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Ground-Source Heat Pumps and Energy Saving 

Mohamad Kharseh 
Willy´s CleanTech AB, PARK 124 Karlstad,  

Sweden 

1. Introduction 

The global warming itself and its consequences cause considerable problems. It results in 
extreme climate events such as droughts, floods, or hurricanes, which are expected to 
become more frequent. This puts extra strain on people and has great impact on public 
health and life quality especially in poor countries. 

Internationally, there is a political understanding that global warming (or climate change) is 
the main challenge of the world for decades to come. Thus, all states must work together in 
order to overcome climatic change consequences.  

Although, studies suggest that there is indeed relationship between solar variability 
and global warming (Lean and Rind, 2001), two causes of the warming have been 
suggested: 

1. related to the accumulation of greenhouse gases in the Earth’s atmosphere; 
2. related to heat emissions (Nordell, 2003, Nordell and Gervet, 2009). 

This implies that current warming is anthropogenic and caused by human activities, i.e. 
global use of non-renewable energy. So far, the total global energy consumption has already 
exceeded 15.1010 MWh/year and it is projected to have an annual growth rate about 1.4 % 
until 2020 (EIA, 2010). 

Much of the energy used worldwide is mainly supplied by fossil fuels (~85 % of the global 
energy demand while renewable energy sources supply only about 6 %) (Moomaw et al., 
2011, Jabder et al., 2011, Jaber et al., 2011). Owing to global dependence on oil fuels has 
resulted in a daily oil consumption of 87.7 million barrels (Mbbl), Fig. 1 (IEA, 2010, EIA, 
2007). Consequently, about 3.1010 ton of carbon dioxide emissions are annually emitted into 
the atmosphere. In other word, for each consumed kWh about 205 kg of carbon dioxide is 
being emitted into the atmosphere.  

Environmental reasons urge us to find more efficient ways in converting and utilizing the 
energy resources. From the environment point of view, there is now almost universal 
scientific acceptance that profligate energy use is causing rapid and dangerous changes in 
the global climate. There is mounting evidence that the mean global temperature has 
increased over the period 1880 to 1985 by 0.5 to 0.7 oC (Hansen and Lebedeff, 1987). While 
surface air temperature (SAT) compilations shows that SAT has increased 1.2 oC last 
century. If a current climatic change trend continues, climate models predict that the 
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average global temperature are likely to have risen by 4 to 6 oC by the end of 21st century 
(Gaterell, 2005). As climate change progresses, all the other environmental problems are 
becoming worse and harder to solve. Therefore, a sustainable future requires worldwide 
efforts to prepare for new energy sources and a more efficient use of energy. 

 

Fig. 1. World oil consumption. 

Thanks to the awareness of the impact of global warming and its relationship with human 
activities, there has been a growing interest in reducing fossil energy consumptions. 
Specifically, more efficient use of energy and increased use of renewable energy seem to be 
our main weapon against the ongoing global warming. 

Heating and cooling in the industrial, commercial, and domestic sectors accounts for about 
40-50 % of the world’s total delivered energy consumption (IEA, 2007, Seyboth et al., 2008). 
Although, buildings regulations aim to reduce the thermal loads of buildings, as the 
economic growth improves standards of living, the energy demand for heating and cooling 
is projected to increase. For example, in non-OECD nations, as developing nations mature, 
the amount of energy used in buildings sector is rapidly increasing. Consequently, the 
implementation of more efficient heating/cooling systems is of clear potential to save 
energy and environment. However, the use of renewable energy systems for heating and 
cooling applications has received relatively little attention compared with other applications 
such as renewable electricity or biofuels for transportation. Yet, renewable energy sources 
supply only around 2-3% of annual global heating and cooling (EIA, 2010). It is worth 
mentioning that a century or more ago renewable energy accounted for almost 100%. In 
other word, all current researches aim to approach what was the case in the past. 

Nowadays, and due to its high thermal performance, the ground source heat pump (GSHP) 
has increasingly replaced conventional heating and cooling systems around the world. Such 
system extracts energy from a relatively cold source to be injected into the conditioned space 
in winter or alternatively, extracts energy from conditioned spaces to be injected into a 
relatively warm sink in summer. 
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Current work emphasizes the importance of using ground source heat pumps in reaching 
towards the renewable energy goals of climate change mitigation, and reduced 
environmental impacts.  

2. Principle of GSHP systems 

The ground source heat pump (GSHP) system are also known as ground coupled heat 
pump (GCHP), borehole systems or borehole thermal energy storage (BTES), and shallow 
geothermal system. Due to its high thermal performance, the ground source heat pump 
(GSHP) have increasingly replaced conventional heating and cooling systems around the 
world (IEA, 2007, Hepbasli, 2005, De Swardt and Meyer, 2001). Essentially GSHP systems 
refer to a combination of a heat pump and a system for exchanging heat from the ground. 
The GSHPs move heat from the ground to heat homes in the winter or alternatively, move 
heat from the homes to the ground to cool them in the summer. This heat transfer process is 
achieved by circulating a heat carrier (water or a water–antifreeze mixture) between a 
ground heat exchanger (GHE) and heat pump. The GHE is a pipe (usually of plastic) buried 
vertically or horizontally under the ground surface, Fig. 2 (Sanner et al., 2003). At the 
beginning of 2010 the totally installed GSHP capacity in the world was 50,583 MW 
producing 121,696 GWh/year with capacity factor and annual grow rate of 0.27 and 12.3%, 
respectively (Lund et al., 2010).  

Heating mode: In this case, the GHE and the heat pump evaporator are connected together 
and the heat pump moves the heat from the ground into the conditioned space. The liquid 
of relatively low temperature is pumped through the GHE, collecting heat from the 
surrounding ground, and into the heat pump. Since the temperature of extracted liquid, 
which is around mean annual air temperature, is not suitable to be used directly for heating 
purpose, heat pump elevates the temperature to a suitable level (30-45 oC) before it is 
submitted to a distribution system. 

Cooling mode: In this case, the GHE and the heat pump condenser are connected together 
and heat pump moves the heat from the conditioned space into the ground. The liquid of 
relatively high temperature is pumped through the GHE, dispersing heat into the 
surrounding ground, and into the heat pump. 

As known, heat transfers from a warmer object to a colder one. Heat, as stated by the second 
law of thermodynamics, cannot spontaneously flow from a colder location to a hotter area 
unless work is done. The heat pump is simply a device for absorbing heat from one place 
and transporting it to another of relatively lower temperature. So, such device can be used 
to maintain a space temperature at desired level by removing unwanted heat (e.g. a fridge 
or air conditioning unit) or to transport heat to where it is wanted (space or water heating). 
In space conditioning application, heat pump system is composed of an indoor unite and an 
outdoor unite and the task of the heat pump is to transfer heat from one unite to the other. 
In order to keep inside temperature at comfort level in the winter, for example, the heat 
pump absorbs heat from outdoor and expels it into building. In the summer the reversed 
process occurs, i.e. the heat pump moves heat from indoor and expels it to outside.  

The temperature difference between the indoor unite and outdoor unite is referred to as 
temperature lift. This temperature plays a major role in determining the coefficient of 
performance of heat pump (COP= delivered energy/driving energy). A smaller temperature 
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Fig. 2. Typical application of ground source heat pump system (Sanner et al., 2003). 

lift results in a better COP. More specifically, extracting heat from a warmer medium during 
the heating season and injecting heat into a colder medium during cooling season leads to a 
better COP and, consequently, less energy use.  

Fig.3 shows a schematic illustration of the components of assumed system as well as the 
thermodynamic cycle on diagrams temperature-entropy and pressure-enthalpy. Many 
techniques have been recently proposed in order to improve the cycle performance, more 
details are given by Wang, 2000, Chap.9 (Wang, 2000). In the current work, a heat exchanger 
has been added between the suction line and liquid line.  

Like a heat engine but operating in reverse, the thermodynamics of the cycle can be 
analyzed on diagrams. In general COP is defined as the ratio between the delivered capacity 
and compressor capacity (Wang, 2000): 

 c
c

Q
COP

Wcp
  (1) 

 h
h

Q
COP

Wcp
  (2) 

Where Qh, Qc, and Wcp represent the heating, cooling, and compressor capacity, respectively.  
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As shown in the Fig. 3, the heat exchanging operations in the evaporator and the condenser 
occurs at constant pressure processes (isobar). The compression process in the compressor 
befall at isentropic process theoretically, while the expansion operation in the expansion 
valve occurs at adiabatic process. With these in mind, as per the thermodynamics rules, the 
terms of Eq.1 and Eq.2 might be calculated as follows: 

  3 4hQ m h h    (3) 

  7 6cQ m h h    (4) 

  2 1CPW m h h    (5) 

Where, h and m represent enthalpy and refrigerant mass flow rate, respectively (see Fig. 3). 

In order to accomplish the calculations, the following assumptions were made: 

 Refrigerant R22 
 Pressure drop at inlet and outlet of the compressor was assumed P8-P1=10  

 and P2-P3=23 KPa respectively, see Fig.3. 
 The pressure drop through the pipe is negligible. 
 The isentropic efficiency of the compressor is 80%. 
 There is no sub-cooling in the condenser or useless superheat in suction line. 
 Thermal efficiency of the heat exchanger, which expresses how efficient the heat 

exchanger utilizes the temperature difference, is 90% 

 Heat loss factor of the compressor, i.e. ratio between heat loss of the compressor to the 
surroundings and the energy consumption of the compressor, is 15%. 

 Regarding to the internal unite of the heat pump, in wintertime the condensation 
temperature was assumed 38 oC. In summertime, the evaporation temperature was 
assumed 8 oC. 

 Heating/Cooling capacity assumed to be constant, thus a change in temperature will 
affect the flow rate of refrigerant through the cycle. 

The calculation results are illustrated in Fig.4. Apparently, the COP of heating machine 
increases as the evaporation temperature rises. Likewise, the performance of cooling 
machine increases as the condensation temperature decreases.  

The ground temperature below a certain depth is constant over the year. This depth 
depends on the thermal properties of the ground, but it is in range of 10-15 m, see section 3 
below. Thus, the ground is warmer than the air during wintertime and colder than the air 
during the summertime. Therefore, use the ground instead of the air as heat source or as a 
heat sink for the heat pump results in smaller lift temperature and, consequently, better 
thermal performance. In addition to improve the COP, the relatively stable ground 
temperature means that GSHP systems, unlike ASHP, operate close to optimal design 
temperature thereby operating at a relatively constant capacity. It is good to mention here 
that in outdoor unite fan, in ASHP case, consumes more energy than that of the water pump 
in the GSHP case (De Swardt and Meyer, 2001). Therefore, the comparison would be even 
more favorable for the GSHP, if the fan energy consumption is considered in the COP 
calculation.  
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Fig. 3. Illustration of heat pump and the thermodynamic cycle on the LnP-h and T-S 
diagram. 

 

Fig. 4. Actual COP as a function of condensation /evaporation temperature. 
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3. Ground temperature  

The ambient air temperature over the year or the day can be treated as a sinusoidal function 
around its average value Ta . This fluctuation might be expressed by: 

 ( ) cos 2 )a a
o

t
T t T A ( π

t
     (6) 

Where T(t) is air temperature at given time t; Ta is average air temperature for the period to, 
Aa is the air temperature amplitude (half of the difference between the maximum and 
minimum temperatures for the period), to is the time for one complete cycle (day or year). 

Apparently, air temperature fluctuation generates variations in the ground temperature. In 
order to find out a mathematical expression of ground temperature, the equation to be 
solved is the one-dimensional heat conduction equation. The mathematical formulation of 
this problem is given as: 

 
2

2

( , ) 1 ( , )T z t T z t

tz 
 

 


 (7) 

Where α is the thermal diffusivity (m2/s), z depth below the surface (m), t is the time. Note 
that for oscillating temperature at the boundary, we do not need an initial condition The 
solution of Eq.12 can be found by Laplace transformation method (Carslaw and Jaeger, 
1959): 

 cos 2 )o

z

d
a a

o o

t z
T(t,z) T A e ( π

t d


       (8) 

Where do is the penetration depth (m), which is defined as the depth at which the 
temperature amplitude inside the material falls to 1/e (about 37%) of the air temperature at 
the surface: 

 o
o

t
d





  (9) 

Fig.5 shows the underground temperature as function of the depth at different seasons of 
the year. As shown, below a certain depth, which depends on the thermal properties of the 
ground, the seasonal temperature fluctuations at ground surface disappears and ground 
temperatures is essentially constant throughout the year. In other word, for depth below a 
few meters ground is warmer than air during the winter and colder than the air during the 
summer.  

Eq. 8 shows that ground temperature amplitude decreases exponentially with distance from 
the surface at a rate dictated by the periodic time, mathematically we can write: 

 o

z

d
g aA A e



   (10) 

Where Ag is ground temperature amplitude (oC).  
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In addition, Eq. 8 shows that there is a time lag between the ground and air oscillating 
temperature. In other words, the maximum or minimum ground temperature occurs later 
than the corresponding values at the surface. From the cosine term in Eq. 8 one can conclude 

that the time lag increasing linearly with depth. The shifting time,  , between surface and 
the ground at a given depth z is: 

 λπ
tCz

tt



 0
12

2
  (11) 

Indeed, change in temperature of ambient air results in change in the undisturbed ground 
temperature. Measurements of borehole temperature depth profile (BTDP) evidently show 
that there are temperature deviations from the linear steady-state ground temperature in the 
upper sections of boreholes (Goto, 2010, Harris and Chapman, 1997, Lachenbruch and 
Marshall, 1986, Guillou-Frottier et al., 1998). Mathematical models have been used to simulate 
the change in ground temperature due to GW. Kharseh derived a new equation that gives the 
ground temperature increase in areas where the surface warming is known (Kharseh, 2011). 
The suggested solution is more user-friendly than other solutions. The derived equation was 
used to determine the average change of ground temperature over a certain depth and 
therefore the heat retained by a column of earth during the warming period. This average 
change of ground temperature is of great importance in the borehole system. 

 

Fig. 5. Temperature profile through the ground. 
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4. Ground source heat pump systems and energy saving 

4.1 Case study – the Kharseh chicken farm 

The Kharseh chicken farm in Hama, Syria, was selected as a study case to show the 
contribution of ground source heat pumps in saving energy consumption of heating and 
cooling system. Even though the annual mean temperature in Syria is 15-18 oC, heating of 
such farm consumes considerable amounts of energy. The reason is that the air temperature 
is close to freezing during three winter months and that chickens require a relatively high 
temperature, 21-35 oC, depending on chickens’ age as seen in Table. 1.  

 

Table 1. Appropriate indoor temperature in chicken farms. 

The chicken hangar is placed parallel to the main wind direction has a floor area of 500 m2 
(50 m x 10 m) in E–W direction. The total window area is 24 m2.  

4.2 Heating/cooling demand 

The mean heating load composed of heat losses through the external walls and ventilation, 
while cooling load composed of heat gained through external walls, ventilation, solar 
radiation, and heat released by chickens. In current work the degree-hour method was used 
to estimate the thermal demand of the hangar (Durmayaz et al., 2000) using following 
assumptions: 

 External wall’s area, of thermal resistance 0.45 K.m2/W, is 336 m2 
 Floor and ceiling area, of thermal resistance 5 and 0.45 K.m2/W, respectively, is 500 m2 

 Windows’s area, of thermal resistance 0.2 K.m2/W, is 24 m2 
  Ventilation rate 20 m3/m2,h (ventilated area of chicken farm varies with chicken age) 
 Heat release from chickens: 50 W/m2 (varies with age) 
 The capacity of the hangar is 5 cycles/year of 55 days the period of each cycle life. This 

mean that the hangar will be occupied 75% out of the entire year.  

 During their first day, the chickens occupy about 85 m2 of the building. This area is 
increased 14 m2 per day until they occupy the entire area of the hangar after about one 
month. This mean the average occupied are during one cycle is 77% out of whole 
hangar’s area. 
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 Heating season is 6 months, while cooling season is 4 months. 
 10 h of cooling and 24 hours of heating are required per a day during summer and 

winter, respectively. 

Using these assumptions, the total heat loss coefficient of the hangar, L (W/K), can be 
calculated as follow: 

 
( )

3600

p airC I V
L U A

  
    (12) 

Finally, annual heating demand, Qh (MWh), is  

 
6

50 500 24 30 6

10
h

L DHh
Q

     
  (13) 

While the annual cooling demand, Qc (MWh), is  

 
6

50 500 10 30 4

10
c

L DHc
Q

     
  (14) 

Where DHh and DHc is the total number of degree-hours of heating and cooling, 
respectively, which can be calculated as follow: 

 
1
( )

N

i o j o b
j

DHh T T when is T T


    (15) 

While for cooling (DHc)  

 1
( )

K

o i j o b
j

DHc T T when is T T


  
 (16) 

Where Tb is the base temperature and Ti represents the indoor design temperature, To is the 
hourly ambient air temperature measured at a meteorology station, N is the number of 
hours providing the condition of To≤Tb in a heating season while K is the number of hours 
providing the condition of To≥Tb in a cooling season. In current work, and due to 
considering the big internal load, base temperature was assumed to be equal to Ti. Since the 
indoor temperature varies with the time during chickens cycle, the indoor temperature was 
assumed to be constant during one cycle and equals the average temperature i.e. Ti=28 oC. 
Fig.6 shows that the estimated total annual heating demand is 230 MWh while the 
corresponding cooling demand is 33 MWh. 

In order to determine the maximum required heating and cooling capacity, the required 
heating/cooling power as the chickens grow during the hottest and coldest period of the 
year were calculate. As shown in Fig. 7, during heating season, due to lowering the 
appropriate indoor temperature with age and due to increase the occupied area, the heating 
power increases with time until it peaks in the middle of the chickens’ life cycle. This peak 
demand does not occur during the cooling season. The calculations showed that the 
maximum required heating and cooling capacity are 113 kW and 119 kW, respectively. 

www.intechopen.com



 
Ground-Source Heat Pumps and Energy Saving 

 

469 

 

Fig. 6. Monthly heating/cooling demand and solar yield. 

It should be noted that in Kharseh, 2009 the German DIN was used for the same aim. 
Therefore there is a small different in estimated thermal demand of the hangar. 

 

Fig. 7. Heating/cooling power as function of chicken age for one complete cycle during the 
hottest and coldest period. 

4.3 System design and simulated operation 

The EED (Earth Energy Design) model(EED, 2008) was used in pre-designing required 

borehole system to meet to estimated heating/cooling load at given conditions.  

4.3.1 Borehole system 

Specific data of the borehole system are given below: 

 Number of boreholes: 10  
 Borehole Diameter: 0.11 m  
 Borehole Depth: 120 m 
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 Volumetric heat capacity: 2.16 MJ/m3.K 
 Ground thermal conductivity: 3.5 W/m.K  
 Drilling Configuration: open rectangle 175 (3 x 4) 
 Borehole Spacing: 6 m.  
 Borehole installation: Polyethylene U-pipe 
 Fluid flow rate: 0.5 10-3 m3/s, borehole. 

To keep the borehole temperature at steady state between the years extracted and injected 
heat from/to the ground were balanced by charging solar heat during the summer. 

4.4 Solar collector 

Since the annual heating demand of the hangar is much greater than annual cooling 

demand, which mean the energy extracted from the ground will be more than that injected 

into the ground, recharging the borehole filed by external energy resource is need. The 

amount of available solar energy in Syria means great potential for combined solar and 

GSHP systems. The estimated required solar collector area without considering heat yield 

from ground was: 

 

1 1
1 1h c

h

Q ( ) Q ( )
COP COPc

A
η σ

    



 (17) 

Where 

Qh  Heating demand (MWh)  

COPh  Coefficient of performance for heating (in this case =5)  

Qc  Cooling demand (MWh)  

COPc  Coefficient of performance for free cooling (in this case =50) 

  Yearly sun yield (in this case =1.973 MWh/m2)  

η  Solar collector efficiency (in this case η=0.86). 

In this case, the required solar collector area was 85 m2. The solar heat is directly used when 
needed while the rest of the heat is stored to be used later (Fig.8). 

4.5 Operation  

During the wintertime Fig.8, water is pumped from the borehole through the solar collector 

to increase its temperature. The temperature increase, which is only 0.8 oC during the 

winter, is considerably greater during the summer. The heat pump cools the water before it 

is again pumped through the borehole, where it will be warmed up. The extracted heat is 

emitted into the hangar. Fig.9 shows that the lowest extracted water temperature from 

borehole is 11.5 oC. During summertime Fig.8, the ground temperature is cold enough for 

free cooling, so the water is pumped directly to the heat exchanger. Due to the heat 

exchange with indoor air, the water temperature will increase. After the heat exchanger, 

water passes though the solar collector and back to the borehole. Then, its temperature will 

decrease before pumped back to the hangar. Fig.9 shows that the highest extracted water 

temperature from borehole is 26.5 oC 
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Fig. 8. Schematic of the solar coupled to ground source heat pump system. 

 
 
 

 
 
 

Fig. 9. Relevant temperatures for performed calculations. 
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5. Results and discussion  

Present study was performed to determine the potential of GSHP, with solar collectors, for 

heating and cooling purposes in the Middle East. The Kharseh chicken farm in Syria of area 

500 m2 was chosen as a case study. The heating and cooling demands of the hangar were 

then used to estimate annual heating and cooling demands of the ideal chicken farm in Syria 

of area 200 m2. The calculations showed the following results: 

 A typical average size chicken house in Syria requires 92 MWh of heating and 13 MWh 
of cooling. Required heating and cooling powers are 45.2 kW and 47.7 kW, respectively, 
as shown in table 2. 

 
 

Typical farm size 
Floor area 200 m2 

Totally for 13000 farms 
Floor area 2.6 Mm2 

Meat 
production 
ton/year 

Heating 
Energy 

MWh/year 

Cooling 
Energy 

MWh/year

Total energy 
for heating 

GWh/y 

Total energy 
for cooling 

GWh/y 

Total Energy 
GWh/year 

13 92 13 1196 170 1366 

 

Table 2. Heating and cooling demand for chicken farms in Syria. 

 480 m of borehole with diameter 0.11 m and 34 m2 of a solar collector were required 

to supply the heating and cooling of the typical chicken farms in Syria. In this case, 

the maximum fluid temperature delivered from the boreholes is 26.5 oC in the 

summer while the minimum mean fluid temperature was 11.5 oC during the  

winter.  

 Table 3 shows the operation costs of coal furnace heating system combined with 

ASHP for cooling issue, diesel furnace heating system combined with ASHP for 

cooling issue, ASHP for both heating and cooling issue, and suggested GSHP 

heating/cooling system. Using Fig. 4, we found the COPh and COPc for the ASHP are 

4 and 4.3, respectively, while the corresponding values for GSHP are 6.2 and 10. The 

conversion efficiency of conventional heater was assumed 85%. The calculations show 

that by using the GSHP, the annual operation costs can be reduced 38%, 69.2%, and 

79.7 % compared to ASHP, coal heater combined with ASHP, and diesel heater 

combined with ASHP, respectively. 

 Table 4 shows comparison between the required prime energy, i.e. tons of coal, of three 

different systems assuming the average annual efficiency of the power plant 32%. As 

shown, using the GSHP, the amount of fuel required is reduced 38% compared to 

ASHP or 57.2% compared to coal heater combined with ASHP. In other words, by use 

GSHP in all chicken farms in Syria, the annual coal consumption can be reduced 

107.6.103 ton compared to traditional existing system (coal heater combined with 

ASHP). Accordingly, the carbon dioxide emission can be reduced by the same 

percentages. 
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Energy 
demand 

GWh/year 

Energy Cost (MSP) 

GSHP 
3.5 SP/kWh 

ASHP 
3.5 SP/kWh 

Coal Heater 
8,141 kWh/kg, 

13 SP/kg 

Diesel Heater 
10,1 kWh/l 

25 SP/L 

Heating 1196 675 (COP=6.2) 1047 (COP=4) 2247 (η=0.85) 3479(η=0.85) 

Cooling 170 60 (COP=10) 138 (COP=4.3) 138 (COP=4.3) 138 (COP=4.3) 

Total 1366 735 1185 2385 3617 

 
Energy Cost 

SP/kWh 
0.54 0.87 1.75 2.65 

 

Table 3. Comparison between different heating/cooling systems for a typical chicken farm.  

 

 

System 
Required prime 
Energy GWh/y 

Required Coal 
(103 ton) 

GSHP 210 80.6 

ASHP 338 130 

Coal Heater 
with ASHP 

1446 188.2 

 

Table 4. comparison between the required prime energy. 

 The estimated installation cost of a borehole system for a typical chicken farm is $15000. 
With current energy price in Syria the payback-time of GSHP is about 5.3, or 3 years 
compared to coal heater combined with ASHP, or diesel heater combined with ASHP, 
respectively.  

6. Conclusions 

The global energy oil production is unstable and will peak within a few years. Therefore, the 

energy prices are expected to rise and new energy systems are needed. In addition to this 

energy crisis the fossil fuels seems to be the main reason for climate change. There is a global 

political understanding that we need to replace fossil fuels by renewable energy systems in 

order to develop a stable and sustainable energy supply.  

About half of the global energy consumption is used for space heating and space cooling 
systems. Ground source heat pump systems are considered as an energy system that can 
make huge contributions to reduce energy consumption and thereby save the 
environment.  
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7. Nomenclature 

Qc cooling demand, (MWh) 

Qh heating demand, (MWh) 

Wcp  compressor capacity, (kW) 

COPc coefficient of performance of cooling mode, (dimensionless) 

COPh coefficient of performance of heating mode, (dimensionless) 

h enthalpy, (kJ/kg.K) 

P pressure, (Pa) 

m refrigerant mass flow rate, (kg/s) 

T(t) air temperature at given time t, (K) 

Ta average air temperature, (K) 

Aa the air temperature amplitude, (K) 

Ag ground temperature amplitude, (K). 

to the time for one complete cycle (day or year) of air temperature variation 

z depth below the surface, (m) 

α ground thermal diffusivity, (m2/s) 

do  penetration depth, (m) 

 shifting time between the air and the ground temperatures variation,(s) 

DH degree-hour, (h.K) 

CDH cooling degree-hour, (h.K) 

HDH heating degree-hour, (h.K) 

L total heat loss coefficient of building, (W/K) 

Tb base temperature, (K) 

To outdoor temperature, (K)  

Min T minimum fluid temperature extracted from the borehole, (K) 

Max T maximum fluid temperature extracted from the borehole, (K) 

  Yearly sun yield, ( kWh/m2)  

η  Solar collector efficiency 
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