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1. Introduction  

High temperature fuel cell systems are an attractive emerging technology for stationary 
power generation, especially for the distributed generation [1]. Today, there are mainly two 
types of high temperature fuel cell systems, including the molten carbonate fuel cell (MCFC) 
and solid oxide fuel cell (SOFC), which are generally operated at high temperatures ranging 
from 823K to 1273K. Several advantages of this setup are listed in the references [2]. The 
main advantages of both fuel cells are related to what could be done with the waste heat and 
how they can be used to reform fuels, provide heat, and drive engines. Therefore, high 
temperature fuel cell systems can never be simply considered as fuel cells; instead, they 
must always be thought of as an integral part of a complete fuel processing and heat 
generating system [2].  

Steam reforming is a well-established industrial fuel process for producing hydrogen or 

synthetic gas from natural gas, other hydrocarbon fuels, and alcohols [3]. In the high 

temperature fuel cell systems, the pre-reformer is usually needed for fuel processing. Due to 

the high endothermic reaction, a great amount of heat must be provided from the outside, 

such as waste heat from the fuel cell, catalyst combustion, etc. 

High temperature heat exchangers are widely used in the high temperature fuel cell/gas 

turbine system, closed cycle gas turbine system, high temperature gas cooled reactors, and 

other thermal power systems. It is an effective method of improving the whole system 

efficiency [4]. Compact heat exchangers are generally characterized by extended surfaces 

with large surface area/volume ratios that are often configured in either plate-fin or tube-fin 

arrangements [5]. In a plate-fin exchanger, many augmented surface types are used: plain-

fins, wavy fins, offset strip fins, perforated fins, pin fins, and louvered fins. Offset strip fins, 

which have a high degree of surface compactness and feasible manufacturing, are very 

widely applied. 

In general, the high temperature heat exchanger is used to preheat the air or fuel, while the 
pre-reformer is used to produce hydrogen rich fuel from methane or other hydrocarbons. 
Fig. 1 shows one of the fuel cell systems, which consists of a direct internal reforming solid 
oxide fuel cell (DIR-SOFC), a high temperature heat exchanger (HTHE), a low temperature 
heat exchanger (LTHE), a pre-reformer, a gas turbine, a generator, etc. In order to simplify 
the system, reduce the cost, and improve the fuel cell system’s efficiency, it is suggested that 
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a compact heat exchange reformer replace the heat exchanger and the pre-reformer. The 
new fuel cell system is illustrated in Fig. 2. The offset strip fin heat exchanger and pre-
reformer are combined into the heat exchange reformer. In this device with the counter-flow 
type, the high temperature waste gas from the fuel cell flows in the hot passage, and the fuel 
flows in the cold passage. In particular, the Ni catalyst is coated on the fuel passage surface 
[6, 7]. When the fuel flows along the passage, the endothermic steam reforming reaction will 
take place using the heat transferring from the hot side. 

 

Fig. 1. Schematic view of the traditional SOFC/GT hybrid system. 

 

Fig. 2. Schematic view of the SOFC/GT hybrid system with novel concept heat exchange 
reformer. 

Several kinds of compact heat exchange reformers have been investigated and designed in 
the past. In 2001, Kawasaki Heavy Industries in Japan developed a plate-fin heat-exchange 
reformer with highly dispersed catalyst [8]. A planar micro-channel concept was proposed 
by Pacific Northwest National Laboratories (PNNL), but this kind of micro-channel device is 
oriented toward the low to medium power range (20-500W) for man-portable applications 
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[9, 10]. A novel micro fuel processor for PEMFCs with heat generation by catalytic 
combustion was developed and characterized in South Korea [11-13]. 

All these previous works were mainly developed based on experiments, but the steady state 
and dynamic performance simulations have not been investigated in detail. The heat 
supplied for the methane steam reforming reaction has different sources, such as catalytic 
combustion [11, 12] and auto-thermal methane reforming reactions [10]. The purposes are 
mainly for the portable devices [9, 10] or the low temperature fuel cells [11-13]. Here, the 
waste heat from the high temperature fuel cell systems will be used as the heat resource in 
the compact heat exchange reformer for the steam reforming reaction. 

This chapter aims to: design a compact heat exchange reformer for the high temperature fuel 
cell systems; develop a real time simulation model using the volume-resistance 
characteristic modeling technique; study the steady state distribution characteristics by 
considering local fluid properties such as pressure, velocity, density, heat capacity, thermal 
conductivity, dynamic viscosity, etc; discuss some factors that will affect the performance of 
the reformer during steady state operation under the same operating condition; and finally, 
investigate dynamic behavior under different input parameters including step-change 
conditions.  

2. Description of heat exchange reformer 

2.1 Configuration 

The configuration of the heat exchange reformer is similar to the compact heat exchanger. 
The only difference is that the catalyst is coated in the cold passage to make steam reforming 
reactions take place. 

As shown in Fig. 3, the configuration of the offset strip fin heat exchanger is adopted here. 
The fin surface is broken into a number of smaller sections. Generally, each type of fin is 
characterized by its width X, height Y, thickness t, and length of the offset strip fin l. The 
detailed configuration can also be found in other references for the heat exchanger [14-18].  

 
(a) 
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(b) 

Fig. 3. Flow (a) and fin structure (b) diagram of heat exchange reformer. 

Taking the hot passage as an example, the calculations for individual geometry variables are 
listed as following: 

 Passage number:  h h hn W X t   (1) 

 Offset strip number: h hln L l  (2) 

 Cross area of flow passage: h h h hA n X Y  (3) 

 Heat transfer surface of flow passage:    h h h h h h h h h h2 lS n X Y L n n X Y t t      (4) 

 Wet perimeter: h h4U S L  (5) 

 Hydraulic diameter: h h h4 /D A U  (6) 

2.2 Passage fin efficiency 

The passage fin efficiency 0 is given by Rosehnow et al. [18] as 

  f
0 f1 1

S

S
     (7) 

where the secondary heat transfer area of a stream Sf for the hot passage equals Sh. The total 
area of the heat exchanger S is calculated by the sum of the primary heat transfer surface 
and the secondary heat transfer area of a stream. 

According to Rosehnow et al. [15, 18], the fin efficiency for the offset strip fin with a 
rectangular section can be approximated by: 
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 h h
f,h

h h

tanh( )m k

m k
   (8) 

where,  

 h h
h

h h

U
m

f




 , h h h2k Y t  .  

Finally, the fin efficiency can be simplified by: 

 h
0,h f,h

h h

1 (1 )
Y

X Y
   


 (9) 

The fin efficiency is mainly influenced by the material, configuration of the fin, and the heat 
transfer coefficient between the fin and the flow.  

2.3 Pressure loss 

The frictional pressure loss across an offset strip fin passage and at any associated entry, 
exit, and turning loss [15], can be expressed by: 

 

2 2

4
2 2

m m

h

G GL
P f K

D  
    

             
 (10) 

where, mG u . 

Here, turning losses are neglected, so the pressure loss per unit length can be expressed by:  

 
21

2

P U
f u

L A
    

   (11) 

Let the friction resistance 21

2
f u  ,  

Then, 

 
d

dx

P U

A


  (12) 

The fanning friction factor f has been developed by many authors. Basing on the data of 
Kays & London [14], Manglik & Bergles [17] recommend: 

 -8
+7.669 10

0.7422 0.1856 0.3053 0.2659

0.14.429 0.920 3.767 0.236

9.6243Re

1 Re

f   

  

  

   
 (13) 
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2.4 Heat transfer coefficient 

Generally, the heat transfer coefficient  is related to the Colburn factor [15, 17, 18] and is 
expressed as: 

 2/3Prm pJG c    (14) 

where the Colburn factor 2/3PrJ St  and the Prandtl number Pr pc  .  

The correlation developed by Manglik & Bergles [17] from the data of Kays & London [14] 
reads: 

 
-5

+5.269 10
0.10.5403 0.1541 0.1499 0.0678 1.340 0.504 0.456 1.0550.6522Re 1 ReJ               (15) 

2.5 Steam reforming 

In the cold fuel passage, the steam reforming reaction (I), water gas shift reaction (II), and 
CO2 direct reforming reactions of methane (III) are carried out over a Ni catalyst coat on the 
passage surface at sufficiently high temperatures, typically above 773K. 

Kinetic rate equations for the reactions (I-III) are adopted from Xu and Froment [19]. The 
three kinetic rate equations are listed in Table 1 as well.  

(I) 4 2 2CH +H O CO+3H                
 

2

4 2

2

3
H CO1

CH H OI 2.5 2
1H

1

e

p pk
R p p

Kp DEN

 
   
 
               

(16) 

(II) 2 2 2CO+H O CO +H                
 

2 2

2

2

H CO2
CO H OII 2

H 2

1

e

p pk
R p p

p K DEN

 
   

               

(17) 

(III) 4 2 2 2CH +2H O CO +4H                
 

2 2

4 2

2

4
H CO23

CH H OIII 3.5 2
3H

1

e

p pk
R p p

Kp DEN

 
   
 
                

(18) 

Table 1. Reaction and its rate in the heat exchange reformer (Xu and Froment, [19]). 

The enthalpy changes of chemical reactions are calculated according to Smit et.al [20]. 

      0 2 3
c c c cI I 16373.61 7.951 4.354 3 0.7213 6 0.097 5H H R T e T e T e T          (19) 

      0 2
c c cII II 7756.56 1.86 0.27 3 1.164 5H H R T e T e T         (20) 

      0 2 3
c c c cIII III 26125.07 10.657 4.624 3 0.7213 6 1.067 5H H R T e T e T e T          (21) 

3. Mathematic model of heat exchange reformer 

To simplify the complexity of the mathematical model, some assumptions [4, 21] adopted in 

the theoretic analysis are presented as follows:  

1. The heat exchange reformer is adiabatic to the surrounding; 
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2. The viscosity dissipation effects are neglected; 
3. The parameters are considered to be uniform over a cross-section, one dimensional flow 

along the passage, without inside circumfluence; 
4. For the horizontal fluid, the effect of height change can be omitted. 

In the cold fuel passage, the chemical species are CH4, H2, CO, CO2, and H2O. Species mass 
balances in the cold fuel passage are considered. 

 
      

c, c,
c ,

cI , II , III

1i i
i k k

k

C C
u v R

t x Y

 
  

          4 2 2 2CH ,H ,CO,CO ,H Oi  (22) 

The mass, momentum, and energy conservation equations for the hot passage and cold 
passage are established in Table 2 and Table 3, respectively. In the hot passage, the heat 
transfer to the solid structure is considered. Due to the very thin catalyst coat, the enthalpy 
changes of the reactions (I-III) are also considered in the cold passage, in addition to the heat 
transferred from the solid structure. 

Mass conservation equation 

 h h h( )u

t x

  
 

 
   (23)

Momentum conservation equation 

 
2

h h h h h h h

h

( ) ( )u u P U

t x x A

    
   

      

 (24)

Energy conservation equation 

 h h 0,hh h
h h w

h h h

( )
ST T

u T T
t x Cp A L

 


 
   

   

 (25)

Table 2. Hot passage dynamic mathematical model. 

 

Mass conservation equation 

 c c c( )u

t x

  


 
  (26)

Momentum conservation equation

  
 

2
c c c c c c c

c

( ) ( )u u P U

t x x A

    
  

  
(27)

Energy conservation equation

  
  

      

c c 0 ,cc c
c c w

c c c c c c , ,

1
( ) kk

k I II III

ST T
u T T H R

t x Cp A L Cp Y

 
  

 
    

     (28)

Table 3. Cold passage dynamic mathematical model. 

For the solid structures, such as the fins and the separators, the temperature is considered to 
be uniform at the same cross-section. The energy conservation equation is written as:  

 
2

h h 0,h c c 0,cw w
w h w c2

w w w w

( ) ( )
S ST T

K T T T T
t M Cp M Cpx

    
    

 
 (29) 
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The heat conductivity coefficient is w w w w/K L A M Cp , the cross area of solid structure is 

   w h h h h h c c c c c2A Wt n X Y t t n X Y t t       , and the mass is w w wM A L . 

The control equations of the heat exchange reformer are strongly coupled. In addition to the 

partial differential equations presented above, two perfect state equations P=f(，T) for the 

hot and cold passages are also needed in order to compose a close equation set. 

4. Simulation modelling and conditions 

4.1 Volume-resistance characteristic model 

In general, nonlinear partial differential equations are treated numerically. However, 
stability is one crucial factor when using a difference algorithm. In addition, the time step 
for the difference algorithm is usually very short, so the numerical process is very time 
consuming [4]. 

In order to avoid the coupled iteration between the flow rate and pressure, the volume-
resistance characteristic modeling technique [4, 22] is introduced into the heat exchange 
reformer. This modeling technique is based on the lumped-distributed parameter method, 
which can obtain a set of ordinary differential equations from partial differential equations. 

The volume-resistance characteristic model is listed in Table 4 in detail. 

Hot passage 

 h,1 h,1 h,1 h,2

h h

d

d dx

P RT G G

t M A


  (30) 

 h,2 h,1 h,2
h h h,2

d

d dx

G P P
A U

t



   (31) 

 h,2 h,2 h,1 h,2 h h,2
h,2 w,2

h h,2 h,2 h,2 h

d
( )

d dx

T G T T S
T T

t A Cp A L


 


      (32) 

Cold passage 

 
      

c, ,2 c,2 c, ,2 c,1 c, ,1
, ,2

cI , II , III

d 1

d dx

i i i
i k k

k

C u C u C
v R

t Y


       4 2 2 2CH ,H ,CO,CO ,H Oi    (33) 

 c,2 c,2 c,2 c,1

c c

d

d dx

P RT G G

t M A


  (34) 

 c,1 c,2 c,1
c c c,1

d

d dx

G P P
A U

t



   (35) 

  
      

c,1 c,1 c,1 c,2 c c,1
c,1 w,1 ,1,1

c c,1 c,1 c,1 c c,1 c,1 c , ,

d 1
( )

d dx
kk

k I II III

T G T T S
T T H R

t A Cp A L Cp Y


   


        (36) 
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Solid structure 

 
 

w,2 w,3 w,2 w,1 h,2 h c,2 c
h,2 w,2 c,2 w,22

w w w w

d 2
( ) ( )

d dx
x

T T T T S S
K T T T T

t M Cp M Cp

  
      (37) 

Table 4. Heat exchange reformer volume-resistance characteristic model. 

4.2 Simulation conditions 

In addition to the configuration and geometry parameters of the heat exchange reformer, as 
shown in Table 5, and fluid properties calculated at the local position, some boundary 
conditions were also required to carry out the simulation. These included inlet flow rate, 
fluid composition, and the inlet temperature and outlet pressure of both the hot and cold 
streams (Table 6).  

 
 
 
 
 
 

System geometry parameters 
Length 1 m 
Width 0.5 m 
Height 0.532 m 
Hot passage 
Width 4.5E-3 m 
Height 6.5E-3 m 
Offset strip fin length 0.05m 
Fin thickness 3.0E-3 m 
Cold passage 
Width 4.5E-3 m 
Height 5.0E-3 m 
Offset strip fin length 0.05m 
Fin thickness 5.0E-3 m 
Separator   
Thickness  1.0E-3 m 
Solid structure properties (SiC ceramic [27-29]) 
Density  3100 kgm-3 

Heat capacity 0.640 kJkg-1K-1 

Thermal conductivity 0.080 kJm-1s-1K-1 

Catalyst properties 
thickness 5.0E-5 m 
Density  2355 kgm-3 

Catalyst reduced activity 0.003 

 
 
 

Table 5. Geometry and properties parameters of heat exchange reformer. 
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Simulation conditions 

Cold fuel 

Inlet mass flow rate (kgs-1) 0.06 

Inlet temperature (K) 898 

Fluid molar fraction 0.25CH4,0.75H2O (STC=3:1) 

Outlet pressure (Pa) 1.0E+5 

Hot waste gas 

Inlet mass flow rate (kgs-1) 0.4 

Inlet temperature (K) 1200 

Fluid molar fraction 0.1CO2,0.2H2O,0.1O2,0.6N2

Outlet pressure (Pa) 1.0E+5 

Table 6. Key simulation parameters under the basic condition. 

At the same time, some simplifying conditions are used to solve the equations; for example, 

the heat flux of both the solid structure at inlet and outlet are considered to be zero. As a 

result, contrasted to the centre difference algorithm in the middle of the solid structure, the 

difference algorithms for both the front and end modules are treated independently. 

5. Results and discussions 

In this section, due to the high cost of the complicated experiments, only simulation studies 

are employed on a counter-flow type heat exchange reformer. Section 5.1 provides the 

distributed characteristics of some important parameters, such as fuel species, temperature, 

and fluid properties (pressure, density, velocity, heat capacity, thermal conductivity and 

dynamic viscosity), under steady state conditions. Section 5.2 compares and analyzes the 

results under different input parameter conditions, such as steam to carbon ratio, catalyst 

reduced activity, and operating outlet pressure. In Section 5.3, the dynamic behaviours of 

the compact heat exchanger reformer are investigated. 

5.1 Steady state result analysis 

For the rated condition, some related parameters are presented in Table 6, such as inlet 

temperature, mass flow rate, molar fraction, and outlet pressure. 

Fig. 4 presents the fuel molar fraction along the heat exchange reformer length. The flow 

direction in the fuel channel is from 1.0 to 0 in the figures, so all the parameters in the fuel 

channel should be understood to proceed from 1.0 to 0. At the cold fuel passage inlet, the 

fluid only contains methane and water. The steam reforming reaction takes place on the 

surface of the catalyst along the flow direction. Therefore, the methane is gradually 

consumed. The methane and water concentration decreases along the flow direction. The 

concentration of produced hydrogen gradually increases. The methane steam reforming 

reaction has two simultaneous effects. The carbon monoxide molar fraction increases and 

the carbon dioxide molar fraction increases along the flow direction. At the exit, the flow 

composition is 4.24% of CH4, 45.35% of H2, 10.00% of CO, 3.84% of CO2, and 36.57% of 

H2O. 
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Fig. 4. Fuel molar fraction along the heat exchange reformer length. 

The temperature profiles of the cold stream, hot stream, and solid structure along the heat 

exchange reformer length are presented in Fig. 5. Because of the high endothermic methane 

reforming reaction, the cold fuel temperature decreases a little at the entrance. Then, the 

cold fuel temperature increases along its flow direction due to the heat transfer from hot gas. 

The temperatures of the hot gas stream and the solid structure decrease along the heat 

exchange reformer length. It should be noted that the temperature curve is just the line 

between measured points, so it can’t indicate the trend at both ends. 

 

Fig. 5. Temperature distribution along the heat exchange reformer length. 
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The pressure profiles in the cold fuel and hot gas passages are illustrated in Fig. 6. Owing to 
the friction of the passage, the pressure loss is about 0.08% in the cold fuel passage, and 
about 4.23% in the hot gas passage. The primary reason that the pressure loss is greater in 
the hot gas passage is that the mass flow rate in the hot gas passage is larger than that in the 
cold passage. Of course, the geometrical configuration is a key factor as well. 

 
 
 
 
 
 

 
 
 
 

Fig. 6. Pressure distribution along the heat exchange reformer length. 

The dimensionless fluid properties (such as: density, velocity, heat capacity, thermal 

conductivity, and dynamic viscosity) of the cold fuel and hot gas along the heat exchange 

reformer are illustrated in Fig. 7 and Fig. 8, respectively. The dimensionless properties are 

defined as the ratio of local values and corresponding inlet values, which can be calculated 

by the inlet conditions in the methods depicted in the reference [23]. Examples of this 

include situations where: the density is based on the gas state equation; the velocity is 

calculated by the mass flow rate, density and the channel cross area; the heat capacity of the 

multi-component gas mixture is related to the single component heat capacity and the 

corresponding molar fraction; the dynamic viscosity of the multi-component gas mixture is 

based on the Reichenberg’s expression; the thermal conductivity of multi-component gas 

mixtures is based on Wassiljewa’s expression and the Mason & Saxena modification. 
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Fig. 7. Cold fuel properties along the heat exchange reformer length. 

 
 

 
 

Fig. 8. Hot gas properties along the heat exchange reformer length. 
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The density is related to the pressure and the temperature, which are decided by the gas 

state equation P RT . In the cold fuel passage, the temperature increases and the pressure 

decreases, so the density decreases along the flow direction while, in the hot gas passage, 
both the pressure and the temperature decrease. The ratio of pressure and temperature 
along the passage is increased, so the density of the hot gas increases along the flow 
direction. 

Two primary factors that affect the velocity are the mass flow rate and the density. Here, the 
mass flow rate is constant, and the velocity is mainly determined by the density. That is to 
say, the velocity increases in the cold fuel passage and decreases in the hot gas passage, 
following the trend of the density. 

Specific heat capacity, thermal conductivity, and dynamic viscosity are primarily influenced 
by the temperature and the gas composition. This has been discussed by Todd and Young 
[24] and Lijin WANG [22] for high temperature SOFCs. 

5.2 Analysis of the influence of some parameters 

In this section, some key parameters that affect the heat exchange reformer performance are 
investigated, such as the steam to carbon ratio (STC), catalyst reduced activity (CRA), and 
passage operating pressure. 

5.2.1 Steam to carbon ratio 

In general, the STC must be greater than 2.0 to avoid carbon coking in the fuel lines, 
reformer, and fuel cell stack [25]. The effect of different STCs on the heat exchange reformer 
is presented in Fig. 9 and Fig. 10. 

Fig. 9 presents effect of STC on the methane and hydrogen distribution along the heat 
exchange reformer. In the internal reforming high temperature fuel cell, the endothermic 
reforming reaction will cause a great temperature gradient, which could decrease the life of 
the fuel cell stack due to excessive thermal stress. Therefore, too much remaining methane 
would be no good for the steady operation of the high temperature fuel cell. With the STC 
changing from 2:1 to 4:1, less methane remains at the exit (Fig. 9 (a)), while the hydrogen 
molar fraction at the exit is almost the same as at the entrance (Fig. 9 (b)). Therefore, a 
suitable and acceptable STC is essential for the internal reformation of high temperature fuel 
cells. 

The temperature distribution of cold fuel and hot gas is illustrated in Fig. 10. When the STC 
changes from 2:1 to 4:1, less methane is provided at the inlet, and less heat is needed for the 
steam reforming reaction. Meanwhile, a higher STC will result in a higher rate of the 
exothermic water gas-shift reaction, so the temperature curves of both the cold and hot 
stream are higher. 

5.2.2 Catalyst reduced activity 

The CRA is defined as the ratio between the activity of the catalyst in use and that of a 
conventional Ni catalyst (Xu and Froment, [19]) at typical feed conditions (temperature, 
pressure, and composition) [26]. The CRA is the key factor in determining the reforming 
reaction rate. For the rated case, the CRA is defined as 0.003 [7] in Table 5. Fig. 11 and Fig. 12 
present the effect of the CRA on the performance of the heat exchange reformer. 
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(a) 

 
 

 
(b) 

 
 

Fig. 9. STC effect on the methane (a) and hydrogen (b) molar fraction distributions. 
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(a) 

 
 

 
(b) 

 
 

Fig. 10. STC effect on the cold fuel (a) and hot gas (b) temperature distributions. 
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(a) 

 
 

 
(b) 

 

Fig. 11. CRA effect on the methane (a) and hydrogen (b) molar fraction distributions. 
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(a) 

 
(b) 

Fig. 12. CRA effect on the cold fuel (a) and hot gas (b) temperature distributions. 

The influence on the methane and hydrogen molar fraction distribution along the heat 
exchange reformer is shown in Fig. 11. When the CRA changes from 0.0015 to 0.006, the rate 
of the methane reforming reaction increases, so more methane is consumed (Fig. 11 (a)) and 
more hydrogen is produced (Fig. 11 (b)). More heat is needed to satisfy the requirements of 
the high endothermic reaction, so the temperature curves of both the cold and hot stream 
are lower (Fig. 12). 
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5.2.3 Passage operating pressure 

The passage pressure often changes with the operation condition, even during malfunctions 
or damage. The effect of the cold passage outlet pressure on the heat exchange reformer is 
investigated in this section and illustrated in Fig. 13 and Fig. 14. 

  
(a) 

  
(b) 

Fig. 13. Cold passage outlet pressure effect on the methane (a) and hydrogen (b) molar 
fraction distributions. 
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(a) 

  
(b) 

Fig. 14. Cold passage outlet pressure effect on the cold fuel (a) and hot gas (b) temperature 
distributions. 

The cold passage outlet pressure has little influence on the heat exchange reformer 
performance. When the passage pressure is elevated from 1E+5Pa to 4E+5Pa, less methane 
is consumed, less hydrogen is produced (Fig. 13), and less heat is needed for the methane 
steam reforming reaction, so the cold fuel and hot gas temperatures are higher (Fig. 14). 
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5.3 Dynamic simulation result 

In this section, the transient behaviours of the compact heat exchange reformer are 
investigated. Several step-change input parameters (such as inlet mass flow rate and inlet 
temperature of both the cold and hot stream) are imposed when the device has been 
operated for 500s.  

Fig. 15 illustrates the dynamic response of the temperatures at the cold and hot passage 
exits, when the cold fuel mass flow rate has a step increase of 10%. The cold passage exit 
temperature has a sudden decrease at the initial period due to the step input. Then, because 
of the great thermal inertia of the solid structure, the temperature decreases gradually. 
Therefore, the temperature at the cold passage exit decreases. Owing to a greater cold fuel 
mass flow rate, more heat is provided from the hot side, so the temperature at the hot 
passage exit has a gradual decrease. 

 
(a) 

 
(b) 

Fig. 15. Dynamic response of the temperatures at the Cold (a) and hot (b) passage exits when 
cold fuel mass flow rate up by 10%. 
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Fig. 16 shows the dynamic effect on methane, hydrogen, and the water molar fraction 
distribution when the cold fuel mass flow rate has a step increase of 10%. The methane and 
water molar fraction increase a little, while the hydrogen decreases a little. It can be shown 
that the molar fraction has a little change when the cold fuel inlet mass flow rate changes. 

Fig. 17 presents the dynamic response of the cold fuel and hot gas temperatures when the 
hot gas inlet temperature decreases to 1100K from 1200K. The temperature at the cold 
passage exit is influenced by the thermal capacity of the solid structure, and decreases 
gradually. Owing to the decrease of the inlet temperature, the temperature at the hot gas 
passage exit also undergoes a decrease (Fig. 17 (b)). When the temperature of the cold 
stream decreases, the rate of the steam reforming reaction will be slower. Therefore, less fuel 
is reformed, which can be shown from the methane molar fraction distribution in Fig. 18 (a); 
less hydrogen is produced (Fig. 18 (b)) and more water remains (Fig. 18 (c)). 

   
(a)         (b) 

 

 
(c) 

 

Fig. 16. Dynamic response of methane (a), hydrogen (b) and water (c) distributions when 
cold fuel mass flow rate up by 10%. 
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(a) 

 
 

  
(b) 

 
 

 

Fig. 17. Dynamic response of the temperatures at the cold (a) and hot (b) passage exits when 
the hot inlet temperature down to 1100K. 
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(a) 

 
(b) 

 
(c) 

Fig. 18. Dynamic response of methane (a), hydrogen (b) and water (c) distributions when the 
hot inlet temperature down to 1100K. 
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Based on all the dynamic performance figures from Fig. 15 to Fig. 18, the inertial delay time 
of this kind of heat exchange reformer is about 3000s. Such a substantial thermal inertia can 
seriously influence the whole fuel cell hybrid system transient performance and the design 
of the control system. 

6. Conclusions 

A compact heat exchange reformer for high temperature fuel cell systems is presented in 
this paper. Based on the volume-resistance characteristic modeling technique, the 
distributed-lumped parameter method, and the modular modeling idea, a simulation model 
that is suited for quick and real time simulations is completed. The model can predict the 
key distribution characteristic parameters and the influence of some factors, such as the 
steam to carbon ratio, catalyst reduced activity, and passage pressure. The dynamic results 
indicate that this kind of heat exchange reformer has a great thermal inertia. 

Both the model and modeling method will be useful and valuable for other heat exchange 
reformer designs and optimization; it can also provide a reference for the design of the 
control system in the future.  
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8. Nomenclature 

A area (m2) 
C molar concentration (molm-3) 
Cp specific heat capacity (kJkg-1K-1) 
Dh hydraulic diameter (m) 
DEN parameter used in Table 1 
f fanning friction factor 
G mass flow rate (kgs-1) 
Gm mass velocity (kgm-2s-1) 
J  Colburn factor 
K parameter used in Table 1 
k   parameters used in Table 1, or geometry parameter used in formula (8) (m) 
L   heat exchanger length (m) 
l  offset strip fin length (m) 
M molecular weight (kgmol-1) 
n  number 
p  partial pressure of component i in the cold fuel passage (Pa) 
P    pressure (Pa) 
Pr  Prandtl number 
R  gas constant (Jmol-1K-1) 
Re Reynolds number 
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S  passage heat transfer surface (m) 
St   Stanton number 
T   temperature (K) 
t    fin or plate thickness (m), time (s) 
U   wet perimeter (m) 
u     velocity (ms-1) 
W   whole heat exchanger width (m) 
X    passage width (m) 
Y    passage height (m) 

Greek letters 

 convective heat transfer coefficient (kJm-1s-1K-1) or dimensionless geometry 
 parameter used in formula (13) and (15) 

 dimensionless geometry parameter used in formula (13) and (15) 

 dimensionless geometry parameter used in formula (13) and (15) 

 density (kgm-3) 

 fin efficiency 

 friction resistance 

   dynamic viscosity (Pa.s) 

  thermal conductivity (kJm-1s-1K-1) 

H, H0 enthalpy change and enthalpy change at the standard state (kJmol-1) 

P pressure loss (Pa) 

Subscripts 

c cold side 
f  fin 
h hot side 
i  fuel component 
w   solid fin structure 
(I)   steam reforming reaction 
(II)   gas shifting reaction 
(III)    CO2 direct reforming reaction 
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