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Impact of a Medium Flow Maldistribution  
on a Cross-Flow Heat Exchanger Performance 
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Silesian University of Technology 
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1. Introduction  

1.1 Characteristics of the problem 

The plate exchangers (with the mixed current) and the finned cross-flow heat exchangers, 
which core has the form of a bunch of pipes with flat plate ribs, have the most important 
meaning among the currently applied heat exchangers with extended surface. These heat 
exchangers are usually used for heat transfer between a liquid flowing inside the tubes and 
a gaseous medium flowing outside the tubes, on the ribs side. Small size, low weight and a 
high efficiency determine the strong position of such devices. Compact ribbed heat 
exchangers are commonly used in thermal technique, refrigeration, air-conditioning and 
automotive industry. 

A typical thermodynamic analysis of a cross-flow heat exchanger is usually aimed in 
determination of the heat transfer surface for the desired design and its capacity. There are 
several simplifying assumptions made during such calculations, for example neglecting of 
the heat losses to the environment, uniform flow of media through the exchanger, heat 
transfer coefficients determined for the average temperatures. These assumptions are 
fulfilled very rarely in reality and of course it affects the analytical results to some degree. 

The subject of this work is evaluation of the impact of a non-uniform flow of media (or flow 
maldistribution) on very popular finned cross-flow heat exchangers performance. The 
reasons for such maldistribution occurring in an exchanger include the layout of the 
exchanger with respect to other components in the system, effects of manufacturing 
tolerances, the design of the flow circuits in the exchanger and the design of the inlet and 
outlet headers. In some instances, the maldistribution could also be induced due to 
temperature effects. These factors become even more critical when the exchangers are 
applied in compact designs which involve a tortuous flow path for both the fluid streams. 
This situation may lead to some losses in the total heat flow rates transferred in the heat 
exchanger and affects its thermal efficiency. There is therefore the obvious question: to what 
extent inequality of media flows worsens effects of the heat exchanger? 

One of the most important parameters describing such heat exchangers is the heat transfer 
coefficient on the gas side. Usually, this coefficient is determined as an average value for the 
whole heat transfer surface. This is of course another simplification. Beside of these 
simplifying assumptions, a variety of constructions being applied causes significant 
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problems with determination of this coefficient. The problem is additionally complicated by 
a non-uniform flow of a gas. This flow maldistribution induces also some non-uniform 
distribution of the heat transfer coefficient. So, another important question is how this 
situation influences the thermodynamic analysis where the average value of this parameter 
is applied usually? 

1.2 Review of previous studies 

The question of a non-uniform flow of media through heat exchangers is not a new problem. 
It is the subject of investigations for many years. Results, especially taken from older works, 
are sometimes very unambiguous.  

The first one investigation referred to the heat exchangers with unequal flow of agents was 
performed at the Institute of Thermal Technology of the Silesian University of Technology 
(ITT SUT) for gaseous mediums and they had only computational form (Hanuszkiewicz-
Drapała, 1996). Investigations of the gas-liquid type cross-flow heat exchanger have been 
conducted at the ITT SUT since a few years to evaluate an influence of a non-uniform gas 
inlet on the exchanger functioning (Piątek, 2003). A range and form of the air inflow non-
uniformity have been determined on the special testing station - see Fig.1 in the next section. 
Configuration of the measuring system of the test station allows determining the air velocity 
and temperature distribution at the heat exchanger inlet and outlet. This test station, in its 
original arrangement, allowed only for “cold” experiments, it means without presence of the 
hot medium. Thus, the influence of the measured non-uniformity has been assessed by 
means of numerical simulations performed by the computer code called HEWES – worked 
out for thermal analyses of the considered heat exchanger. R. Piątek in his work (Piątek, 
2003) concludes that the maldistribution of the air inlet to the investigated car cooler may 
significantly influence the effectiveness of the heat exchanger. 

An unique feature of the investigations realized at the ITT SUT is experimental 
consideration of the air flow non-uniformity. Similar heat exchangers have been 
investigated by D. Taler with co-workers (Taler, 2002; Taler and Cebula, 2004) by means of 
physical experiments and numerical simulations too. Very good compliance of experimental 
and numerical results has been achieved, but the problem of the non-uniform agents flow is 
neglected and this fact simplified experimental measurements.  

Many researches considering the problem of the non-uniform flow of media have been 
realized only numerically. Authors of (Ranganayakulu et al., 1997) have simulated the plate 
fin heat exchanger using the finite elements method and found out that the influence of the 
non-uniformity of the liquid flow may have significant meaning in some work regimes. A 
very significant drop of the heat exchanger efficiency has been also observed by authors of 
(Andrecovich and Clarke, 2003). The opposite results have obtained authors of (Nair et al., 
1998) and (Lee and Oh, 2004). Numerical simulations realized for a rotary heat exchanger in 
the first work and optimization procedure presented in the second one have not shown 
significant dependence on the agents flow non-uniformity.  

There are many works, both experimental and numerical, considering only the flow 
maldistribution impact on hydraulic efficiency of heat exchangers. Anjun with his co-
workers investigated the influence of headers configuration on the non-uniformity range 
(Anjun et al., 2003). The numerical results presented in (Wen and Li, 2004) indicate that the 
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improved header configuration can effectively improve the performance of a fin-and-tube 
type heat exchanger. An experimentally determined flow maldistribution for a plate fin-
and-tube heat exchanger has been also described in (Hoffmann‐Vocke et al., 2009), but the 
authors have not considered its impact on the heat exchanger thermal efficiency. This group 
of authors has presented in (Hoffmann‐Vocke et al., 2011) even more detailed, but still only 
hydraulic analysis of the considered heat exchanger.  

Experimental analyses considering maldistributions of the agents flow through the heat 
exchangers and dealing with thermodynamic effects are rare. A. Mueller in (Mueller, 1987) 
concludes about major significance of flow maldistributions for heat exchangers 
performance. Based on the study of gross flow maldistribution in an experimental electrical 
heater the paper (Lalot et al., 1999) presents the effect of flow non-uniformity on the 
performance of heat exchangers. The original fluid distribution is applied to heat exchangers 
(condensers, counterflow and cross-flow heat exchangers), and it is shown that gross flow 
maldistribution leads to a loss of effectiveness of about 7% for condensers and counterflow 
heat exchangers, and up to 25% for cross-flow exchangers. Similar effects have been 
observed by the authors of (Luo et al., 2001) indicate that the non-uniformity influences the 
efficiency of the heat exchangers to a large extent. Berryman and Russell have studied flow 
maldistribution across tube bundles in air-cooled heat exchangers (Berryman and Russel, 
1987). Their experimental results have detected thermal degradation up to 4%, which is 
much less than in previously cited works. The authors of (Meyer and Kröger, 1998) 
concluded about minor – up to 5% - effects of this phenomenon also.  

Another group of investigations deals with evaporators and condensers, applied in air-
conditioning and refrigeration. The effects of maldistribution in fin-tube heat exchangers, 
which takes place on the air-side through the fin passages as well as on the liquid side in the 
tube circuits, have been investigated by several researchers, for example (Fagan, 1980; 
Chwalowski et al. 1989; Lee and Domanski, 1997; Aganda et al. 2000). The findings of these 
works have indicated dependence of the degradation on the mean and standard deviation of 
the flow maldistribution profile. 

A very complex research has been realized by teams from Indian Institute of Technology – 
Madras and Lund University of Technology. These works concern plate-type heat 
exchangers. The numerical model of a one-pass plate heat exchanger has been elaborated 
first for hydraulic analyses of a flow maldistribution impact (Shrihari et al., 2005) and next it 
was arranged for multi-pass units (Shrihari and Das, 2008). An experimental investigation 
has been also carried out to find the flow and the pressure difference across the port to 
channel in plate heat exchangers (Rao et al., 2006). More recently this research team realized 
thermal analysis also. The single-blow transient test technique based on axial dispersion 
model was proposed for the determination of both heat transfer coefficient and axial 
dispersion coefficient in plate heat exchangers. The experimental analysis presented in (Shaji 
and Das, 2010) deals with the effect of flow maldistribution on the transient temperature 
response for U-type plate heat exchangers. The experiments are carried out with uniform 
and non-uniform flow distributions for various flow rates and two different numbers of 
plates. 

According to (Li-Zhi, 2009) the inlet and outlet duct geometry in an air to air compact heat 
exchanger is always irregular. Such duct placements usually lead to a non-uniform flow 
distribution on core surface. The author used a CFD model to predict the flow distribution 
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and next calculated the heat exchange effectiveness and the thermal performance 
deterioration factor with finite difference scheme. Experiments were performed to validate 
the flow distribution and heat transfer model. The results indicate that when the channel 
pitch is below 2.0 mm, the flow distribution is quite homogeneous and the thermal 
deterioration due to flow maldistribution can be neglected. However, when the channel 
pitch is larger than 2 mm, the maldistribution is quite large and a 10–20% thermal 
deterioration factor could be found.  

This literature review of the selected positions shows, as already mentioned, that the 
problem of the non-uniform fluid inflow to the heat exchangers has been the subject of 
many computational and experimental investigations, but the results obtained are 
unambiguous in terms of thermal performance. Many investigations are limited to the 
hydraulic analysis only and they deal with liquid-liquid type heat exchangers. Most 
researchers are consistent in finding that the non-uniformity of the flow significantly strikes 
the hydraulic efficiency of heat exchangers. Thermal analyses refer first of all to the heat 
exchanger effectiveness, but they are not very numerous. It is lack of complete 
investigations of the finned cross-flow heat exchangers of the gas-liquid type with unequal 
inflow of the agents, especially of unequal inflow of the gas. 

1.3 Aim and scope of presented studies 

The degradation effects of flow maldistribution on the performance of a heat exchanger 

are well-known. Not only does the thermal performance decrease but the fluid pressure 

drop across the exchanger core also increases simultaneously. Analyzing the results of 

(Piątek, 2003) the obvious question has appeared: how reliable are these results? The 

HEWES code validation procedure has to be carried out in order to answer this question. 

It became possible after modernization of the experimental rig and installation of the hot 

water supply module. In (Bury et al., 2007b) there have been presented the only initial 

results obtained by use of the modified testing station, and the results of initial and 

detailed validation and sensitivity analysis have been presented in (Bury et al., 2008a)) 

and (Bury et al., 2008b). Significant differences have been recorded between experimental 

and numerical data after the initial validation of the model. Minor changes have been put 

into the code and the validation procedure was then repeated with usage of the infra-red 

thermography measurements results also. The last stage of the research was the 

sensitivity analysis. This analysis has shown that the heat transfer coefficient from ribbed 

surfaces to a gas may be a reason for recorded discrepancies between numerical and 

experimental results. An additional testing station, in the lab-scale, has been designed and 

constructed in order to check the numerical procedure responsible for determination of 

the heat transfer coefficient from the ribs to the gas. The papers (Bury et al., 2009a; Bury 

and Składzień,2010) and recently also (Składzień and Bury, 2011) present results of this 

analysis. 

Applying the validated version of the HEWES code and modified testing station the analysis 
of the above mentioned car cooler has been repeated and the results allowed to sustain the 
conclusions withdrawn by Piątek – the air inflow maldistribution may significantly affect 
the heat exchanger performance (Bury et al., 2009b). 

The following questions have emerged after analysis the experience gained so far: 
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 are own results consistent with data published by other authors stating an important 
meaning of the flow maldistribution (considering the range of observed heat exchanger 
efficiency drop)? 

 are these results repeatable? 

The whole analytical procedure (experiments and numerical simulations) has been 
performed for three cross flow heat exchangers with different ribbing structure in order to 
answer these questions. The experimental and numerical procedures are presented in this 
chapter, as well as the most important results and conclusions. 

2. Experimental investigations 

2.1 Test station        

The test station consists of two main modules: the air supply module (see Fig. 1) and the hot 
water supply module (Fig. 2). The air supply module originally was a special testing station 
constructed during realization of the project (Piątek, 2003) for determination of a form and 
scope of the air inflow non-uniformity.  

1

2

3

4

5 6 7 8

 

Fig. 1. Test station - the air supply module (1 – support plate, 2 – heat exchanger, 3 – 
thermoanemometric sensor, 4 – measuring probe, 5 – diffuser, 6 – channel, 7 – control 
computer, 8 – fan). 

The air is supplied by the radial fan of the maximum capacity of 6900 m3/h. The fan 
capacity can be controlled by the throttling valve installed before the fan. Then the air flows 
through the 1.7 m long channel (rectangular cross-section 190x240 mm). The channel ends 
with the filter section. Usually this section is empty and only during special tests filters 
having the form of wire nets or perforated metal sheets are used. Actually, filter is not a 
good word describing the purpose of these elements – they are installed in order to make 
the air flow more uniform. The diffuser dimensions have been fit to the first examined heat 
exchanger: they are 280x490 mm. 

The main element of the measuring system is the V1T-type thermoanemometric sensor 
installed onto the measuring probe which shifting is controlled by a computer. It allows 
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determining velocity and temperature fields of the air at the exchanger’s inlet and outlet. 
The measuring probe moves in a clit cut out in the upper wall of the diffuser. The clit is seal 
up with a soft insulating foam. Unfortunately, such a solution is the reason of some air 
leakage. As the thermoanmenometric sensor is a very fragile instrument its contact with 
walls and other structures should be prevented. There are 20 mm wide margins left on the 
all sides and the probe movement plane is placed 25 mm in front of the heat exchanger’s 
inlet cross-section. Signals from the sensor are gathered by the FMC 921 control card and 
send to the computer where they are analysed. 

The original testing station has been modified and the hot water supply module was 
installed. Water is heated up to the desired temperature (up to 95°C) by the electric heater. 
The water circulation is forced by the pump and its flow rate can be regulated by the control 
valve. The flow rate is measured by the rotameter and the K-type thermocouples (NiCr-
NiAl) measure its temperature at the inlet and outlet of the heat exchanger.  

oC

1 2 3 4 5

67
8

 

Fig. 2. Test station - the hot water supply module (1 – electric heater, 2 – cut-out valve, 3 – 
manometer, 4 – control valve, 5 – heat exchanger, 6 – temperature measuring system, 7 – 
flow meter, 8 – pump). 

The measuring system allows for acquisition of the following parameters at the moment: 
total air volumetric flow, the water mass flow rate, inlet and outlet water temperature, 
distribution of the air velocity and temperature at the inlet and outlet of the heat exchanger. 

2.2 Procedures of measurements and experimental data analysis 

The air temperature and velocity distributions measurement need the measuring task to be 
defined in the form of an input file for the program controlling the measuring probe’s work. 
The trajectory of the probe’s shifting is determined by location of measuring nodes. There 
are two ways for realizing the measurements: applying the spiral-type measuring mesh or 
the regular-type mesh. These two types of measuring meshes are shown in Fig. 3. The first 
one is usual while determining the form and scope of the air inlet non-uniformity. Data 
obtained by use of the regular mesh are more convenient for the complete thermodynamic 
analysis. Such mesh divides the whole measuring cross-section into identical rectangles and  
the measuring nodes are located in the middle of each rectangle. 
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measuring nodes
 

Fig. 3. The idea of the spiral-type (left) and regular-type measuring meshes and trajectories 
of the measuring probe movement. 

The time constant of the measurement and the number of measurements realized in each 
node should be entered in the file. The data are acquired with the maximum frequency 
allowed by the hardware (CPU clock). So, assuming a 100 Hz frequency and 0.5 s time 
constant there would be 50 samples obtained for the given measuring node. The results 
are analysed online and the output file contains the average values with their standard 
deviations for each measuring node, considering both velocity and temperature of the  
air. 

A higher resolution of the results (velocity and temperature distributions) can be achieved 
by making the measuring meshes more dense. Definition of the measuring mesh needs 
some optimization between resolution of results and time of measurement, and the aim of 
measurement as well as the heat exchanger structure should be also taken into account. 

A regular measuring mesh of 196 nodes has been used for measurements realized in this 
work. The measuring program has been started after the steady state conditions were 
achieved. 

Three parameters are assumed as independent and may be set by a researcher: the air and 
water flow rates and the inlet water temperature. 

The cooler heat capacity has been determined as the heat flow rate transferred in the 
exchanger computed from the air and the water side. Obvious relationships describing the 
medium enthalpy decrease (increase) have been used: 

  , ,a a a pa a out a inQ V c t t       (1) 

  , ,w w w pw w in w outQ V c t t       (2) 

The air density has been calculated using the ideal gas law for the absolute pressure and the 
air average temperature at the inlet to the exchanger. The density of water has been 
assumed according to thermodynamic tables for the outlet temperature.  

The water enthalpy drop has been used for calculations of the heat flow rates because of 
more accurate measurement of the water flow.  
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2.3 Analysed heat exchanger types 

The investigations accomplished in this work deal with the ribbed cross-flow heat 
exchangers of the gas-liquid type. There were three water coolers investigated during 
realization of this work (see Fig. 4): 

HE-1 – typical car cooler (Skoda Favorit 135L) with the core having the form of 2 rows pipe 
bundle (15 cylindrical pipes ribbed with the plate fins in each row, 380 fins on each pipe); 
aluminium, 

HE-2 – the cross-flow heat exchanger made by GEA Heat Exchangers Company with the 
core made of 10 rows of elliptical pipes ribbed with the plate fins (175 on each pipe); steel, 

HE-3 - the cross-flow heat exchanger made by GEA Heat Exchangers Company with the 
core having the form of 2 rows pipe bundle (81 fins on each pipe in the first row and 140 fins 
on each pipe in the second row); steel. 

 

Fig. 4. General sketch of the heat exchangers under consideration and the recurrent elements 
of three versions of the heat exchangers 

2.4 Selected experimental results 

There were six measuring series carried out for each of the heat exchangers under 
consideration. The distributions of the air velocity and temperature are one of the most 
interesting results that may be achieved on the described testing station. These distributions 
are very important because they allow evaluating the air inflow maldistribution range and 
form. Sample distributions obtained for the HE-1 heat exchanger are shown in Figs. 5 and 6. 
These results have been obtained with the total air flow rate of 1.556 m3/s, the water flow 
rate of 4.5·10-4 m3/s and the water temperature set on the boiler in 50°C.  

The form and scope of the air inlet non-uniformity depend on the fan capacity, as shown in 
Fig. 7. This observation, recorded in (Piątek, 2003) and (Bury et al., 2007a) has been 
confirmed during actual tests and, moreover, some dependence on the heat exchanger has 
been also noticed. So, it would be better to say that these parameters depend on the piping 
and ribbing structures in this certain case.  
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An attempt for systemizing this non-uniformity has been undertaken in (Malinowski, 2008). 
The numerical analysis has proved that the reason of the observed air inflow 
maldistribution is the radial fan. Unfortunately, attempts to describe the measured 
inequality by using mathematical functions have failed. For this reason, data on the non-
uniformity are included in the calculations in tabulated form using rows. This extends the 
calculation time slightly, but on the other hand allows for accurate recognition of this 
phenomenon. 

  

Fig. 5. Distribution of the air velocity at the inlet (left) and outlet (right) cross-sectional flow 
area (210mm x 400mm) of HE-1/1 measurement, m/s. 

  

Fig. 6. Distribution of the air temperature at the inlet (left) and outlet (right) cross-sectional 
flow area (210mm x 400mm) of HE-1/1 measurement, °C. 

  

Fig. 7. Distribution of the air velocity at the inlet cross-sectional flow area (210mm x 400mm) 
of HE-2/1 measurement (left – without throttling) and of HE-3/4 measurement (right – 
maximum throttling), m/s. 

Presented in Figs. 5-7 distributions of velocity and temperature of the air were drawn as 
viewed from the outlet of the heat exchanger. 
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Measurement 
No. 

aV  

m3/s 
wV  

m3/s 

tB(1) 

ºC 
tw,in  
ºC 

tw,out 
ºC 

wQ  

kW 

HE-1/1 1.556 4.5·10-4 50 49.8 43.9 11.03 

HE-1/2 1.556 4.5·10-4 70 68.9 56.7 22.61 

HE-1/3 1.556 4.5·10-4 90 86.4 67.9 34.08 

HE-1/4 1.083 4.5·10-4 50 49.7 44.5 9.72

HE-1/5 1.083 4.5·10-4 70 69.2 58.7 19.42 

HE-1/6 1.083 4.5·10-4 90 88.0 72.2 29.11 

HE-2/1 2.04 4.5·10-4 50 48.2 42.8 10.07 

HE-2/2 2.04 4.5·10-4 70 69.6 62.0 14.08 

HE-2/3 2.04 4.5·10-4 90 90.2 79.5 19.58 

HE-2/4 1.063 4.5·10-4 50 48.0 45.6 4.48

HE-2/5 1.074 4.5·10-4 70 68.5 62.0 12.04 

HE-2/6 2.033 4.5·10-4 90 89.8 79.0 19.76 

HE-3/1 1.876 4.5·10-4 50 49.3 42.7 12.39 

HE-3/2 1.876 4.5·10-4 70 69.1 59.8 17.31 

HE-3/3 1.877 4.5·10-4 90 87.8 74.6 24.08 

HE-3/4 1.052 4.5·10-4 50 50.1 47.1 5.51

HE-3/5 1.052 4.5·10-4 70 69.6 61.6 14.81 

HE-3/6 1.877 4.5·10-4 90 88.7 75.4 24.30 

(1): the temperature set at the electric boiler outlet 

Table 1. Results of measurements. 

The results of the measurements for the three considered heat exchangers are summarized 
in Table 1. All the measurements have been repeated for three times in order to verify 
repeatability of results. Presented in the last column heat flow rates, of course, refer to the 
conditions of non-uniform air flow. In order to determine the impact of this inequality on 
the efficiency of considered heat exchangers in the next stage the computational analysis 
was carried out. The measured inlet media parameters were used as input for calculations. 

3. Computational analyses 

3.1 Mathematical model of the heat exchanger 

The mathematical model of the considered heat exchanger has been worked out taking into 
account the following simplifying assumptions (only most important): 

 steady state conditions, 

 one-dimensional media flow, 

 radiation is neglected, 

 heat losses are neglected, 

 heat flow is normal to a boundary, 

 real rib is replaced with a round or a plate-elliptic rib of the same surface. 

It has been also assumed that the air inflow is non-uniform and the water inflow may be 
non-uniform. An influence of temperature on thermal properties of the agents has been 
taken into account too. 
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dy dx

dz

y

z

x

 

Fig. 8. Model heat exchanger and the recurrent fragment. 

The analysed real cross-flow heat exchanger has been replaced with a model rectangular 
heat exchanger. The model was then divided into elementary fragments (Fig. 8). Each 
fragment represents a recurrent element of the real heat exchanger - a single tube with the 
rib (Piątek, 2003).  

The energy balance equations for each fragment constitute the mathematical basis of the 
model. Assuming that the water flows along the X axis and the air flows along the Y axis the 
energy balance for a recurrent fragment may be written as follow: 

  w a
w pw a pa a m a

T T
dQ m c dydz m c dxdz h T T dA

x y

 
    

 
    (3) 

where ha is an average heat transfer coefficient on the gas side for all the ribbed surface and 
Tm is the average temperature of rib and pipe surface. 

The inlet temperatures of the mediums are known so the following boundary conditions 
may be used: 

 , ,(0, , ) ( ,0, )w w in a a inT y z T T x z T   (4) 

The mass flow rates of the fluids are described by the following formulas: 

 
max max

w w
w

g m
dm dydz

Y Z




  (5) 

 
max max

a a
a

g m
dm dxdz

X Z




  (6) 

The inequality factors gw and ga are defined as follows: 

 
,

w
w

w m

w
g

w
  (7) 
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,

a
a

a m

w
g

w
  (8) 

The subscript m in relationships (7) and (8) means the average velocity of the medium. 
Information about the non-uniform flow of the air is put into the model on the basis of 
measurements. A non-uniform water inlet to the exchanger may be set arbitral by a function 
or on the basis of numerical simulations (Bury et al., 2007a).  

The control volume method based model of heat transfer for the recurrent fragment of the heat 
exchanger has been worked out to calculate the average temperature of the ribs and tube outer 
surface. The detailed description of the model and equations can be found in (Piątek, 2003). 

The parameters calculated with the model of the recurrent fragment are: outlet and average 
temperature of the water flowing in the pipe, average temperature of the air, average 
temperature of the rib and the pipe surface, average values of the heat transfer coefficients at 
the gas side and the heat flux transported in the recurrent fragment. The heat transfer 
coefficient from the hot water to the pipe has been computed from Colburn's formula (Welty 
et al., 2008): 

 0.8 1/30.023 Re PrNu     (9) 

The heat transfer coefficient on the gas side may be determined on the way of the numerical 
simulations for a numerical model of the recurrent fragment of the considered heat 
exchanger (see subsection 3.2.2 and Bury and Składzień, 2006) or may be computed from 
one of available Nusselt number correlations.  

The calculation procedure for the whole exchanger model is iterative and it is repeated for 
all the recurrent fragments of the considered heat exchanger. First, the air temperature 
increase in the analysed fragment is assumed. Next, the heat transfer coefficients for the 
water and the gas sides are calculated as well as the rib and pipe surface average 
temperature. The heat flux transported in the recurrent fragment is then computed and the 
accuracy criterion is checked. If the criterion is satisfied the procedure is realized for the next 
fragment. If the criterion is not fulfilled the described procedure is then repeated for the 
given recurrent fragment till the demanded accuracy is achieved. 

The validation procedure was performed by means of comparison of the experimental and 
numerical results. The total heat flux transported in the heat exchanger is the main 
compared parameter and it is the basis for evaluation of the code. Significant differences 
have been recorded between experimental and numerical data after the initial validation of 
the model (Bury et al., 2008a). Minor changes have been put into the code and the validation 
procedure was then repeated with usage of the infra-red thermography measurements 
results also. The last stage of the research was the sensitivity analysis (Bury et al., 2008b). 
This analysis has shown that the heat transfer coefficient from ribbed surfaces to the gas 
may be the reason for recorded discrepancies between numerical and experimental results.   

3.2 Heat transfer coefficient on the gas side  

3.2.1 Application of Nusselt number correlations 

A traditional analysis of the convective heat transfer for simple cases is based on the 
similarity theory and application of the dimension analysis. It is very difficult to find an 
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analytical solution for real cases and extensive measurements are necessary. A statistic 
analysis of the experimental results allows formulating an empirical correlation. A large 
number of such relationships have been worked so far. It should be however mentioned 
here that their application is limited to the heat exchangers of the same or very similar 
constructions to the experimental units. A review of available correlations allowed choosing 
those applicable for the heat exchangers under consideration. Six formulas have been 
investigated  (Kays and London, 1998; Welty et al., 2008): 

 Kays and London correlation: 

 

0.418
,max

2/3

0.011 Re

Pr

a p h

a

m c D
Nu

k

    
  

 


 (10) 

 Berman correlation: 

 0.6330.3375 ReNu    (11) 
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 Norris and Spofford correlation: 
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The relationships shown above have been used to calculate the heat transfer coefficient for 
the air velocity ranging from 2 to 20 m/s and for the air temperatures equal to 10ºC, 20ºC or 
30ºC. The range of the air parameters has been established based on the experiments.  

Figure 9 illustrates how big the discrepancy of the heat transfer coefficient is obtained 
depending on the choice of Nusselt number relationship. The use of different empirical 
correlations does not lead to conclusive results, but difficult to find criteria for selecting the 
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correct equation for the present case (range of Reynolds numbers and the equivalent 
diameter of the pipes are not sufficient criteria). The Kays and London correlations 
(presented for the specific geometry of the heat exchanger core) seem to be the most 
accurately determined according to empirical findings. But it is hard to tell what the impact 
of differences in the geometric parameters of the heat exchangers cores used in the study is.  

 

Fig. 9. Comparison of results obtained by different Nusselt number correlations for HE-1 
heat exchanger. 

3.2.2 Numerical simulations using CFD software 

Two geometrical models have been made for numerical computations: the recurrent element 
of the considered heat exchangers and the recurrent segment – see Fig. 10. Geometries and 
numerical grids have been created using Gambit pre-processor.  

The models of the recurrent segments of the radiators are related to the measurement series 
which results were described earlier. Each model consists of one or two rows of pipes and 
there are ten ribs in each row. The reason for the creation of these two numerical models is 
to test whether the simplification of real geometries affect the results. 

The testing computations have shown that for considered models non-structured meshes 
are useless in most cases – the calculations were not converged or gave non-physical results. 
So for the fundamental computations for the recurrent element the structured meshes of 170 
to 250 thousands cells for single recurrent element have been chosen. 

The Reynolds Stress Model of turbulence has been chosen for the fundamental 

computations. The standard k- and the realizable k- models have been also tested, but 
some problems appeared during the calculations at low velocities of the air. 

The Fluent CFD software has been applied for simulations. It has been assumed that the air 
inlet is parallel to the X axis of the models. Except the inlet and the outlet surfaces all of the 
remaining planes have been assumed as the symmetry planes. First the testing 
computations have been performed to choose the proper numerical grid and the turbulence 
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model. These computations have been realized for the air inlet temperatures of 10ºC, 20ºC or 
30ºC, and the velocity ranging from 2 m/s to 20 m/s. The water temperature has been 
assumed equal to 90ºC, and the heat transfer coefficient inside the pipes has been calculated 
from the Colburn relationship.  

 

Fig. 10. The recurrent element (left) and the recurrent fragment (right) of the heat exchanger 
HE-1. 

The averaged value of the heat transfer coefficient at the air side has been calculated based 
on the known fields of temperature for the rib surface and the pipe surface as well as the 
average temperature of the air and the transferred heat flux – see (Bury and Składzień, 2006) 
for details. The results for the HE-1 exchanger obtained by using the recurrent element 
model are presented in Fig. 11. 

 

Fig. 11. Heat transfer coefficient versus the air inlet velocity – HE-1 exchanger, recurrent 
element model. 
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The comparison of results for the recurrent element and recurrent segment is shown in Fig. 
12. One may observe that the values of the air heat transfer coefficient obtained from the 
segment model are higher than the results from the element model. The initial difference 
reaches almost 22 per cent and it decreases down to 6 per cent along with the rising velocity 
of the air. The more significant difference for the lower velocities may be an effect of a non-
fully developed turbulence. Using the recurrent fragment model allows for more accurate 
mapping of the real object, but also increases the computation time almost ten times. 

 

Fig. 12. Heat transfer coefficient versus the air inlet velocity – comparison of results for the 
recurrent element and segment of HE-1 exchanger. 

3.2.3 Validation of the numerical procedure for the heat transfer coefficient 
determination 

A simple comparison of heat transfer coefficient values presented in subsections 3.2.1 and 
3.2.2 allows to see large differences, both between the empirical correlations and numerical 
models. Computational results, however, appear to coincide with the results obtained using 
the Kays-London correlations, which were previously considered to be the most accurate. 
Numerical approach is very convenient for the considered problem: it allows both to 
reproduce the accurate geometry of the recurrent element of the actual heat exchanger, as 
well as to take account of the non-uniform air flow. However, requires detailed plausibility 
study. 

An enlarged special model of a fragment of the heat exchanger HE-1 has been built in order 
to check the numerical procedure responsible for determination of the heat transfer 
coefficient from the ribs to the gas. 

The model consists of four plate ribs with respective pipe sections. Two electric heaters 
simulate the hot water flow inside the pipes. This model is placed in a flow channel with an 
observation window and it is cooled by the forced air flow (see Fig. 13). The air flow rate 
and temperatures at the inlet and outlet are measured. The infra-red thermography 
technique is used for measurement of the temperature field on the surface of the first rib. 
Several thermocouples are also installed for measuring the temperature on the other ribs 
surfaces. 
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Fig. 13. Simplified sketch of the test station (1 - ribs and pipe models, 2 - electric heaters, 3 - 
flow channel, 4 - thermocouples, 5 - infra-red camera, 6 - speculum). 

Two parameters have been set as independent during experiments: the temperature of the 
pipe internal wall and the air flow rates. Following parameters have been recorded during 
measurements: 

 the air volumetric flow rate, 

 the air temperature at the inlet and outlet of the ribs section ta,in and ta,out, 

 electric power consumed by the heaters Nh, 

 the electric heater surface temperature th1 and th2 (assumed after as the pipe inner 
surface temperature), 

 temperatures on the ribs surfaces in the measuring points (seven measuring points have 
been marked as L1, L2, L3, M, R1, R2 and R3), 

 temperature distribution on the surface of the first rib. 

There have been 25 measurements realized within the framework of this project. These 
experiments have been divided into five measuring series differing with the set temperature 
of the electric heaters (from 50 to 90 degrees Celsius with ten degree step). The range of the 
independent parameters changes has been chosen to obtain flow conditions (Reynolds’ 
number) similar to those from the main testing station. Selected results of experiments are 
presented in Table 2. Sample temperature distribution measured during experiment MS-2 is 
presented in Fig. 14. 

 

Fig. 14. Sample infrared thermographic picture of the first rib surface – experiment MS-2. 
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Meas. 
No. 

a
V  th1 th2 Nh ta,in ta,out tL1 tL2 tL3 tM tR1 tR2 tR3 

m3/s °C °C W °C °C °C °C °C °C °C °C °C 

MS-1 7.03·10-3 49.5 50.2 116.5 24.0 37.5 45.3 40.0 49.4 42.3 37.3 38.0 37.9 

MS-5 12.47·10-3 49.7 50.4 137.1 22.9 31.1 38.6 33.8 43.2 38.9 31.2 31.4 31.6 

MS-6 7.00·10-3 59.6 60.5 143.3 24.1 40.1 46.0 41.9 53.6 46.5 39.2 38.3 37.8 

MS-10 12.47·10-3 60.1 60.7 152.5 23.4 33.1 41.7 35.9 43.7 40.9 33.1 31.0 31.8 

MS-11 7.03·10-3 69.6 70.7 159.6 24.2 41.9 50.1 46.3 55.2 48.7 38.2 38.2 42.3 

MS-15 12.47·10-3 69.9 71.1 173.4 23.7 34.4 42.9 40.3 45.3 43.1 36.9 33.8 34.5 

MS-16 7.00·10-3 79.5 80.6 179.1 24.0 44.5 52.0 45.6 56.8 48.5 41.9 41.2 42.2 

MS-20 12.50·10-3 79.2 80.0 189.2 24.2 36.2 45.3 39.4 47.7 45.1 35.8 33.9 36.2 

MS-21 7.03·10-3 93,7 90.4 192.0 23.9 44.8 56.1 48.3 60.1 52.4 41.8 39.7 42.1 

MS-25 12.53·10-3 89.7 90.6 215.8 24.5 38.3 46.5 39.1 48.3 42.4 35.2 32.8 35.3 

Table 2. Selected results of measurements. 

All experiments described above have been next simulated using numerical model of the 
laboratory stand. The same assumptions as used during creation of the models described in 
subsection 3.2.2 have been applied. The numerical model of the system under consideration 
is a part of the laboratory stand and contains the flow channel with the ribs section. The 
geometry of the model has been created using Gambit preprocessor and it is shown in Fig. 
15 as well as the boundary conditions types. All remaining boundary conditions have been 
set as coupled and isolated walls for external surfaces of the model. The numerical model 
contains near 560 thousands of tetrahedral cells.  

All performed simulations have been realized using the measured air flow rate and the 
electric heaters surfaces temperature as the boundary conditions. A part of simulations also 
considered thermal radiation. The surface to surface model of this phenomena implemented 
into the Fluent has been applied. 

   

Fig. 15. Geometry of the numerical model of the test rig and boundary conditions types. 
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Selected results of simulations of the MS-1 experiment are presented in Fig. 16. The CFD 
analysis gives the possibility to view fields of the most important parameters in different 
cross sections of the object under consideration. The air velocity distribution is shown in Fig. 
16 on left. The cross section plane is parallel to the flow direction and it crosses the second 
rib. One may note that the air inflow to the ribs section is quite well unified. 

The most interesting numerical results are the temperature distributions on the first rib 
surface (see Fig. 16 on right), as well as the experimental results. These distributions may be 
next compared with the infra-red thermography measurements. 

   

Fig. 16. The air velocity contours (left - m/s) and temperature distribution on the first rib 
surface (right - K) for the MS-1 experiment. 

The main goal of the analysis is to evaluate the numerical CFD model used for computations 

of the heat transfer coefficient at the gas side of the considered heat exchanger. A simple 

comparison of measured and computed temperatures for two analyzed experiments is 

presented in Table 3. The first three thermocouples are placed on the first rib visible surface 

and are also used for calibration of the infra-red camera. The calculated surface temperature 

values are a little bit underestimated, as well as the air outlet temperature. The last 

parameter is computed as the area weighted average value for the cross section placed 2 cm 

next to the ribs section. 

The most interesting is comparison of the temperature field for the first rib surface (see Fig. 

17). Due to different color scales a direct comparison is somewhat difficult but one can see 

that similarity of temperature distributions is quite good, both quantitatively and 

qualitatively. 

 
 

  tL1, ºC tL2, ºC tL3, ºC tM, ºC tR1, ºC tR2, ºC tR3, ºC ta,out, ºC 

MS-4 
Measurement 40.4 41.5 34.5 43.9 39.8 40.6 33.9 33.4 

Simulation 40.1 40.9 33.8 43.5 39.4 39.9 33.3 32.9 

MS-22 
Measurement 56.2 57.7 48.0 61.1 55.4 56.5 47.2 42.9 

Simulation 55.5 56.2 47.1 60.5 54.6 55.1 46.3 41.3 

Table 3. Comparison of experimental and numerical data for the rib temperature – sample 
results. 
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Fig. 17. Calculated (left, K) and measured (right, ºC) temperature field of the first rib surface 
for experiment MS-4 – air flow direction same as in Fig. 14. 

The next step in the analysis was the computation and comparison of the total heat flow 
rates transported from the ribbed surface to the flowing air. The results for measuring series 
MS-1 to MS-5 and MS-21 to MS-25 are presented in Table 4. The total heat flow rates has 
been calculated twice based on the air enthalpy rise: 

 considering the measured values of the volumetric air flow and its temperature 

measured at the inlet and outlet of the ribs section ( Q air in Table 4), 

 taking into account the computed values of the mentioned parameters ( Q Fluent in  

Table 4). 
 
 

Measurement No. Nh,W Q air, W Q Fluent, W Q air, % Q Fluent, % 

MS-1 116.5 111.8 104.5 4.03 10.30 

MS-2 122.6 117.2 109.9 4.40 10.36 

MS-3 128.0 119.0 111.7 7.03 12.73 

MS-4 132.4 117.2 109.9 11.48 16.99 

MS-5 137.1 120.9 113.6 11.82 17.14 

MS-21 192.0 173.1 165.8 9.84 13.65 

MS-22 196.5 186.2 178.9 5.24 8.96 

MS-23 200.5 190.7 183.4 4.89 8.53 

MS-24 207.0 200.0 192.7 3.38 6.91 

MS-25 215.8 203.3 196.0 5.79 9.18 
 

Table 4. Comparison of experimental and computational data – heat flow rates. 

The relative differences (Q ) between experimental and numerical results have been 

calculated. The heat flow rates calculated based on the measured values, as it can be seen, is 
lower than the measured values of the electric power of the heaters. The obvious reason of 
this situation is the heat losses through the rear wall of the flow channel. The differences 
between experimental and computational heat flow rates calculated as the CFD results reach 
up to 18% for some cases, but the average difference is somewhat over 10%. 
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In the paper (Bury et al., 2009a) authors concluded that neglecting of thermal radiation 
phenomena may be a reason of discrepancies between numerical and experimental results. 
An additional set of simulations has been initiated taking into account thermal radiation. 
The results however have shown almost no differences in comparison to these shown in 
Table 4. This situation could be an effect of assuming dry air flow through the ribs section. 
This gas contains mostly two-atom particles and it is almost optically inactive regarding the 
thermal radiation. 

According to the results of analyses it may be noted that the CFD based numerical model 
portrays the physical phenomena with satisfying accuracy. Probable reasons of recorded 
discrepancies are some simplifications in the numerical model geometry as well as 
neglecting the heat losses to the environment.  

3.3 Results of numerical simulations 

The analyses presented in subsection 3.2 allowed to withdrawn following conclusions: 

 application of available correlations for Nusselt number leads to a wide deviation of the 
heat transfer coefficient values; it is difficult to define the characteristic dimension in 
some cases; even application of Kays-London approach (assumed as the most accurate) 
does not assure reliable results, 

 the numerical models of recurrent element and recurrent segment of considered heat 
exchangers give the heat transfer coefficient results within the range determined by 
investigated correlations for Nusselt number; the results obtained by using the recurrent 
element and recurrent segment differ, especially at low velocities; application of the 
recurrent segment model seems to be more correct but it needs a lot of computing time; 
such approach allows for detailed representation of real geometries in numerical model.  

 

Measurement No. Q num, kW Q ex, kW Q , % 

HE-1/1 12.78 11.03 15.9
HE-1/2 26.44 22.61 16.9
HE-1/3 39.96 34.08 17.3
HE-1/4 11.11 9.72 14.3
HE-1/5 22.44 19.42 15.6
HE-1/6 33.48 29.11 15.0
HE-2/1 11.59 10.07 15.1
HE-2/2 16.24 14.08 15.4
HE-2/3 22.75 19.58 16.2
HE-2/4 5.10 4.48 13.9
HE-2/5 13.76 12.04 14.3
HE-2/6 22.68 19.76 14.8
HE-3/1 14.27 12.39 15.2
HE-3/2 20.02 17.31 15.6
HE-3/3 28.10 24.08 16.7
HE-3/4 6.28 5.51 14.0
HE-3/5 17.00 14.81 14.8
HE-3/6 28.14 24.30 15.8

Table 5. Selected computational results. 
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Considering the abomentioned facts it was decided to apply the CFD approach with the 
recurrent elements models for determination of the heat transfer coefficient from ribbed 
surfaces to the flowing air during the numerical simulations.  

Simulations were aimed in determination of the non-uniform air inlet impact on the heat 
exchangers efficiency and have been realized using the described earlier model and the 
computer code HEWES. All these simulation have been performed applying the uniform air 
inflow to the exchanger. The uniform mass flow rate of the air has been derived assuming 
that the total mass flow rate of the air spreads equally on the all measuring fields. The 
selected results of computations are gathered in Table 5 and, as expected, they shown quite 
significant improvement of the efficiency of the heat exchanger. The efficiency growth raises 
with increasing the air flow rate and water inlet temperature.  

The numbers in the last column of Table 5 give an average value of 15%. This should be 
considered as significant deterioration of the cross-flow heat exchanger thermal efficiency 
due to the medium flow maldistribution. Moreover, these results obtained for three units 
with different ribbing structure are similar. So, it seems that the air inlet non-uniformity 
affects the performance of the heat exchangers under consideration to the same extent.   

4. Conclusions 

The experiments performed for three considered cross-flow heat exchangers have shown 
that the air inflow non-uniformity range may be significant and its form depends on the air 
volumetric flow rate in the considered configuration. The experimental data allowed for 
determination of the total heat flow rates transported between the agents in the heat 
exchangers. 

The computational results, as it was expected, have shown significant decrease in the heat 
flow rates comparing with the exchanger with fully uniform air inflow. The average 
deterioration factor is about 15%. Two aspects should be taken into account while 
evaluating the numbers from Table 5: the measurements errors and the accuracy of the code 
HEWES. Taking into account accuracy of the measuring instruments the maximum 
measurements error has been determined to be of ±4%. The uncertainty of numerical results 
has been assessed during the validation of the code - see (Bury et al., 2008a; Bury et al., 
2008b) for more details - and the differences between numerical and experimental results 
may reach almost 11%. These two numbers and the fact that the numerical results are 
always underestimated allow to conclude that the air inlet maldistribution has significant 
impact on a cross-flow heat exchanger performance.  

Following final conclusions and remarks can be pointed for summarizing this study: 

 experimental and numerical analyses accomplished within the framework of 
investigations confirmed the earlier observations about significant meaning of media 
flow maldistribution for cross-flow heat exchanger thermal performance, 

 results concerning the increase of the efficiency due to uniformization of flow obtained 
in this work remain in the range achieved by the other researchers, 

 application of CFD tools for computational analyses of heat exchangers may be useful 
and reliable but models should be thoroughly validated first; further validation of the 
numerical models described in subsection 3.2.2 is planned in the nearest future for 
models of ribs referring to HE-2 and HE-3 heat exchangers. 
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The author realizes that the combination of experimental tests and numerical simulations to 
assess the impact of inequality for the work of the heat exchangers may be the subject of 
some criticism. The best solution would be to do all the analysis by means of measurements. 
However, to obtain a homogeneous air flow on the described testing rig, while maintaining 
the appropriate parameters, it is impossible due to technical limitations. Some attempts to 
implement this idea has been taken in (Bury et al., 2009b), and although it failed to get the 
full homogeneity of the flow, it was noted the positive effects. 
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6. Nomenclature 

cp - specific heat capacity at constant Q  - heat flow rate, W 

  pressure, J/(kg K) Re - Reynolds number 
d - heat exchanger pipe diameter, m s - distance between ribs, m 
Dh - hydraulic diameter, m S - surface area, m2 

h - heat transfer coefficient, W/(m2K) stp - transverse distance between 
k - thermal conductivity, W/(m K)   pipes, m 
l - height of a rib, m t, T - temperature, ºC, K 

m  - mass flow rate, kg/s V  - volumetric flow rate, m3/s 

Nu - Nusselt number  - thickness of a rib, m 
Pr - Prandtl number  - mass density, kg/m3 

Subscripts 

a - air p - refer to pipes without ribs 
in - inlet r - refer to ribbed surface 
max - maximum value w - water 
out - outlet    
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