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1. Introduction

The Wavelet transform is such one efficient and important mathematical tool used to explore
a signal in a time-frequency representation to allow analyzing the parts of interest separately.
This way of analysis provides more valuable information regarding when and where different
frequency components are present in the signal. Furthermore, the wavelet analysis is probably
the most effective solution to overcome the drawbacks of Fourier analysis.

Since its very first use, many varieties and flavors on top of the original Wavelet transform
have been devised and tested, and they have shown different advantages when applied
to different scientific and technical areas. These varieties include, but not limited to, the
continuous (CWT), the discrete (DWT), Wavelet packet transform (WPT) and multiwavelet
transform (MWT).

This chapter is aimed at presenting powerful utilization of the Wavelet transform (and its
varieties) in two important applications: biometrics and non-destructive testing (NDT).

The biometric application that will be shown in this chapter is related to iris recognition (IR).
IR is known as an inherently reliable biometric technique for human identification. Feature
extraction is a crucial step in iris recognition, and the trend nowadays is to reduce the size of
the extracted features. Special efforts have been applied in order to obtain low templates size
and fast verification algorithms. These efforts are intended to enable a human authentication
in small embedded systems, such as an integrated circuit smart card. In this chapter, an
effective eyelids removing method, based on masking the iris, has been applied. Moreover,
an efficient iris recognition encoding algorithm has been employed. Different combination
of wavelet coefficients which quantized with multiple quantization levels are used and the
best coefficients and levels are determined. The system is based on an empirical analysis of
CASIA iris database images. Experimental results show that this algorithm is efficient and
gives promising results of false accept ratio (FAR) = 0% and false reject ratio (FRR) = 1% with
a template size of only 364 bits.

The NDT application is related to ultrasonic time-of-flight diffraction (TOFD). TOFD is known
as a reliable NDT technique for the inspection of welds in steel structures, providing accurate
positioning and sizing of flaws. The automation of data processing in TOFD is required
towards building a comprehensive computer-aided TOFD inspection and interpretation tool.
A number of signal and image processing tools have been specifically developed for use
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226 Wavelet Transforms and Their Recent Applications in Biology and Geoscience

with TOFD data. These tools have been adapted to function autonomously without the
need for continuous intervention through automatic configuration of the critical parameters
according to the nature of the data and the acquisition settings. This research presents
several multi-resolution approaches employing the Wavelet transform and texture analysis for
de-noising and enhancing the quality of data to help in automatic detection and classification
of defects. The automatic classification is implemented using support vector machines
classifier which is considered faster and more accurate than the artificial neural networks. The
results achieved so far have been promising in terms of accuracy, consistency and reliability.

The sections to follow provide more details concerning each application.

2. The biometrics application: efficient small template iris recognition system
using wavelet transform

The term "Biometrics" refers to a science involving statistical analysis of biological
characteristics. This measurable characteristic, biometric, can be applied to physical objects,
such as eye, face, retina vessel, fingerprint, hand and voice, or behavioral like signature and
typing rhythm. Biometrics, as a form of unique person identification, is one research subject
that is growing rapidly (Woodward et al., 2002).

The advantages of unique identification using biometric features are numerous, such as fraud
prevention and secure access control. Biometric systems offer great benefits when compared
to other authentication techniques. In particular, they are often more user friendly and can
guarantee the physical presence of the user (Woodward et al., 2002).

Iris recognition is one of the most reliable biometric technologies in terms of identification
and verification. The iris is the colored portion of the eye that surrounds the pupil as depicted
in Figure 1. It controls light levels inside the eye similar to the aperture on a camera. The
round opening in the center of the iris is called the pupil. The iris is embedded with tiny
muscles that dilate and constrict the pupil size. It is full of richly textured patterns that offer
numerous individual attributes which are distinct even between identical twins and between
the left and right eyes of the same person. Compared with other biometric features such as
face and fingerprints, iris patterns are highly stable with time and unique, as the probability
for the existence of two identical irises is estimated to be as low as one in 1072 (Woodward et
al., 2002; Proenga & Alexandre, 2007).

scalera 1ris

Fig. 1. The human eye
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In this research, the iris is efficiently normalized such that only useful data are encoded. Image
enhancement techniques are applied. Moreover, the best combination of wavelet coefficients
is found and used for successful identification, and the best number of bits used for encoding
the feature vector have been deduced while maintaining low template size.

2.1 Related work

Iris identification using analysis of the iris texture has attracted a lot of attention and
researchers have presented a variety of approaches in the literature.

Daughman (Daugman, 1993) proposed the first successful implementation of an iris
recognition system based on 2-D Gabor filter to extract texture phase structure information of
the iris to generate a 2048 bits iris code. A group of researchers have used the 1-D wavelet
transform as the core of the feature extraction module (Boles & Boashash, 1998; Chena &
Chub, 2009; Huang & Hu, 2005; Huang et al., 2005). For instant, Boles and Boashash (Boles
& Boashash, 1998) extracted the features of the iris pattern by using the zero-crossings of 1-D
wavelet transform of the concentric circles on the iris.

On the other hand, another group of researcher utilized 2-D wavelet transform to extract iris
texture information (Kim et al., 2004; Cho & Kim, 2005; Alim & Sharkas, 2005; Narote et al.,
2007; Poursaberi & Araabi, 2007; Hariprasath & Mohan, 2008; Kumar & Passi, 2008). For
instance, Narote et al (Narote et al., 2007) proposed an algorithm for iris recognition based on
dual tree complex wavelet transform and explored the speed and accuracy of the proposed
algorithm. Hariprasath and Mohan (Hariprasath & Mohan, 2008) described iris recognition
based on Gabor and Morlet wavelets such that the iris is encoded into a compact sequence
of 2-D wavelet coefficient, which generate an iris code of 4096 bits. Kumar and Passi (Kumar
& Passi, 2008) presented a comparative study of the performance from the iris identification
using different feature extraction methods with different templates size. Even though the
previous systems have good recognition ratios, the template size remains rather large.

2.21Iris recognition system

Generally, an iris recognition system is composed of many stages as shown in Figure 2. Firstly,
an image of the person’s eye is captured by the system and preprocessed. Secondly, the
image is localized to determine the iris boundaries. Thirdly, the iris boundary coordinates
are converted into the stretched polar coordinates to normalize the scale of the iris in the
image. Fourthly, features representing the iris patterns are extracted based on texture analysis.
Finally, the person is identified by comparing the extracted features with an iris feature

database.
Acquisition and 4 Segmentation ﬂ Mormalization
preprocessing
Feature extraction and Identification
code generation

Fig. 2. Block diagram of an iris recognition system
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2.3 Segmentation

For the purpose of identification, the part of the eye image carrying useful information is only
the iris that lies between the scalera and the pupil (Proenca & Alexandre, 2007). Therefore,
prior to performing iris matching, it is very important to localize the iris in the acquired image.
The iris region, shown in Figure 3, is bounded by two circles, one for the boundary with the
scalera and the other, interior to the first, with the pupil.

Fig. 3. The iris region

To detect these two circles, the circular Hough transform (CHT) has been used. The
Hough transform is a standard computer vision algorithm that can be used to determine the
geometrical parameters for a simple shape, present in an image, and this has been adopted
here for circle detection (Wildes et al., 1994). The main advantage of the Hough transform
technique is its tolerance for gaps in feature boundary descriptions and its robustness to
noise (Moravcik, 2010).

Basically, the first derivatives of intensity values in an eye image are calculated and the result
is used to generate an edge map. From the edge map, votes are cast in Hough space for
the parameters of circles passing through each edge point. These parameters are the center
coordinates x. and y., and the radius r, which are able to define any circle according to the
following equation:

24y -1 =0 1
A maximum point in the Hough space corresponds to the radius and center coordinates of the
best circle are defined by the edge points (Wildes et al., 1994).

2.4 Normalization

The size of the iris varies from person to person, and even for the same person, due to variation
in illumination, pupil size and distance of the eye from the camera. These factors can severely
affect iris matching results. It is very necessary to eliminate these factors in order to get
accurate results. To achieve this, the localized iris is transformed into polar coordinates by
remapping each point within the iris region to a pair of polar coordinates (r,6), where r is
in the interval [0,1] with 1 corresponds to the outermost boundary, and 6 is the angle in the
interval [0,277] as shown in Figure 4 (Dmitry, 2004; Schalkoff, 2003).

With reference to Figure 5, the remapping of the iris region from (x,y) Cartesian coordinates to
the normalized non-concentric polar representation is modeled by the following equations:
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Fig. 4. Rubber sheet model (Dmitry, 2004)
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Fig. 5. Image mapping from Cartesian coordinates to dimensionless polar coordinates

I(x(r,0),y(r,0)) — I(r,0)

with
xp(r,0) = xp0(0) +rpcosd
Yp(r,0) = ypo(0) +rpsin
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Where [ is the iris picture, rp and r; are the radius of pupil and the iris respectively, while
(xp(0), yp(8)) and (x;(0), y;(6)) are the coordinates of the papillary and iris boundaries in the

direction of 0. (xp0,yp0) and (xjp,yo) are the centers of pupil and iris respectively.

For a typical eye image of dimension 320x280 pixel, the previous normalization method
is performed to produce 50 pixels along r and 600 pixels along 6 which results in 600x50

unwrapped strip.

On account of asymmetry of pupil (not being a circle perfectly) and probability of overlapping
outer boundaries with sclera, 45 out of 50 pixels will be selected along r in the unwrapped iris.
Therefore, the unwrapped iris becomes of dimensions 600 x45. The normalized iris image is

shown in Figure 6.
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—

Fig. 6. Normalized iris image

2.5 Proposed eyelash and eyelid removing method

Since in most cases the upper and lower parts of the iris area are occluded by eyelids, it was
decided to use only the left and right parts of the iris with a partial area from the upper
and the lower regions for iris recognition purpose. Therefore, the whole iris [0, 360°] is not
transformed in the proposed system. Experiments were conducted by masking the iris from
[148, 212°] and [328, 32°] for the right and left parts, while for the upper and lower parts,
a semi circle with a radius equal to the half of the iris radius is used to mask the iris as
depicted in Figure 7. Hence, the regions that contain the eyelids and eyelashes have been
omitted while the remaining eyelashes are treated by thresholding, since analysis reveals that
eyelashes are quite dark when compared with the rest of the eye image (Wildes et al., 1994).
The corresponding rectangular block is show in Figure 8. Afterward, the block is concatenated
together as shown in Figure 9.

Fig. 7. Masking the iris

1

Removed region

Removed region

Fig. 8. The normalized masked iris image

Fig. 9. The concatenated block after removing the ignored parts

The size of the rectangular block is reduced accordingly. By applying this approach, detection
time of upper and lower eyelids and some computational cost of the polar transformation are
saved. The saving ratio can be calculated as follows:

Saving ratio = (ignored parts of the iris/whole iris region) x 100% )

where the ignored parts in this case = ((148-32) + (328-212))/2 = 116, hence, the saving ratio
= (116/360) * 100% = 32.22%. Figure 10 illustrates the application of the proposed masking
method on a normalized iris.
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Fig. 10. Applying the proposed masking method on a normalized iris

Although the homogeneous rubber sheet model accounts for pupil dilation and imaging
distance it does not compensate for rotational inconsistencies. Rotational inconsistencies are
treated in the matching stage (will be shown later).

2.6 Image enhancement

Due to the effect of image capturing conditions (e.g. light source position), the normalized
iris image may not have sufficient quality, a situation that affects the performance of feature
extraction and matching processes (Poursaberi & Araabi, 2007).

Hence for getting a uniform distributed illumination and better contrast in the iris image, the
polar transformed image is enhanced through adjusting image intensity values by mapping
the intensity values in the input gray scale image to new values such that 1% of the pixel
data is saturated at low and high intensities of the original image. This increases the contrast
in a low-contrast grayscale image by remapping the data values to fill the entire intensity
range [0,255]. Then, histogram equalization method was used. Results of images before and
after enhancement are shown in Figure 11.

- -

Fig. 11. Image enhancement of the normalized iris

2.7 The proposed feature extraction method

In order to provide accurate recognition of individuals, the most discriminating information
present in an iris pattern must be extracted. Only the significant features of the iris must be
encoded so that comparisons between templates can be made. Most iris recognition systems
make use of a band pass decomposition of the iris image to create a biometric template. For
the encoding process, the outputs of any used filter should be independent, so that there are
no correlations in the encoded template, otherwise the filters would be redundant (Daugman,
2001).

The Wavelet transform is used to extract features from the enhanced iris images. Haar wavelet
is used as the mother wavelet. The Wavelet transform breaks an image down into four
sub-sampled images. The result consists of one image that has been high-pass filtered in
the horizontal and vertical directions (HH or diagonal coefficients), one has been low-pass
filtered in the vertical and high-pass filtered in the horizontal (LH or horizontal coefficients),
one that has been low-pass filtered in the horizontal and high-pass filtered in the vertical
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(HL or Vertical coefficients), and one that has been low-pass filtered in both directions (LL or
details coefficient) (Kim et al., 2004).

In Figure 12, a conceptual figure of basic decomposition steps for images is depicted.
The approximation coefficients matrix cA and details coefficients matrices cH, cV, and cD
(horizontal, vertical, and diagonal, respectively) obtained by wavelet decomposition of the
input iris image. The definitions used in the chart are as follows (Poursaberi & Araabi, 2007).

Wavelet decomposition levels

columns

rows »l 0o D » D] > CAjs1

’l Lo D |—» C| ' columns

] CD;q-:r
™ HD 'i horizontal
o>
columns
WS »{ Lo D o D | » D

vertical
'l Hi D » C| 1 columns

. CD;'H
»| HLD >1 D! diagonal

Fig. 12. Wavelet decomposition steps diagram

C | denote downsample columns.
D | denote downsample rows.
Lowpass_D denotes the decomposition low pass filter.

Highpass_D denotes the decomposition high pass filter.

S

I; denotes the input image.

Experiments were performed using different combinations of Haar wavelet coefficients, and
the obtained results from different combinations were compared to find the best. Since
the unwrapped image after masking has a dimension of 407x45 pixels, after 5 times
decompositions, the size of the 5" level decomposition is 2x 13 while for the 4/ level is 3 x 26.
Based on empirical experiments, the feature vector is arranged by combining features from
HL and LH of level-4 (vertical and horizontal coefficients [HL4 LH4]) with HL, LH and HH
of level-5 (vertical, horizontal and diagonal coefficients [HL5 LH5 HH5]). Figure 13 shows a
tive-level decomposition with Haar wavelet.

In order to generate the binary data, features of HL4 and HH5 are encoded using two-level
quantization while features of LH4, HL5 and LH5 are encoded using four-level quantization.
After that, these features are concatenated together as shown in Figure 14 which illustrates the
process used to obtain the final feature vector.
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LLS

LH3, LHZ, LH1

HL4 HH4

HL3, HL2, HL1 HH3, HH2, HH1

Fig. 13. Five-level decomposition process with Haar wavelet. (Black indicates 4 levels
quantization, Grey indicates two levels quantization)

HL4 HH5
78 bits 26 bits
[3=26] [2x13]

Fig. 14. Organization of the feature vector which consists of 364 bits

2.8 Matching

The last module of an iris recognition system is used to match two iris templates. Its purpose
is to measure how similar or different templates are and to decide whether or not they
belong to the same person or not. An appropriate match metric is based on direct point-wise
comparisons between the phase codes (Schalkoff, 2003). The test of matching is implemented
by the Boolean XOR operator (which detects disagreement between any pair of bits) applied
to the encoded feature vector of the two iris patterns. This system quantifies this matter by
computing the percentage of mismatched bits, i.e., the normalized Hamming distance.

Let X and Y be the two iris representations to be compared, and N be the total number of bits,
then:

N
HD = %]]Zi X;@Y; (10)
In order to avoid rotation inconsistencies which occur due to head tilts, the iris template is
shifted right and left by 6 bits. It can be easily shown that scrolling the template in Cartesian
coordinates is equivalent to rotation in polar coordinates. This algorithm performs matching
of two templates several times while shifting one of them to different locations. The smallest
HD value is selected, which gives the matching decision (Schalkoff, 2003; Daugman, 2001).

2.9 Experimental results and comparison

The iris images are obtained from the database of the Chinese academy of sciences institute of
automation (CASIA) (CAS, 2004). The database consists of 756 iris images from 108 classes.
Images from each class are taken from two sessions with one month interval in between. For
each iris class, three samples are taken at the first session for training and all samples captured
at the second session are used as test samples. This is also consistent with the widely accepted
standard for biometrics algorithm testing (Mansfield & Wayman, 2002; Ma, 2003).
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Experiments using different combinations of wavelet coefficients were performed and the
results obtained from different combinations were compared as shown in Table 1. The selected
combination gives the best correct recognition rate (CRR) for a minimum feature vector length
of 364 bits only.

Combinations Quantization |CRR |Vector Size
CH4 (D&V) 2 bits 69% |156 bits
CH4 (V&H) 2 bits 73% |156 bits
CH4 (D&H) 2 bits 70% |156 bits
CH4 (D&V) + CH5 (V) 2 bits 76% |182 bits
CH4 (D&V) + CH5 (H) 2 bits 82% [182 bits
CH4 (D&V) + CH5 (D) 2 bits 77.8%|182 bits
CH4 (D&V) + CH5 (D&V) 2 bits 83% |208 bits
CH4 (D&V&H) 2 bits 85% |162 bits
CH4 (H) + CH5 (H) 4 bits 92% |208 bits
CH4 (H) + CH5 (V) 4 bits 89% |208 bits
CH4 (H) + CH5 (V&H) 4 bits 95% |260 bits
CH4 (D) + CH5 (V&H) 4 bits 72% 260 bits
CH4 (V) + CH5 (V&H) 4 bits 68.5% (260 bits
CH4 (D&H) 4 bits 92% |312 bits
CH4 (D&V) 4 bits 62% |312 bits
CH4 (V&H) 4 bits 88% |312 bits
CH5 (V&H) 4 bits 54% |312 bits
CH5 (V&D) 4 bits 49% |312 bits
CH4 (V&H) + CH5 (V) 4 bits 90% |368 bits
CH4 (V&H) + CH5 (H) 4 bits 93% |368 bits
CH4 (D&V) + CH5 (D&V) 4 bits 71% |416 bits
CH4 (V&H) + CH5 (V&D) 4 bits 90.5% |416 bits
CH4 (V&H) + CH5 (V&H) 4 bits 96% |416 bits
CH4 (V&D&H) 4 bits 91% |468 bits
CH4 (H)4; + CH4 (V), 2 bits and 4 bits|99% |364 bit
CH5 (V)4 + CH5 (H)4 + CH5 (D),

Table 1. Comparison between multiple wavelet coefficients
(D: Diagonal coefficients, H: Horizontal coefficients, and V: Vertical coefficients)

With a pre-determined separation Hamming distance, a decision can be made as to whether
two templates were created from the same (a match) or different iris. However, the intra- and
inter-class distributions may have some overlap, which would result in a number of incorrect
matches or false accepts, and a number of mismatches or false rejects. Table 2 shows the false
accepts rate (FAR) and false rejects rate (FRR) associated with different separation points.

Figure 15 shows the inter- and intra-class distribution of the system with a Hamming distance
separation point of 0.29. With this separation point, FAR and FRR of 0% and 1%, respectively,
are achieved. Such FRR are appeared due to the overlap between the classes, but it still allows
accurate recognition.
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Threshold FAR (%)|FRR (%)
0.20 0.00 59.34
0.24 0.00 28.80
0.26 0.00 10.30
0.28 0.00 3.87

0.29 0 1.00
0.30 1.51 0.86
0.32 543 0.00

0.36 26.47 0.00

0.38 48.68 0.00

Table 2. False accept and false reject rates for CASIA database with different separation

points.
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Fig. 15. The distribution of intra-class and inter-class distances with a separation point of 0.29

Table 3 shows a comparison between the proposed method and other well-known methods in
terms of the classification rate.

Method Feature Lengths (bits) CRR (%)|Used Database
Narote (Narote et al., 2007) {1088 99.20 CASIA (CAS, 2004)
Poursaberi (Poursaberi &|544 97.22 CASIA (CAS, 2004)
Araabi, 2007)

Hariprasath (Hariprasath & 4096 99.00 UBIRIS (UBI, 2004)
Mohan, 2008)

Xiaofu (Xiaofu & Pengfei,|1536 98.15 CASIA (CAS, 2004)
2008)

Proposed 364 99.00 CASIA (CAS, 2004)

Table 3. Comparison of feature vector length and the correct recognition rate (CRR).
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In the two methods shown in references (Narote et al., 2007) and (Hariprasath & Mohan, 2008),
the CRR is so close to the obtained one in this research. In fact, the dimensionality of the
feature vector in both methods is much higher than that in the proposed method. The feature
vector consists of 1088 bits in reference (Narote et al., 2007) and 4096 in reference (Hariprasath
& Mohan, 2008), while it consists of only 364 bits in the proposed method. In addition, neither
reference (Narote et al., 2007) nor (Poursaberi & Araabi, 2007) have suggested a method for
removing eyelids or eyelashes. Furthermore,reference (Poursaberi & Araabi, 2007) suggested
a method to produce 544 bits of feature vector by applying four-level Wavelet transform on
the lower part of the iris assuming that only the upper part is occluded by the eyelashes and
eyelids while the lower part is not. On the other hand, reference (Xiaofu & Pengfei, 2008)
employed two-dimensional complex Wavelet transform for feature extraction but no method
for noise removal has been applied.

2.10 Conclusions

In this application, an iris recognition algorithm using Wavelet texture features was presented
with a novel masking approach for eyelid removing. A masked area around the iris is used in
the iris detection method. This area contains a complex and abundant texture information
which are useful for feature extraction. The feature vector is quantized to a binary one,
reducing the processing cost, while maintaining a high recognition rate.

Experimental results using CASIA database illustrate that relying on a smaller but more
reliable region of the iris, although reduced the net amount of information, hence, improving
the recognition performance. The results clearly demonstrate that the feature vector consisting
of concatenating LH4, HL4, LH5, HL5, and HHb gives the best results. On the other hand, Haar
wavelet is particularly suitable for implementing high-accuracy iris verification /identification
systems and the feature vector is the smallest with respect to other wavelets. In identification
mode, the CRR of the proposed algorithm was 99% with template size of 364 bits. Such vector
size can be easily stored on smart cards and, hence, the matching and encoding time will be
minimized tremendously.

The proposed algorithm is characterized by having less computational complexity compared
to other methods. Based on the comparison results shown in Table 3, it can be concluded
that the proposed method is promising in terms of execution time and performance of the
subsequent operations due to template size reduction.

3. The NDT application: automatic detection and classification of weld flaws in
ultarsonic time-of-flight diffraction data using wavelet transform and support
vector machines

Non-destructive testing is commonly used to monitor the quantitative safety-critical aspects
of manufactured components and forms one part of quality assurance procedures. For
applications such as the inspection of welded joints in steel structures, ultrasonic techniques
are often the NDT method of choice. Time-of-flight diffraction (TOFD) is one such technique,
developed by Silk (Silk, 1998) in the late 1970s to improve the sizing accuracy of flaws.
Currently, the critical stages of TOFD data processing and interpretation are still performed
off-line by skilled operators. This is a time-consuming and painstaking process requiring high
operator skill, alertness, consistency and experience.
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The TOFD data acquisition and display configurations themselves may introduce a host
of errors that cannot be accounted for by manual interpretation, leading to reduction
in the quality of the acquired data. Noise formed from scattering of inhomogeneous
micro-structures and electronic circuitry is another source of errors. Automatic data
processing is often made difficult by this superimposed noise, as it can sometimes mask
indications due to small but potentially dangerous defects (Zahran, 2010; Cacciola et al.,
2007; Al-Ataby & Al-Nuaimy, 2011; Charlesworth & Temple, 2001). The task of defect
classification in noisy data is another critical challenge. Correctly identifying flaw categories
has great importance in the process of decommissioning of work pieces and structures
through identifying the nature of flaws (serious or negligible).

In this research, the Wavelet transform is used as a method for de-noising to improve the
quality of the acquired data. For classification, the support vector machines classifier is used
to discriminate between defect classes with input features that also depend on the use of the
Wavelet transform. The data used to test the efficiency of the suggested methods is obtained
from D-scan TOFD samples collected after applying TOFD on test plates using ultrasonic
probes of 5 MHz center frequency with a sampling rate of 100 MHz and a collection step
of 0.1 mm. The region of interest in this research is the compression wave area that is enclosed
between the lateral wave and the backwall echo.

3.1 Time-of-flight diffraction (TOFD)

Unlike conventional ultrasonic techniques (such as pulse echo), TOFD is based on
measurement of the time-of-flight of the ultrasonic waves diffracted from the tips of
discontinuities originating from flaws. Echo strength in TOFD does not depend on the flaw
orientation, allowing flaw sizes to be accurately determined (generally accurate to within
£2 % of wall thickness, typically less than =1 mm), with a high probability of detection of
approximately 95% (Cacciola et al., 2007; Al-Ataby & Al-Nuaimy, 2011). Two longitudinal
broad beam probes are used in a transmitter-receiver arrangement, so that the entire flaw
area is flooded with ultrasound and, consequently, the entire volume is inspected using a
single scan pass along the inspection line. The collected data are digitised and stored. This
data can be visualised in an A-scan representation or stacked together side-by-side in a raster
representation called a D-scan (longitudinal) or B-scan (parallel) depending on the relative
scanning direction.

During interpretation, there are generally four characteristic signals that are sought:

1. The lateral wave which arises from the wave that travels directly from the transmitter to
the receiver.

2. The flaw top tip diffracted wavefront.

3. The flaw bottom tip diffracted wavefront.

4. The backwall reflection which arises from wave reflected from the bottom surface.

Figure 16 (a) depicts a typical A-scan (amplitude returns) when using the equipment to scan

a component under test with a defect. Figure 16 (b) is the result after stacking all the returned
A-scans to generate a D-scan image.
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Fig. 16. TOFD returns. (a)A typical A-scan wave with a defect, (b) A D-scan image with
labelled indications and regions

3.2 Data quality enhancement and pre-processing

Raw TOFD data returns from the data acquisition process are in need of significant processing
before being "usable" for automatic defect evaluation specifically when noise and other
factors are present. The processing may include noise suppression (de-noising), scan
alignment and accurate detection of the lateral wave (Zahran, 2010; Cacciola et al., 2007;
Al-Ataby & Al-Nuaimy, 2011; Charlesworth & Temple, 2001). These operations can be
done in an automatic way to minimize the inconsistency and error introduced by human
factors and without reducing the spatial resolution of the acquired data. Effective quality
enhancement and pre-processing facilitate successful and accurate automatic defect detection
and subsequent classification, positioning and sizing.

This part shows the role played by the Wavelet transform and other important operations to
improve the quality and consistency of the raw TOFD data to be used for automation and
computer interpretation purposes.

3.2.1 De-noising and the MRA

The removal of noise from noisy data while preserving useful information is often referred
to as de-noising. Due to its computational efficiency, multi-resolution analysis (MRA) is
considered as a powerful tool in de-noising and to enhance the SNR of ultrasonic TOFD
signals (Graps, 1995; Matz et al., 2004; Robini et al., 1997). The Wavelet transform offers an
inherent MRA that can be used to obtain the time-frequency representation of the ultrasonic
signal. The de-noising procedure used in this research is based on decomposing the signal
using the discrete Wavelet transform (DWT). The global dynamics of an NDT-related signal
f(t) are condensed in the Wavelet approximation coefficients (WACs) that are related to the
low frequencies. On the other hand, local oscillations of f(t) (like noise) are depicted in a set
of so called Wavelet detail coefficients (WDCs) that are related to the high frequencies.

After the application of DWT to get the WACs and the WDCs, the next step is thresholding
of some WDCs and reconstruction of the signal from the other WDCs and WACs using the
inverse transform (IDWT). The method is a generalization of Wavelet decomposition that
offers a larger range of possibilities for signal analysis. In normal Wavelet analysis, a signal
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is split into WACs and WDCs. The approximation is then itself split into a second-level
approximation and detail, and the process is repeated. In this analysis, the detail coefficients
as well as the approximation coefficients can be split. This analysis is called the Wavelet packet
transform (WPT) (Matz et al., 2004; Robini et al., 1997) (see Figure 17). Hard thresholding was
employed with the threshold computed from WDCs at each level of decomposition based on
the standard deviation as follows (Robini et al., 1997):

1 Y )
9 = k mi:1 (Dl - D) (11)

where k is a factor related to the ratio of peak value to the RMS value, D; is the WDC at each
level and N is the length of each set of details coefficients.

,r Signal jl
A1 D1

J —

| AAA3 | | DAA3 | I ADA3 | | DDA3 I IAAD3 | | DAD3 | ADD3 DDD3

Fig. 17. Discrete multi-resolution scheme - WPT; A is the approximation (low-pass)
component and D is the detail (high-pass) component

In order to assess the quality of the suggested de-noising process, the SNR is computed
for different defect samples. The obtained SNR values were calculated using the following
equation (Matz et al., 2004):
SNRyp = 20log (SRﬂ) (12)
NrMsN
where Spysr is the RMS value of the filtered signal, and Ngpssn is the RMS value of the
noise-only part of the raw signal.

In this research, three decomposition levels are used with Daubechies (db6) as the Wavelet
filter. When compared with averaging or Wiener filtering, de-noising through Wavelet
transform returned higher SNR values. Figure 18 shows some D-scan samples before and
after applying Wavelet de-noising method with the corresponding SNR. Although SNR
improvement for human interpretation before and after applying de-noising may not appear
significant, this improvement is more than adequate in terms of automation and computer
interpretation. The performance of the subsequent processing stages shows remarkable
enhancement after the de-noising process.

3.2.2 Other pre-processing steps

In addition to de-noising, the process of data quality enhancement includes other important
operations to improve the quality and consistency of the data to enable accurate defect
characterization and positioning downstream. Scan alignment is one of these operations. A
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Fig. 18. Wavelet de-noising. Scans of column (a) are before de-noising and (b) are after
de-noising with their corresponding SNR values

number of data acquisition factors may contribute to the misalignment of adjacent A-scans,
including couplant thickness variations, surface irregularities, in-advertent changes in probe
separation and accidental probe lift-off (Zahran, 2010; Charlesworth & Temple, 2001). As the
tips of the defects must be accurately located within the material and the lateral wave is used
as reference points, aligning adjacent scans is essential. In this research, scan alignment is
carried out by cross-correlating each scan with an arbitrary "reference" scan (first A-scan in
the image).

The positions of the peaks in these cross-correlation plots are used to automatically shift each
A-scan forward or backward in time in such a way as to align the envelope of the lateral
wavelets. This not only influences the profile of the lateral wave, but also the shapes of the
defect signatures themselves.

Automatic detection of the lateral wave is another essential pre-processing operation. The
lateral wave is an important reference point specifically when sizing and positioning is
considered. It is also needed for scale linearization and calibration. To detect the lateral wave,
the first major wavelet peak (or trough, depending on the phase) of the aligned A-scans is
detected.

3.3 Automatic flaw detection based on MRA-WPT and fuzzy logic

This part illustrates some techniques that are followed in this research to detect flaws
automatically. MRA based on WPT along with texture analysis are used to select (or filter)
the image(s) to be used in the automatic detection process. Image segmentation is then used
to highlight and enclose defects inside windows (called defect blobs). Segmentation can be
done by statistical methods (e.g. variance thresholding) or through computational intelligence
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methods (in this case, fuzzy logic). The output of this step is a group of segmented defect blobs
that are ready for further analysis and classification.

3.3.1 MRA-WPT for image filtering (selection)

As mentioned previously, the application of MRA to DWT is referred to as the Wavelet packet
transform (WPT), which is a signal analysis tool that has the frequency resolution power of
the Fourier transform and the time resolution power of the Wavelet transform (Cacciola et
al., 2007; Al-Ataby & Al-Nuaimy, 2011; Graps, 1995; Robini et al., 1997). It can be applied
to time-varying signals, where the Fourier transform does not produce useful results, and
the Wavelet transform does not produce sufficient results. The WPT can be considered an
extension to the DWT, providing better reconstruction. In the Wavelet packet framework,
compression and de-noising ideas are exactly the same as those developed in the Wavelet
framework. The only difference is that WPT offers more complex and flexible analysis, as
the details as well as the approximations are split (Cacciola et al., 2007) (refer to Figure 17).
The tree decomposition in the Wavelet packet analysis can be applied continuously until the
desired coarser resolution is reached.

A single Wavelet packet decomposition gives different bases from which the best
representation with respect to a design objective can be selected. This can be done by finding
the best tree based on an entropy criterion (Cacciola et al., 2007). Selection can also be done
based on texture analysis and statistical contents of the obtained images. Wavelet packet
analysis is used in this research in two more important areas. The first area is to aid in
detection (hence segmentation) of flaws based on fuzzy logic thresholding. The second area
is to provide a ground for selecting defect blob features to be used as inputs to the SVM
classifier in the classification stage (will be explained later). Both areas rely on the powerful
compression ability of the Wavelet transform in general and WPT in particular to extract
relevant and descriptive features.

The application of WPT to the D-scan images was done to analyze the scan image into
multiple decomposition levels using the Debauchies of order 8 (db8) chosen as the most
suitable analyzing mother function in the Wavelet packet filtering process. The chosen level of
decomposition is 3 since it achieved the required coarse resolution and higher decomposition
levels would not add any significance to the analysis. First, the D-scan image is decomposed
by the WPT (db8, L=3) in the first level. The grey-level co-occurrence matrix (GLCM) P(i, j)
is then calculated for the decomposed images. The descriptors or features that characterize
the content of GLCM are calculated. The following are the three descriptors that are used in
selection of the images for reconstruction (Haralick et al., 1973):

¢ Contrast:
Y li— i pif) (13)
L]
¢ Energy:
Y- [p(i i) (14)

i,j
¢ Entropy:

www.intechopen.com



242 Wavelet Transforms and Their Recent Applications in Biology and Geoscience

= 2_p(i,)-log(p(i,f)) (15)
L]
where p(i, j) is the normalized GLCM P(i, ).

Based on these three descriptors, the image with the weakest textural information is
discarded, and the one with the highest statistical contents is selected. After that, another
decomposition level runs to generate the new set of images. The calculation of the descriptor
commences again. The process of decomposition proceeds until level 3, and the final image
is reconstructed from three images carrying the highest statistical textural information in the
last level. This image is the key input to the next stages.

The above processing has shown to be effective in generating filtered scan images that are rich
in its textural and statistical contents, showing only relevant details and indications. Hence,
segmentation and classification of flaws have been affected positively in terms of performance,
consistency and accuracy.

3.3.2 Segmentation through fuzzy logic

The segmentation technique used in this research to extract defect blobs is based on the
use of fuzzy logic, namely the fuzzy c-mean iterative (FCMI) algorithm (Wong et al.,
2001). This method has shown better performance in terms of accuracy and automation
than others, which are based on statistical thresholding concept. The method is suitable
to distinguish between superimposed defects when normal means (via trained operator or
statistical methods) fail. The input to this algorithm is the final filtered image after MRA-WPT
(explained previously). The algorithm acts as a binarization operation, with black pixels
(values set to zeros) represent background and white pixels (values set to ones) represent
flaws. This image (or mask in this case) is used to segment the input image after some further
processing. Segmentation through FCMI algorithm is a method that can be implemented as
supervised or unsupervised. In this research, unsupervised implementation is used. The
details of the implementation of this method to segment the defect in TOFD images are out of
scope of this research.

For better representation of the detected defects, each defect blob is represented in the form of
a rectangular outlining the defect. This is achieved by applying a global thresholding of each
defect blob separately in order to remove the lowest 10% of the pixel intensity values within
the defect blob and then recording the minimum and the maximum spatial and temporal
dimensions for each blob. This empirical threshold value proved to result in satisfactory
performance for all the scan files considered. These recorded dimensions are used to generate
a new mask with each defect blob represented by a rectangular outline. Defect may consist of
more than one segment. As every defect should be represented in one rectangular blob, this
problem is overcome by merging the rectangular blobs related to the same defect based on the
dimensions between different blobs (Zahran, 2010). After some processing, the output of this
step is a segmented image data with highlighted defects areas or blobs. An example is shown
in Figure 19.

3.4 Automatic classification using SVM and wavelet features

In the context of supervised classification, machine learning and pattern recognition are
the extraction of regularity or some sort of structure from a collection of data. Neural
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(a) (b)

Fig. 19. Automatic segmentation. (a) Before segmentation, (b) Segmentation mask, (c)
Segmented defect blobs

networks (NN) and Bayesian classifiers are the typical examples to learn such organization
from the given data observations. Support vector machines (SVM) classifier is relatively
new and is based on strong foundations from the broad area of statistical learning theory
(SLT) (Vapnik et al., 2000). SVM classifier has become, in practice, the classifier of choice
of numerous researchers because it offers several advantages which are typically not found
in other classifiers like maximization of generalization ability, no local minima problem, low
computational overhead, can work perfectly with lack of training data, robust with noisy data,
does not suffer as much from the curse of dimensionality and prevents overfitting (Vapnik et
al., 2000; Rajpoot & Rajpoot, 2004; Al-Ataby et al., 2010).

3.4.1 The support vector machines

The SVM tries to maximize the margin between classes, hence increases the generalization
ability. The SVM classifier is fundamentally developed for binary classification case and
is extendable for multi-class situation. The classification problem can be restricted to
consideration of the two class problem without loss of generality. The goal is to produce a
classifier that works well on unseen examples.

The SVM classifier, like other linear classifiers, attempts to evaluate a linear decision boundary
(assuming that the data is linearly separable) or a linear hyperplane between the two classes.
Linearly separable data can be separated by an infinite number of linear hyperplanes. The
problem is to find the optimal separating hyperplane (see Figure 20 (a)) with maximal
margin M=2/||W||. It has been shown by Vapnik (Vapnik et al., 2000) that this is a classical
quadratic programming (QP) problem with constraints that ends in forming and solving of a
Lagrangian. Once the Lagrange multipliers for the optimal hyperplane have been determined,
a separating rule can be used in terms of support vectors and the Lagrange multipliers.

The concepts above are presented for a linear classification case. These are generalizable to
a nonlinear case where a mapping function is used to map the input space into a higher
dimensional feature space such that the non-linear hyperplane becomes linear by using a
mapping function & as shown in Figure 20 (b). To avoid the increased computational
complexity and the curse of dimensionality, a kernel-trick or kernel function is employed
which, in essence, computes an equivalent kernel value in the input space such that no
explicit mapping is required. Kernels commonly used with kernel methods and SVM in
particular are linear, polynomial and Gaussian radial basis function (RBF) (Vapnik et al., 2000;
Rajpoot & Rajpoot, 2004; Al-Ataby et al., 2010). In this research, a multiclass SVM classifier
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] b

Fig. 20. SVM classification concept (a) Evaluation of an optimal hyperplane, (b) Feature
mapping

is implemented using one-against-all (OAA) method (Vapnik et al., 2000), where multiclass
problem is reduced into multiple binary problems. A polynomial kernel of degree 5 is used in
this implementation.

3.4.2 Wavelet features

Large variety of feature extraction methods exist which are based upon signal processing
(or filtering) techniques. Wavelet filtering is one such method that can be successfully used
for feature extraction. The idea of using the Wavelets for feature extraction in classification
context is not entirely new and has been applied before to texture analysis (Rajpoot &
Rajpoot, 2004; Al-Ataby et al., 2010; Huang & Aviyente, 2008), and researchers have been
using it for over a decade or so in one form or the other. The inherent capability to do
so was highlighted on MRA using the Wavelet transform. As explained before, Wavelet
transform decomposition and its extension, WPT, have gained popular applications in the
field of signal/image processing. Wavelet transform enables the decomposition of the image
into different frequency subbands, similar to the way the human visual system operates.
This property makes it especially suitable for image segmentation and classification (Rajpoot
& Rajpoot, 2004; Al-Ataby et al.,, 2010; Huang & Aviyente, 2008). For the purpose of
classification, appropriate features need to be extracted to obtain a representation that is as
discriminative as possible in the transform domain. It is known that proper feature selection
is likely to improve the classification accuracy with less number of features. A widely
used Wavelet feature is the energy of each Wavelet subband obtained after WPT (Huang &
Aviyente, 2008).

Two-dimensional WPT decomposition allows analyzing an image simultaneously at different
resolution levels. Different functions for energy can be used to extract features from
each subband for classification. Commonly used energy functions include magnitude |.|,
magnitude square |.|? and the rectified sigmoid |tanh(-).| (Huang & Aviyente, 2008). In this
research, the definition of energy based on squaring is used. The energy at different subbands
is computed from the subband Wavelet coefficient:

A0 =LY )] (16)
i

where (7%, (k) is the energy of the obtained (decomposed) image projected onto the subspace
at node (p, k) . The energy of each subband provides a measure of the image characteristics
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in that subband. The energy distribution has important discriminatory properties for images
and as such can be used as a classification feature (Huang & Aviyente, 2008).

3.4.3 Discussions and results

This research focuses on automatic detection and classification of three types of defects that
are pure internal. These are clearly embedded and not open to or approaching either surfaces,
and require advanced visual processing for interpretation. Apparent defects, on the other
hand, like upper crack, near surface slag and others may be classified using geometrical and
phase information alone (Zahran, 2010; BS, 1993).

D-scan test samples containing 50 documented defects were used in the classification stage.
The test samples and TOFD equipment are provided by Lavender International NDT Ltd, UK.
After applying the operations thar are mentioned previously on the test samples, 50 defect
blobs were obtained. The targeted defects for classification are summarized in Table 4 below,
along with the corresponding number of samples per each defect type.

To train the SVM classifier, each defect blob sample is analyzed by MRA-WPT with
Daubechies 6-tap filter (db6) and a 3-level decomposition (L=3) to generate decomposition
subbands. After each decomposition level, the energies are calculated. A feature vector
of length 12, which contains energies (4 values per each level), is generated. It was found
that by adding some regional features of each defect blob, the performance of the classifier
was enhanced against the unseen defects. For that purpose, three regional features (after
considering the defect blob as an image containing different-shaped regions and applying
simple thresholding to it) are added to the Wavelet feature vector, hence forming a final feature
vector of 15 values. These three regional features are:

¢ Total number of islands: represents the number of the islands (segmented regions) in the
absolute of the defect blob after thresholding.

* Number of positive islands: represents the number of the islands in the defect blob after
thresholding.

¢ Relative area: represents the actual number of pixels in the regions of all islands divided
by the area of the blob outlining all islands.

It should be noted that this feature vector of length 15 was found suitable for classification
based on the defect types to be classified and the available samples (defined in Table 4). Larger
feature vectors would be needed to classify more defect types to avoid overfitting.

The 50 defect blobs have been used to obtain different training and testing patterns. The
output of the SVM classifier is a number which codifies each kind of defect as follows: 1 for
IC, 2 for PO and 3 for SL. As mentioned previously, the SVM classifier has been trained using
a 5-degree polynomial kernel implementing the OAA method for the case of study. At the
end of the training phase, test patterns are applied and the SVM classifier returns a particular
matrix, so called confusion matrix (CM) (Cacciola et al., 2007), which evaluates the goodness
of a trained classifier. Generally speaking, the element CM;; of a CM is the probability that
a single pattern belonging to the i-th class could be classified as belonging to the j-th class
(sum of elements of each rows is therefore equals to 1). Thus, the more the CM is similar to
the identity matrix, the better classification performance is. The other performance factors that
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Defect |Symbol|Description Code|Figure example Availablg
type samples

Internal IC Shows up two echoes with|1 15
crack some small irregularities

between them.
Porosity PO A group of similar echoes|2 15

with no resolvable length.
Each echo shows only
upper tip echo without the
lower tip echo. Similar to
patterns of acoustic noise
and appears as a group of

small arcs.
Large |SL Shows as two echoes. The|3
slag echo from the upper tip is
lines larger in size and brighter
than the echo from the
bottom tip.

Table 4. Defect samples used in the classification

were selected to assess the SVM classifier are the classification accuracy (CA) and the precision
(P). In terms of CM elements, classification accuracy and precision are defined as follows:

nc

Y. CM;;

CA="=1 «100% (17)
nc

P=—) e — x100% (18)
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where nc is the number of classes to be discriminated (1¢=3 in the present case).

Table 5 shows the resulting performance of the built SVM classifier for three different tests.
It can be seen from this table that after applying the built SVM classifier using 34%, 50% and
60% of the available defect samples for training, classification rates of 80%, 93% and 100%
were obtained, respectively. Figure 21 is an output example of the classification stage.

Fig. 21. Automatic classification output

Defect{No. of|No. of|Total|Classifier performance metrics
training |testing
samples [samples
IC 5 10 15 [0.6 0.0 0.4 ]
Test 1/PO |5 10 15 |CM=10.0090.1 | CA=80%, P=83%
SL 7 13 20 0.1 0.0 0.9
IC |8 7 15 [0.80.00.2]
Test2|/PO |8 7 15 |CM = {0.01.00.0 | CA=93%, P=94%
SL 9 10 20 0.00.01.0
IC 10 5 15 1.0 0.0 0.0 ]
Test 3|PO_ |10 5 15 |CM = 0.0100.0 | CA=100%, P=100%
SL 10 10 20 0.00.01.0

Table 5. Performance of the SVM classifier for different training and test patterns

3.5 Conclusion

This research has presented several promising methods to aid in the automation of detection
and classification of flaws using TOFD, specifically when there is a lack of data quality. These
methods are under development and need to be studied and tested thoroughly on real life
examples before being generalized and applied as reliable automatic interpretation methods.
The following are the main conclusions and findings after applying the above methods:

* The de-noising of data (using Wavelet transform) affects positively the detection accuracy
and the performance of the classifier.
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¢ The SVM classifier is robust and promising. It shows good performance when there is lack
of training data (which is not the case with other classifiers like NN).

¢ The use of defect blobs Wavelet features as inputs to the SVM classifier seems to be in favor
of the overall classification performance.

¢ It was noted that the response time of performing detection and classification processes
using the proposed methods is relatively short compared to others (mainly, the time
domain methods).

Future work will be focusing on utilizing and extending the techniques mentioned in this
research to perform automatic defect sizing and positioning, with the possibility of making
use of the mode-converted waves to add more advantage to the D-scan method. Also, the
SVM classifier will be studied thoroughly and extended to classify other internal defect types
like small piece of slag (with single echo), lack of fusion, lack of penetration and others, with
the possibility of generating different feature vectors utilizing phase information of defect
echoes and using principal component analysis (PCA) to reduce and select relevant features.
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