase of the ENSO starting from 
the preceding DJF to following SON on the interannual time scale and is correlated with the 
SST anomalies over the North Pacific, North Atlantic, and tropical Western Pacific on the 
interdecadal time scale.  

 

Fig. 4. Spatial patterns of the first (left panels) and second (right panels) eigenvectors of 200-
hPa GPH anomalies in MAM obtained from observation (a, d) and 8-coupled modes’ MME 
prediction (b, e), respectively. The numbers in the right lower corners in (d) and (e) indicate 
pattern correlation coefficient (PCC) between observation and the corresponding prediction. 
(c) and (f) principal components (PCs) of the first and the second EOF modes obtained from 
observation (black solid line) and MME (red dashed line). The numbers within the 
parenthesis in the figure legend in lower panels indicate the temporal correlation 
coefficients (TCC) between the observed and MME PC time series. 
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Fig. 5. Same as Fig. 4 except for JJA. 

The predictability source of the first two modes can be more clearly depicted by the lead-lag 

correlation coefficients for seasonal SST against the first and second PC of Z200 shown Fig. 

8. We just show the DJF case, since the other seasons have similar results. Figure 8 indicates 

that the first mode is associated with a typical or conventional eastern Pacific El Nino with 

complimentary same-sign SST anomalies occurring in Indian Ocean and Atlantic. On the 

other hand, the second mode seems to be associated with a central Pacific El Nino with 

pronounced opposite-sign SST anomalies in the western Pacific and Atlantic but little SST 

anomalies in the Indian Ocean. This suggest that the tropical precipitation anomalies 

associated with the locations of the tropical SST anomalies are critical important for 

determining the extratropical response.  

The MME is capable of predicting the spatial and temporal structures of the two leading 

EOF modes one-month ahead with high fidelity in each season, except for the second EOF 

mode of DJF Z200. The MME’s forecast skill for the EOF modes will be more discussed in 

section 4.2.  
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Fig. 6. Same as Fig. 4 except for SON. 
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Fig. 7. Same as Fig. 4 except for DJF. 
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Fig. 8. Spatial patterns of the lead-lag correlation coefficients for seasonal mean SST against 
(a) the first PC and (b) the second PC, respectively, of DJF Z200 obtained from observations. 
Correlation coefficients which are statistically significant at 99% confidence level are 
contoured.  

www.intechopen.com



 
Climate Models 

 

32

4. Predictability of seasonal-mean atmospheric circulation 

4.1 Mean Square Error method 

For a two-tier prediction, the physical basis for the seasonal predictability lies in slowly 
varying lower boundary forcing, especially the anomalous SST forcing (Charney and Shukla 
1981; Palmer 1993; Shukla 1998). Thus, the predictability does not depend on initial 
atmospheric conditions. To better extract a predictable signal, an ensemble forecast 
approach with different initial conditions is used to reduce the errors arising from 
atmospheric internal chaotic dynamics. In this system, the potential predictability is 
measured as the ratio between the externally forced SST signal defined by interannual 
ensemble mean variance and the internal noise defined by inter-ensemble variance (Shukla 
1981; Roswell et al. 1995; Roswell 1998) and the upper limit of seasonal prediction 
correlation skill can be obtained from the signal-to-noise ratio (Kang and Shukla 2006). By 
definition, the approach is highly model-dependent.  

To overcome the limitation of the conventional approach, Kumar et al (2007) suggested the 
method to optimally estimate potential predictability under a multi-model frame using the 
expected value of the mean square error (MSE) between the observed and the general 
circulation model simulated (or predicted) seasonal mean anomaly. They found that the 
property of MSE can be considered as an estimate of the internal variability of the observed 
seasonal variability because MSE equals the observed internal variability in the case of large 
ensembles using a dynamical model with unbiased atmospheric response. Using multi 
models, they found that the spatial map of the minimum value of MSE irrespective of which 
model it came from at each geographical location can be regarded as the best estimate for 
the observed internal variability. The external variance is calculated by subtracting the 
estimated internal variance from the observed total variance. This approach is less 
dependent on climate models being used but tends to underestimate the observed 
predictability due to models’ systematic bias.  

Figure 9 shows the best estimate of the internal (or noise) and external (or signal) variance of 
the observed Z200 anomalies in each season obtained from the minimum value of MSE in 
the eight coupled models. The signal-to-noise ratio (ρ; SN ratio hereafter) is calculated by the 
ratio of the estimated internal and external variance of the observed Z200 anomalies in each 
season shown in Fig. 10. Significant signal variance and thus the SN ratio are observed over 
the entire Tropics and PNA region during DJF and MAM but over the Tropical Indian 
Ocean and Atlantic Ocean and some parts of Asia during JJA and SON. Note that the 
current estimation of the external variance and SN ratio is larger than that from Kumar et al. 
(2007)’s estimation both using AMIP simulation and DEMETER coupled hindcast indicating 
that the current coupled models have less systematic biases than AMIP models and 
DEMETER coupled models. It implies that the current estimation of potential predictability 
is closer to the observed true value than that of Kumar et al. (2007). There is always a room 
to improve the estimation using better climate model predictions with less systematic biases.  

In order to compare the estimated SN ratio (ρ) with the MME TCC skill, a theoretical limit of 

correlation coefficient (RLimit, Kang and Shukla 2006) is calculated using the following equation 

ܴ௅௜௠௜௧ = ට ఘఘାଵ  
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Fig. 9. The best estimate of the (a) internal and (b) external variance of observed Z200 
anomalies in each season. The unit is m2 and 1000, 2000, and 4000 m2 are contoured.  
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The RLimit measures the intrinsic limits of the predictability due to the internal dynamics of 

atmospheric variability. Figure 11 indicates that the MME skill (Fig. 2) reaches the 

theoretical limit of TCC over the Tropics during all seasons but is less over most of the 

extratropical region, particularly over continents. It is interesting to note that RLimit is less 

than the MME skill over the Tropical Pacific during SON and JJA implying that climate 

models used in this study tend to have large systematic biases over the region during 

those seasons.  

 

 

 

Fig. 10. The best estimate of signal-to-noise ratio for the observed Z200 anomalies in (a) 
MAM, (b) JJA, (c) SON, and (d) DJF computed as the ratio of external-to-internal variance. 
Higher ratios imply higher potential predictability.  
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Fig. 11. Potential predictability in terms of the theoretical limit of correlation skill for Z200 in 
(a) MAM, (b) JJA, (c) SON, and (d) DJF using the best estimate of the internal and external 
variance based on MSE method. Solid (dashed) line represents statistical significance of the 
correlation coefficients at 95% (99%) confidence level. The numbers in the left upper corners 
indicate averaged correlation skill over the tropics (T, 0-360oE, Eq-30oN) and extratropics (E, 
0-360oE, 30-80oN) in the NH.  

4.2 Predictable mode analysis approach 

Wang et al. (2007) and Lee et al. (2011) suggested a way to determine predictable modes and 

thus potential predictability using observations and the state-of-the-art climate models’ 

predictions. There are two basic criteria for the determination. First, for observations, 

predictable modes should explain a large part of the total variability and be statistically 

separated from other higher modes. Second, the climate prediction models should be 

capable of predicting these major modes. According to these principles, the predictable 

modes are identified using percentage variance for each EOF mode in observation and the 

skill score of the MME prediction in terms of the combined spatial and temporal skill for 

each mode.  
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Figure 12 shows a scatter diagram between the observed percentage variance (ordinate) and 

the skill score for each EOF (abscissa) mode. The first two modes are not only well separated 

from higher modes statistically but also predicted with high fidelity by the current coupled 

models’ MME in MAM, JJA, and SON similar as the result of Lee et al. (2011). However, the 

second EOF mode in DJF is much less predictable while its first mode is the most 

predictable mode with the skill score of 0.96. The low skill of the second mode is mainly 

attributable to the fact that the current MME has difficulty in capturing its spatial 

distribution over the high-latitude while it has a useful skill in capturing PC time variation 

(Fig. 7). Nonetheless, we consider the second mode as a predictable mode since the physical 

basis of the mode is understood as described in Section 3 and the MME’s TCC skill for the 

second PC is relatively high.  

 

Fig. 12. The percentage variances that are accounted for by the observed first seven EOFs 
(ordinate) and the combined forecast skill score for the eigenvector and principal component 
for each mode (abscissa) for 200-hPa GPH in NH. The leading two modes of the observed 
200-hPa GPH in JJA capture about 57% of the total interannual variability.  
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The first two modes capture about 49.4%, 57.0%, 46.8%, and 48.4% of the observed total 

variability in MAM, JJA, SON, and DJF, respectively, over the entire NH. Over the 

extratropics only, 18.8% (65.9%), 35.4% (82.7%), 18.9% (69.8%), and 23.2% (53.5%) of the 

observed (predicted) total variability can be explained by the first two modes in MAM, JJA, 

SON, and DJF, respectively (Table 3). The fractional variance can be interpreted as potential 

predictability from a conventional point of view. That means summer-time upper-level 

circulation is most predictable than the other seasons in the current approach. About 35.4 % 

of total variability over the NH extratropics in JJA is potentially predictable but only 18.8% 

is predictable in MAM. 

Given the assumption that the first two leading modes are more predictable and the higher 

modes are less predictable (Fig. 12), the total predicted as well as observed fields are 

decomposed into the predictable and unpredictable parts. The predictable part is 

reconstructed by the linear combination of the first two EOF modes and the unpredictable 

part is then calculated by subtracting the predictable part from the total field. The realizable 

potential predictability is estimated by the TCC between the observed total field and the 

observed predictable part in order to facilitate comparison with the MME prediction skill. 

Thus, it represents the achievable forecast skill if climate models can perfectly predict the 

observed predictable modes. 

Season 

 
EOF1 EOF2 

Tropics Extratropics Tropics Extratropics 

MAM 

Obs 63.5% 6.1% 13.3% 12.7% 

MME 74.5% 28.2% 16.4% 37.7% 

JJA 

Obs 76.8% 13.4% 7.2% 22.0% 

MME 72.7% 41.8% 17.8% 40.9% 

SON 

Obs 58.7% 6.9% 13.0% 12.0% 

MME 68.6% 46.7% 21.6% 23.1% 

DJF 

Obs 60.0% 8.0% 9.8% 15.2% 

MME 73.7% 22.5% 15.0% 31.0% 

Table 3. Area-averaged fractional variance for the first two EOF modes over the tropics 

and extratropics in NH obtained from observation and the one-month lead MME 

prediction. 
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Comparison between Figs. 13 and 11 indicates that potential predictability measured by the 

PMA method is higher over the NH tropics than that by the MSE method. Over the NH 

extratropics, the two methods have a comparable result in MAM and DJF but the PMA has 

higher (lower) predictability in JJA (SON) than the MSE. It is suggested that the two 

methods are complimentary to better estimate the true value of the observed predictability 

because they each have their own shortcoming. By definition, the two methods tend to 

underestimate the true value.  

 

Fig. 13. Same as Fig. 12 except for potential predictability in terms of the TCC skill based on 

PMA method.  

5. Summary and discussion 

Using the eight fully coupled models in the CliPAS and ENSEMBELS project, prediction 

skill and predictability of seasonal mean upper-level atmospheric circulation are 

investigated over 25 years, 1981-2005. The eight coupled models’ MME predicts the seasonal 

Z200 anomalies over the NH tropics with high fidelity, but has significantly lower skills in 

predicting those over the NH extratropics. Nonetheless, over specific geographic locations 
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in the extratropics depending on season, the MME has considerable forecast skill, 

suggesting that predictable patterns may exist over the region of interest in each season. The 

MME has better skill for the Z200 anomalies over the PNA (Asian) region during MAM and 

DJF  (JJA and SON)  than the Asian (PNA) region. The area-averaged TCC skill over the NH 

tropics is the lowest in SON, while over the NH extratropics, it is highest in JJA.  

The first two EOF modes of the Z200 anomalies in all seasons are identified as predictable 

leading modes for a number of reasons. First, these observed modes are statistically well 

separated from the higher modes and account for the large fraction of total variability; 

second, these modes have clear physical interpretations and their sources of variability are 

understood in terms of ENSO teleconnection dynamics and third, the current MME is 

capable of predicting the spatial structure and temporal variation of these modes with high 

fidelity except the second mode of the DJF Z200. Note that the low skill of the DJF second 

mode is mainly attributable to the fact that the current MME has difficulty in capturing its 

spatial distribution over high latitudes.  

The first mode is associated with a typical or conventional eastern Pacific El Nino with 

complimentary same-sign SST anomalies occurring in Indian Ocean and Atlantic. On the 

other hand, the second mode seems to be associated with a central Pacific El Nino with 

pronounced opposite-sign SST anomalies in the western Pacific and Atlantic but little SST 

anomalies in the Indian Ocean. This suggest that the tropical precipitation anomalies 

associated with the locations of the tropical SST anomalies are critical important for 

determining the extratropical response. 

Given the assumption that the first two leading modes can be perfectly predicted and the 

higher modes are noise patterns, we define the realizable potential predictability by the total 

fractional variances of the predictable modes. The first two modes capture about 49.4%, 

57.0%, 46.8%, and 48.4% of the observed total variability in MAM, JJA, SON, and DJF, 

respectively, over the entire NH, which may represent an upper limit for the forecast skill 

potentially obtainable using the MME prediction; thus offering an estimate of attainable 

potential predictability. The realizable potential predictability is calculated by the TCC 

between the observed total field and the observed predictable component. Potential 

predictability of Z200 in each season reveals that the interannual variability over particular 

geographic locations in the NH extratropics is to a large degree predictable with the first 

two modes, although the extratropical upper-tropospheric circulation is generally much less 

predictable than over the tropics. 

We compare the potential predictability measured by the PMA method with that estimated 

by the MSE method suggested by Kumar et al. (2007). Kumar et al. (2007) demonstrated that 

MSE can be considered as an estimate of the internal variability of the observed seasonal 

variability because MSE equals the observed internal variability in the case of large 

ensembles using a dynamical model with unbiased atmospheric response. Using multi 

models, they found that the spatial map of the minimum value of MSE, irrespective of 

which model it came from at each geographical location, can be regarded as the best 

estimate for the observed internal variability. The external variance is calculated by 

subtracting the estimated internal variance from the observed total variance. We 

demonstrate that the two estimates compliment each other to better measure the true value 

www.intechopen.com



 
Climate Models 

 

40

of the observed predictability, taking into account their own shortcomings. It is noted that 

potential predictability measured by the PMA method is higher over the NH tropics than by 

the MSE method. Over the NH extratropics, the two methods have a comparable result in 

MAM and DJF, but the PMA has higher (lower) predictability in JJA (SON) than the MSE. 

The estimations shown here are based on the state-of-the art climate model predictions. 

With further improvement of climate prediction models, estimates of potential predictability 

will become closer to their true values.  
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