
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



8 

Improvement of Shimmer  
Parameter of Oesophageal  

Voices Using Wavelet Transform 

Ibon Ruiz and Begoña García Zapirain 
Deusto Institute of Technology, Deustotech-LIFE Unit, University of Deusto, Bilbao 

Spain 

1. Introduction 

This chapter presents an oesophageal speech enhancement algorithm. Such an exceptionally 
special type of voice is due to the laryngectomy undergone by those persons with larynx 
cancer. An oesophageal voice has extremely low intelligibility. The parameter values 
characterising the voice go beyond normal levels. This chapter proposes a method to 
improve its quality, which consists in improving Shimmer parameter using Wavelet 
transform and stabilizing the transfer function poles of the vocal tract model so as to 
improve a signal’s formants. With this aim, the joint use of two techniques has been applied: 
on the one hand, Digital Wavelet Transform technique to normalise Shimmer and, on the 
other hand, an algorithm that transforms the modulus and phase of vocal tract’s poles 
technique. The final speech improvement has been measured with the help of 
Multidemensional Voice Program (MDVP) (Deliyski, 1993) tools and the Shimmer and 
Harmonic to Noise Ratio (HNR) parameters. 

Communication ability of human beings can be extremely influenced by voice disorders. 
When any problem in the larynx or changes in the voice pitch appear, it could be important 
to go to the specialist’s office to examine the vocal folds movements. 

Specialists use computational tools in the objective diagnosis of vocal folds pathologies by 
means of a set of acoustic parameters among others. There are some patients with severe 
degradations of speech, as they are the oesophageal voice of laryngectomees.  

Patients who have undergone a laryngectomy as a result of larynx cancer have exceptionally 
low intelligibility. This is due to the removal of their vocal folds, which forces them to use 
the air flowing through the oesophagus: this is known as oesophageal speech. The 
characterization parameters for these kinds of oesophageal voices go beyond normal ranges, 
due to the low quality of the sound itself and its intelligibility. 

The cancer of the vocal folds needs to pay special attention in its diagnosis, treatment, 
rehabilitation and monitoring mainly because it can cause death. Once the cancer has been 
detected, the otolaryngology (ORL) arranges the vocal folds removal. This implies that 
patients in such situation will not be able to produce laryngeal voice and hence, they lose 
the speaking ability. The second most common type of cancer is larynx cancer with a rate of 
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95%. Every year approximately 136,000 new cases of larynx cancer are diagnosed in the 
world, with an average survival rate of 5 years in 68% of the cases. 

After the operation and during the rehabilitation, the patient will begin the learning stage of 
oesophageal speech: the voice produced due to the modulation of the air by means of the 
oesophagus. This will allow the patient to use oesophageal speech which has a degraded 
quality but it makes possible to maintain a fluid oral communication.  

Low intelligibility is the main problem in both oral and telephone communications with 
other people. In addition, the noise of this kind of speech signal is especially high. This fact 
has an extremely negative effect on the objective voice parameters, such as pitch, jitter, 
shimmer and HNR (Harmonic to Noise Ratio). Thus, it is necessary to process voice signal 
in order to increase intelligibility. The voice enhancement will be measured by those 
objective parameters. Therefore, the main aim of this work is to recover the normal range of 
those parameters, to facilitate the laryngectomized collective communication. 

Thus, it is necessary to process voice signals in order to increase intelligibility. The voice 
enhancement will be measured by the objective parameters. Therefore, the main aim of this 
work is to recover the normal range of the parameters, to facilitate the laryngectomized 
people communication. 

The general objective of this work is to develop an algorithm to enhance and the voice for 
people who have voice disorders. 

2. Methods and system design 

2.1 Acoustic parameters 

The voice enhancement will be measured by the objective parameters. Therefore, the main 
aim of this work is to recover the normal range of the parameters, to facilitate the 
laryngectomized collective communication. 

The pitch (Baken & Orlikoff, 2000) is the property of a sound or musical tone measured by 
its perceived frequency. Due to de pseudo-periodic nature of the voiced speech, there are 
variations in the instantaneous frequency fi so the pitch can be defined as 

 1( )

N

i
i

f

Pitch Hz
N



 (1) 

being N the number of extracted pitch periods. 

Fundamental frequency estimation has consistently been a difficult topic in audio signal 
processing because is so difficult to define the time instants which define the voice cycles 
used to obtain their related instantaneous frequency, fi. 

Furthermore, in acoustical parameterization it is of capital importance to calculate those 
instants because they are basic features used in this kind of characterization. 

Jitter (Baken & Orlikoff, 2000) is a parameter that represents the variation of the 
fundamental frequency: 
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Name Notation Definition Units id 
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sf.- smoothing factor (typically odd) 

m.- ½*(sf-1) 

% (6) 

Table 1. Jitter definition formulae 

In the other hand, specialists also use the reference of shimmer (Baken & Orlikoff, 2000) 
which is the parameter that represents the amplitude perturbation of the voice signal. The 
voice produced in vocal folds is supposed to have the ability to maintain its amplitude 
almost constant, thus an increased value of shimmer may imply a symptom of a voice 
disorder. 

The possible mathematical definitions of shimmer are the following: 
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Name Notation Definition Units id 
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sf – smoothing factor (typically odd) 

m.- ½*(sf-1) 

% (9) 

Table 2. Shimmer definition formulae 

Several authors have reported decent results using voice cycle detection (Chen & Kao, 2001) 
(Hagmüller & Kubina, 2006) and there are many techniques widely detailed in literature: 
time domain estimators (e.g. Zero Crossing Rate (Kedem, 1986)), fundamental frequency 
estimators (Dorken & Nawab, 1994) (Piszczalski & Galler, 1979), Autocorrelation methods 
(Yin Estimator, (Cheveigné & Kawahara, 2002)), Phase Space representation (Gibiat, 1988), 
Cepstrum (Flanagan, 1965) and Statistical Methods (Sano & Jenkins, 1989) (Doval & Rodet, 
Estimation of fundamental frequency of musical sound signals, 1991) (Doval & Rodet, 1993). 
Some of them define directly the voice cycles (Chen & Kao, 2001) while others are used to 
calculate a numerical approximation (Cheveigné & Kawahara, 2002) to the fundamental 
frequency value. In these ones, a further step is necessary in order to identify clearly which 
instants define the voice cycles. 

The HNR is a general evaluation of noise present in the analyzed signal. It is defined as (10), 
rp(0) and rap(0) being the respective energies of the periodic and aperiodic components: 

 (0)

(0)

p

ap

r
HNR

r
  (10) 

The measures have been made with the help of MDVP from Kay Electronics important 
software that gives good estimations of a signal’s parameters. However, this software is not 
specialized in pathological speech. To fix this problem, the voiced period marks are needed 
to calculate the pitch and then the HNR have been manually introduced, one by one, on 
each signal. 
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The MDVP calculates the HNR as the average ratio of the harmonic spectral energy in the 
frequency range 70-4500 Hz and the enharmonic spectral energy in the frequency range 
1500-4500 Hz (Deliyski, 1993) (Yumoto & Gould, 1982). 

2.2 Wavelets  

It is well known from Fourier theory that a signal can be expressed as the sum of a, possibly 
infinite, series of sines and cosines. This sum is also referred to as a Fourier expansion. The 
big disadvantage of a Fourier expansion however is that it has only frequency resolution 
and no time resolution. This means that although we might be able to determine all the 
frequencies present in a signal, we do not know when they are present. To overcome this 
problem in the past decades several solutions have been developed which are more or less 
able to represent a signal in the time and frequency domain at the same time. 

The idea behind these time-frequency joint representations is to cut the signal of interest into 
several parts and then analyze the parts separately. It is clear that analyzing a signal this 
way will give more information about the when and where of different frequency 
components, but it leads to a fundamental problem as well: how to cut the signal? Suppose 
that we want to know exactly all the frequency components present at a certain moment in 
time. We cut out only this very short time window using a Dirac pulse1, transform it to the 
frequency domain and … something is very wrong. 

The problem here is that cutting the signal corresponds to a convolution between the signal 
and the cutting window. Since convolution in the time domain is identical to multiplication 
in the frequency domain and since the Fourier transform of a Dirac pulse contains all 
possible frequencies the frequency components of the signal will be smeared out all over the 
frequency axis. In fact this situation is the opposite of the standard Fourier transform since 
we now have time resolution but no frequency resolution whatsoever. 

The underlying principle of the phenomena just described is Heisenberg’s uncertainty 
principle, which, in signal processing terms, states that it is impossible to know the exact 
frequency and the exact time of occurrence of this frequency in a signal. In other words, a 
signal can simply not be represented as a point in the time-frequency space. The uncertainty 
principle shows that it is very important how one cuts the signal. 

The wavelet transform or wavelet analysis is probably the most recent solution to overcome the 
shortcomings of the Fourier transform. In wavelet analysis the use of a fully scalable 
modulated window solves the signal-cutting problem. The window is shifted along the 
signal and for every position the spectrum is calculated. Then this process is repeated many 
times with a slightly shorter (or longer) window for every new cycle. In the end the result 
will be a collection of time-frequency representations of the signal, all with different 
resolutions. Because of this collection of representations we can speak of a multiresolution 
analysis. In the case of wavelets we normally do not speak about time-frequency 
representations but about time-scale representations, scale being in a way the opposite of 
frequency, because the term frequency is reserved for the Fourier transform. 

2.2.1 The Continuous Wavelet Transform (CWT) 

The wavelet analysis described in the introduction is known as the continuous wavelet 
transform or CWT. More formally it is written as: 
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 γሺs, τሻ ൌ ׬ fሺtሻΨୱ,த∗ ሺtሻdt  (11) 

where * denotes complex conjugation. This equation shows how a function ƒ(t) is 

decomposed into a set of basis functions Ψୱ,த∗ ሺtሻ, called the wavelets. The variables s and - 

are the new dimensions, scale and translation, after the wavelet transform. For completeness 
sake equation (11) gives the inverse wavelet transform. I will not expand on this since we 
are not going to use it: 

 fሺtሻ ൌ ∬γሺs, τሻΨୱ,த∗ ሺtሻdτds  (12) 

The wavelets are generated from a single basic wavelet Ψ (t), the so-called mother wavelet, by 
scaling and translation: 

 Ψୱ,த∗ ሺtሻ ൌ ଵ√ୱΨቀ୲ିதୱ ቁ (13) 

In (13) s is the scale factor, τ is the translation factor and the factor s-1/2 is for energy 
normalization across the different scales (Lió, 2003) (Ortolan, Mori, Pereira, Cabral, Pereira, 
& Cliquet, 2003). 

It is important to note that in (11), (12) and (13) the wavelet basis functions are not specified. 
This is a difference between the wavelet transform and the Fourier transform, or other 
transforms. The theory of wavelet transforms deals with the general properties of the 
wavelets and wavelet transforms only. It defines a framework within one can design 
wavelets to taste and wishes. 

2.2.2 Discrete wavelet 

Now that we know what the wavelet transform is, we would like to make it practical. 
However, the wavelet transform as described so far still has three properties that make it 
difficult to use directly in the form of (11). The first is the redundancy of the CWT. In (11) 
the wavelet transform is calculated by continuously shifting a continuously scalable 
function over a signal and calculating the correlation between the two. It will be clear that 
these scaled functions will be nowhere near an orthogonal basis5 and the obtained wavelet 
coefficients will therefore be highly redundant. For most practical applications we would 
like to remove this redundancy. 

Even without the redundancy of the CWT we still have an infinite number of wavelets in the 
wavelet transform and we would like to see this number reduced to a more manageable 
count. This is the second problem we have. The third problem is that for most functions the 
wavelet transforms have no analytical solutions and they can be calculated only numerically 
or by an optical analog computer. Fast algorithms are needed to be able to exploit the power 
of the wavelet transform and it is in fact the existence of these fast algorithms that have put 
wavelet transforms where they are today. 

As mentioned before the CWT maps a one-dimensional signal to a two-dimensional time-
scale joint representation that is highly redundant. The time-bandwidth product of the CWT 
is the square of that of the signal and for most applications, which seek a signal description 
with as few components as possible, this is not efficient. To overcome this problem discrete 
wavelets have been introduced. Discrete wavelets are not continuously scalable and 
translatable but can only be scaled and translated in discrete steps. This is achieved by 
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modifying the wavelet representation (13) to create (Tohidypour, Seyyedsalehi, & Behbood, 
2010) (Daubechies, 1992). 

 Ψ୨,୩ሺtሻ ൌ ଵටୱబౠ Ψ൬୲ି୩தబୱబౠୱబౠ ൰  (14) 

Although it is called a discrete wavelet, it normally is a (piecewise) continuous function. In 

(14) j and k are integers and s0 > 1 is a fixed dilation step. The translation factor τ଴ depends 
on the dilation step. The effect of discretizing the wavelet is that the time-scale space is now 
sampled at discrete intervals. We usually choose s0 = 2 so that the sampling of the frequency 
axis corresponds to dyadic sampling. This is a very natural choice for computers, the human 

ear and music for instance. For the translation factor we usually choose τ଴ = 1 so that we 
also have dyadic sampling of the time axis. 

 

Fig. 1. Localization of the discrete wavelets in the time-scale space on a dyadic grid. 

When discrete wavelets are used to transform a continuous signal the result will be a series 
of wavelet coefficients, and it is referred to as the wavelet series decomposition. An important 
issue in such a decomposition scheme is of course the question of reconstruction. It is all 
very well to sample the time-scale joint representation on a dyadic grid, but if it will not be 
possible to reconstruct the signal it will not be of great use. As it turns out, it is indeed 
possible to reconstruct a signal from its wavelet series decomposition. In (Daubechies, 1992) 
it is proven that the necessary and sufficient condition for stable reconstruction is that the 
energy of the wavelet coefficients must lie between two positive bounds, i.e. 

 A‖f‖ଶ ൑ ∑ หۃf, Ψ୨,୩ۄหଶ ൑ B୨,୩ ‖f‖ଶ  (15) 

where ‖f‖ଶ is the energy of ƒ(t), A > 0, B < ∞ and A, B are independent of ƒ(t). When 

equation (A‖f‖ଶ ൑ ∑ หۃf, Ψ୨,୩ۄหଶ ൑ B୨,୩ ‖f‖ଶ  (15) is satisfied, the family of basis functions 
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frame is tight and the discrete wavelets behave exactly like an orthonormal basis. When A ≠ 
B exact reconstruction is still possible at the expense of a dual frame. In a dual frame discrete 
wavelet transform the decomposition wavelet is different from the reconstruction wavelet. 

We will now immediately forget the frames and continue with the removal of all 
redundancy from the wavelet transform. The last step we have to take is making the discrete 
wavelets orthonormal. This can be done only with discrete wavelets. The discrete wavelets 
can be made orthogonal to their own dilations and translations by special choices of the 
mother wavelet, which means: 

ሻݐ௠,௡ሺ∗ߖሻݐ௝,௞ሺߖ׬  ݐ݀ ൌ ቄ				ͳ					݂݅	݆ ൌ ݉	ܽ݊݀	݇ ൌ ݊Ͳ																		݁ݏ݅ݓݎ݄݁ݐ݋  (16) 

An arbitrary signal can be reconstructed by summing the orthogonal wavelet basis 
functions, weighted by the wavelet transform coefficients (Sheng, 1996): 

 fሺtሻ ൌ ∑ γሺj, kሻΨ୨,୩ሺtሻ୨,୩   (17) 

Equation (17)  shows the inverse wavelet transform for discrete wavelets, which we had not 
yet seen. 

Orthogonality is not essential in the representation of signals. The wavelets need not be 
orthogonal and in some applications the redundancy can help to reduce the sensitivity to 
noise (Sheng, 1996) or improve the shift invariance of the transform (Burrus, Goinath, & Guo, 
1998). This is a disadvantage of discrete wavelets: the resulting wavelet transform is no 
longer shift invariant, which means that the wavelet transforms of a signal and of a time-
shifted version of the same signal are not simply shifted versions of each other. 

2.2.3 A band-pass filter 

With the redundancy removed, we still have two hurdles to take before we have the wavelet 
transform in a practical form. We continue by trying to reduce the number of wavelets 
needed in the wavelet transform and save the problem of the difficult analytical solutions 
for the end. 

Even with discrete wavelets we still need an infinite number of scalings and translations to 
calculate the wavelet transform. The easiest way to tackle this problem is simply not to use 
an infinite number of discrete wavelets. Of course this poses the question of the quality of 
the transform. Is it possible to reduce the number of wavelets to analyze a signal and still 
have a useful result? 

The translations of the wavelets are of course limited by the duration of the signal under 
investigation so that we have an upper boundary for the wavelets. This leaves us with the 
question of dilation: how many scales do we need to analyze our signal? How do we get a 
lower bound? It turns out that we can answer this question by looking at the wavelet 
transform in a different way. 

If we look wavelets proprieties we see that the wavelet has a band-pass like spectrum. From 
Fourier theory we know that compression in time is equivalent to stretching the spectrum 
and shifting it upwards: 
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 Fሼfሺatሻሽ ൌ ଵୟ F ቀனୟቁ  (18) 

This means that a time compression of the wavelet by a factor of 2 will stretch the frequency 
spectrum of the wavelet by a factor of 2 and also shift all frequency components up by a 
factor of 2. Using this insight we can cover the finite spectrum of our signal with the spectra 
of dilated wavelets in the same way as that we covered our signal in the time domain with 
translated wavelets. To get a good coverage of the signal spectrum the stretched wavelet 
spectra should touch each other, as if they were standing hand in hand (see Fig. 2). This can 
be arranged by correctly designing the wavelets. 

 

Fig. 2. Touching wavelet spectra resulting from scaling of the mother wavelet in the time 
domain  

Summarizing, if one wavelet can be seen as a band-pass filter, then a series of dilated 
wavelets can be seen as a band-pass filter bank. If we look at the ratio between the centre 
frequency of a wavelet spectrum and the width of this spectrum we will see that it is the 
same for all wavelets. This ratio is normally referred to as the fidelity factor Q of a filter and 
in the case of wavelets one speaks therefore of a constant-Q filter bank. 

2.2.4 The scaling function 

The careful reader will now ask him- or herself the question how to cover the spectrum all 
the way down to zero? Because every time you stretch the wavelet in the time domain with 
a factor of 2, its bandwidth is halved. In other words, with every wavelet stretch you cover 
only half of the remaining spectrum, which means that you will need an infinite number of 
wavelets to get the job done. 

The solution to this problem is simply not to try to cover the spectrum all the way down to 
zero with wavelet spectra, but to use a cork to plug the hole when it is small enough. This 
cork then is a low-pass spectrum and it belongs to the so-called scaling function. The scaling 
function was introduced by Mallat (Mallat, 1989). Because of the low-pass nature of the 
scaling function spectrum it is sometimes referred to as the averaging filter. 

If we look at the scaling function as being just a signal with a low-pass spectrum, then we 
can decompose it in wavelet components and express it like (17): 

 φሺtሻ ൌ ∑ γሺj, kሻΨ୨,୩ሺtሻ୨,୩  (19) 

Since we selected the scaling function φ(t) in such a way that its spectrum neatly fitted in the 
space left open by the wavelets, the expression (φሺtሻ ൌ ∑ γሺj, kሻΨ୨,୩ሺtሻ୨,୩  (19) uses an infinite 
number of wavelets up to a certain scale j (see Fig. 3). This means that if we analyze a signal 
using the combination of scaling function and wavelets, the scaling function by itself takes 
care of the spectrum otherwise covered by all the wavelets up to scale j, while the rest is 
done by the wavelets. In this way we have limited the number of wavelets from an infinite 
number to a finite number. 
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Fig. 3. How an infinite set of wavelets is replaced by one scaling function. 

By introducing the scaling function we have circumvented the problem of the infinite 
number of wavelets and set a lower bound for the wavelets. Of course when we use a 
scaling function instead of wavelets we lose information. That is to say, from a signal 
representation view we do not lose any information, since it will still be possible to 
reconstruct the original signal, but from a wavelet-analysis point of view we discard 
possible valuable scale information. The width of the scaling function spectrum is therefore 
an important parameter in the wavelet transform design. The shorter its spectrum the more 
wavelet coefficients you will have and the more scale information. But, as always, there will 
be practical limitations on the number of wavelet coefficients you can handle. As we will see 
later on, in the discrete wavelet transform this problem is more or less automatically solved. 

Summarizing once more, if one wavelet can be seen as a band-pass filter and a scaling 
function is a low-pass filter, then a series of dilated wavelets together with a scaling function 
can be seen as a filter bank. 

2.2.5 Subband coding 

Two of the three problems mentioned in section 4 have now been resolved, but we still do 
not know how to calculate the wavelet transform. Therefore we will continue our journey 
through multiresolution land. 

If we regard the wavelet transform as a filter bank, then we can consider wavelet 
transforming a signal as passing the signal through this filter bank. The outputs of the 
different filter stages are the wavelet- and scaling function transform coefficients. Analyzing 
a signal by passing it through a filter bank is not a new idea and has been around for many 
years under the name subband coding. It is used for instance in computer vision applications. 

The filter bank needed in subband coding can be built in several ways. One way is to build 
many band-pass filters to split the spectrum into frequency bands. The advantage is that the 
width of every band can be chosen freely, in such a way that the spectrum of the signal to 
analyze is covered in the places where it might be interesting. The disadvantage is that we 
will have to design every filter separately and this can be a time consuming process. 
Another way is to split the signal spectrum in two (equal) parts, a low-pass and a high-pass 
part. The high-pass part contains the smallest details we are interested in and we could stop 
here. We now have two bands. However, the low-pass part still contains some details and 
therefore we can split it again. And again, until we are satisfied with the number of bands 
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we have created. In this way we have created an iterated filter bank. Usually the number of 
bands is limited by for instance the amount of data or computation power available. The 
process of splitting the spectrum is graphically displayed in figure 4. The advantage of this 
scheme is that we have to design only two filters; the disadvantage is that the signal 
spectrum coverage is fixed. 

 

 

Fig. 4. Splitting the signal spectrum with an iterated filter bank. 

Looking at figure 4 we see that what we are left with after the repeated spectrum splitting is 
a series of band-pass bands with doubling bandwidth and one low-pass band. (Although in 
theory the first split gave us a high-pass band and a low-pass band, in reality the high-pass 
band is a band-pass band due to the limited bandwidth of the signal.) In other words, we 
can perform the same subband analysis by feeding the signal into a bank of band-pass filters 
of which each filter has a bandwidth twice as wide as his left neighbour (the frequency axis 
runs to the right here) and a low-pass filter. At the beginning of this section we stated that 
this is the same as applying a wavelet transform to the signal. The wavelets give us the 
band-pass bands with doubling bandwidth and the scaling function provides us with the 
low-pass band. From this we can conclude that a wavelet transform is the same thing as a 
subband coding scheme using a constant-Q filter bank (Mallat, 1989). In general we will 
refer to this kind of analysis as a multiresolution analysis. 

Summarizing, if we implement the wavelet transform as an iterated filter bank, we do not 
have to specify the wavelets explicitly! This sure is a remarkable result. 
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2.2.6 The Discrete Wavelet Transform (DWT) 

In many practical applications and especially in the application described in this report the 
signal of interest is sampled. In order to use the results we have achieved so far with a 
discrete signal we have to make our wavelet transform discrete too. Remember that our 
discrete wavelets are not time-discrete, only the translation- and the scale step are discrete. 
Simply implementing the wavelet filter bank as a digital filter bank intuitively seems to do 
the job. But intuitively is not good enough, we have to be sure. 

In (19)  we stated that the scaling function could be expressed in wavelets from minus 
infinity up to a certain scale j. If we add a wavelet spectrum to the scaling function spectrum 
we will get a new scaling function, with a spectrum twice as wide as the first. The effect of 
this addition is that we can express the first scaling function in terms of the second, because 
all the information we need to do this is contained in the second scaling function. We can 
express this formally in the so-called multiresolution formulation (Burrus, Goinath, & Guo, 
1998) or two-scale relation (Sheng, 1996): 

 φ൫ʹ୨t൯ ൌ ∑ h୨ାଵ୩ ሺkሻφ൫ʹ୨ାଵt െ k൯ (20) 

The two-scale relation states that the scaling function at a certain scale can be expressed in 
terms of translated scaling functions at the next smaller scale. Do not get confused here: 
smaller scale means more detail. 

The first scaling function replaced a set of wavelets and therefore we can also express the 
wavelets in this set in terms of translated scaling functions at the next scale. More 
specifically we can write for the wavelet at level j: 

 Ψ൫ʹ୨t൯ ൌ ∑ g୨ାଵ୩ ሺkሻφ൫ʹ୨ାଵt െ k൯ (21) 

which is the two-scale relation between the scaling function and the wavelet. 

Since our signal ƒ(t) could be expressed in terms of dilated and translated wavelets up to a 
scale j-1, this leads to the result that ƒ(t) can also be expressed in terms of dilated and 
translated scaling functions at a scale j: 

 fሺtሻ ൌ ∑ λ୨୩ ሺkሻφ൫ʹ୨t െ k൯ (22) 

To be consistent in our notation we should in this case speak of discrete scaling functions 
since only discrete dilations and translations are allowed. If in this equation we step up a 
scale to j-1, we have to add wavelets in order to keep the same level of detail. We can then 
express the signal ƒ(t) as 

 fሺtሻ ൌ ∑ λ୨ିଵ୩ ሺkሻφ൫ʹ୨ିଵt െ k൯ ൅ ∑ γ୨ିଵ୩ ሺkሻΨ൫ʹ୨ିଵt െ k൯  (23) 

If the scaling function ߮௝,௞ሺݐሻ and the wavelets Ψ௝,௞ሺݐሻ are orthonormal or a tight frame, then 
the coefficients ǌj-1(k) and γj-1(k) are found by taking the inner products 

If we now replace ߮௝,௞ሺݐሻ and Ψ௝,௞ሺݐሻ in the inner products by suitably scaled and translated 

versions of (20) and (21) and manipulate a bit, keeping in mind that the inner product can 
also be written as an integration, we arrive at the important result (Burrus, Goinath, & Guo, 
1998): 
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 λ୨ିଵሺkሻ ൌ ∑ hሺm െ ʹkሻ୫ λ୨ሺmሻ  (24) 

 γ୨ିଵሺkሻ ൌ ∑ gሺm െ ʹkሻ୫ γ୨ሺmሻ  (25) 

These two equations state that the wavelet- and  scaling function coefficients on a certain 
scale can be found by calculating a weighted sum of the scaling function coefficients from 
the previous scale. Now recall from the section on the scaling function that the scaling 
function coefficients came from a low-pass filter and recall from the section on subband 
coding how we iterated a filter bank by repeatedly splitting the low-pass spectrum into a 
low-pass and a high-pass part. The filter bank iteration started with the signal spectrum, so 
if we imagine that the signal spectrum is the output of a low-pass filter at the previous 
(imaginary) scale, then we can regard our sampled signal as the scaling function coefficients 
from the previous (imaginary) scale. In other words, our sampled signal ƒ(k) is simply equal 
to ǌ(k) at the largest scale! 

As we know from signal processing theory a discrete weighted sum like the ones in (24) and 
(25) is the same as a digital filter and since we know that the coefficients ǌj(k) come from the 
low-pass part of the splitted signal spectrum, the weighting factors h(k) in (λj െ ͳሺkሻ ൌ∑ hሺm െ ʹkሻ୫ λ୨ሺmሻ (24)) must form a low-pass filter. And since we know that the 
coefficients γj(k) come from the high-pass part of the splitted signal spectrum, the weighting 
factors g(k) in (24) must form a high-pass filter. This means that (24) and (25) together form 
one stage of an iterated digital filter bank and from now on we will refer to the coefficients 
h(k) as the scaling filter and the coefficients g(k) as the wavelet filter. 

By now we have made certain that implementing the wavelet transform as an iterated 
digital filter bank is possible and from now on we can speak of the discrete wavelet 
transform or DWT. Our intuition turned out to be correct. Because of this we are rewarded 
with a useful bonus property of (24) and (25), the subsampling property. If we take one last 
look at these two equations we see that the scaling and wavelet filters have a step-size of 2 in 
the variable k. The effect of this is that only every other ǌj(k) is used in the convolution, with 
the result that the output data rate is equal to the input data rate. Although this is not a new 
idea, it has always been exploited in subband coding  schemes, it is kind of nice to see it pop 
up here as part of the deal. 

 

Fig. 5. Implementation of (23) and (24) as one stage of an iterated filter bank. 

The subsampling property also solves our problem, which had come up at the end of the 
section on the scaling function, of how to choose the width of the scaling function spectrum. 
Because, every time we iterate the filter bank the number of samples for the next stage is 
halved so that in the end we are left with just one sample (in the extreme case). It will be 
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clear that this is where the iteration definitely has to stop and this determines the width of 
the spectrum of the scaling function. Normally the iteration will stop at the point where the 
number of samples has become smaller than the length of the scaling filter or the wavelet 
filter, whichever is the longest, so the length of the longest filter determines the width of the 
spectrum of the scaling function. 

2.3 Wavelets algorithm 

The general goal of this investigation, and so of all the previous researches (García, Vicente, 
Ruiz, Angulo, & Aramendi, 2002) is the improvement of the oesophageal voices’ quality 
(García, Vicente, Ruiz, Alonso, & Loyo, 2005). Certainly the specific aim of this research is 
the spectral and temporal correction of the shimmer and parameter of these voices by the 
Wavelet Transform. 

One of the most important techniques applied in the spectral analysis is the Fourier 
Transform (STFT), which will allow recognizing the spectral components of speech signal, 
so it makes possible to distinguish pathological voices and process them. That transform has 
a resolution problem which is explained by Heisenberg Uncertainty Principle. The Wavelet 
Transform (WT) was developed to overcome some resolutions related problems of the STFT. 
It is possible to analyze any signal by using an alternative approach called the 
Multiresolution Analysis (MRA). MRA, as implied by its name, analyzes the signal at 
different frequencies with different resolutions. MRA is designed to give good time 
resolution and poor frequency resolution at high frequencies and good frequency resolution 
and poor time resolution at low frequencies. 

As the signals used are digital, it is more useful to use Discrete Wavelet Transform (DWT) 
(Mallat, 1999). The DWT analyzes the signal at different frequency bands with different 
resolutions by decomposing the signal into a coarse approximation and detail information. 
The decomposition of the signal into different frequency bands is simply obtained by 
successive high pass and low pass filtering of the time domain signal. The original signal 
x[n] is first passed through a half band high pass filter g[n] and a low pass filter h[n]. This 
constitutes one level of decomposition and can mathematically be expressed as follows 
(Kadambe & Bourdreaux-Bartels, 1991): 

      2high
n

y k x n g k n    (26) 

      2low
n

y k x n h k n    (27) 

Before applying the DWT, the signal is processed. That is, a resample of the original signal, 
x[n], at a sampling frequency of 12800 Hz. This is so done, as when applying the 
transformed DWT, the detail signals remain between the frequency bands that are suitable 
for pitch detection (Kadambe & Bourdreaux-Bartels, A Comparison of a Wavelet Functions 
for Pitch Detection of Speech Signals, 1991) (Kadambe & Bourdreaux-Bartels, 1992) (Wing-
kei, Kwong-sak, & Kin-hong, 1995) (Nadeu, Pascual, & Herdondo, 1991). More specifically, 
the oesophageal voices have a pitch nearing 60 Hz. On doing the above-mentioned resample 
and the following transformed DWT, one of the details is found in the frequency band level 
of 50 Hz – 100 Hz. This means that the original pitch signal's information is located within 
this detail. Low-frequency noise present in oesophageal voices are found in the 0 Hz – 50 Hz 
level. We should eliminate this noise before modifying the pitch's peak amplitude. 

www.intechopen.com



 
Improvement of Shimmer Parameter of Oesophageal Voices Using Wavelet Transform 153 

In short, so as to control the high rates of the shimmer parameter in oesophageal voices, the 
following steps should be taken: carry out a resample of the original signal at Fs = 12800 Hz; 
after this the transformed DWT should be done, for which we have used “bior 6.8” as the 
mother wavelet. Trials with other mother wavelets were done and the results are quite 
similar to as regards shimmer measurements. Once the DWT transform has been done, the 
low-frequency noise in the 0 Hz – 50 Hz frequency band is eliminated. After this pre-
processing, the amplitude of the maximums in the 50 Hz – 100 Hz frequency band are 
modified, as this is where the information on oesophageal voices is to be found. 

Fig. 6 shows the frequency band tree when DWT is applied. 

 

Fig. 6. Frequency band diagram 

2.4 Poles stabilization algorithm 

The stabilizations of poles, the second algorithm is responsible for analyzing and modifying 
the poles of the system modelized by the vocal tract. It works with an oesophageal voice 
signal from which the excitation has been separated from the tract, and it calculates the 
evolution of modulus and phase of each formant of the vowel modifying such poles. 
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Fig. 7. Pole Stabilization Block Diagram 

The stabilization of the first three formants is applied in those values of the vowel which is 
being enhanced by means of the modification of the first three poles, following these steps: 
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1. Calculation of the mean value of modulus and phase of each pole through the vocal 
signal. 

2. Calculation of the maximum deviations relative to the mean modulus and phase of the 
first three poles. 

3. Whether the deviations exceed a certain threshold is analyzed, if so the modulus 
correction is applied: 
a. ModulusModif=modulus+((1-modulus)*ConstMod); 
b. and the phase correction: 

 AngModif=Angle-(ContPhase*(Angle+MeanPhase)); 
 being the correction implanted by means of “ConstMod” and “ConstPhase” 
 parameters which can be adjusted for each voice. 
4. Reconstruction of the filter that modelizes the vocal tract with the new poles of the 

system corrected and stabilized. 

3. Results 

On the one hand, in the DWT algorithm, the inputs of the developed algorithm are the 
samples of the oesophageal voice, which shimmer parameter have been previously 
evaluated. In the 100% of the studied cases obtained value for these parameters is out of the 
range of the normality. So it could be improved in order to increase the quality of the voice 
between the normality ranges specified by the scientific community. After the application of 
the algorithm based on the analysis and processing by Wavelet, the speech signal has been 
reconstructed. When measuring the shimmer in this reconstructed signal, the obtained 
results are the following: 

 
 

 

Oesophageal Phoneme Shimmer Real (%) Transformed Shimmer (%) 

a1 18,43 10,27 

a2 17,27 10,82 

a3 16,05 9,98 

a4 19,62 12,79 

a5 16,76 8,43 

a6 18,58 12,99 

a7 12,53 10,11 

a8 16,98 9,99 

a9 20,31 12,83 

a10 18,22 10,61 

Table 3. Table of shimmer values 
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Fig. 8. Shimmer of different voices 

 

Phoneme Original HNR (dB) Stabilization HNR (dB) HNR (dB) increase 

a1 -5.001 -1.701 3.300 

a2 0.549 1.656 1.107 

a3 -3.684 -2.219 1.465 

a4 -4.901 -0.668 4.462 

a5 -6.375 -2.631 3.744 

a6 -6.803 -3.159 3.644 

a7 -6.389 -4.451 1.938 

a8 -8.724 -5.615 3.109 

a9 -3.737 -0.040 3.697 

a10 0.930 1.846 0.916 

Average   2.941 

Table 4. HNR measures with the /a/ phonemes. 
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As is shown in the table 3 the shimmer has improved in 9 of 10 cases. In four out of the ten 
voices researched a great goal has been reached. They are not only improved in terms of 
quality, moreover their values are situated nearest of the limits of normality stipulated in 
Fig. 8. On the other hand, in the pole’s stabilization algorithm, in all cases an increase in 
harmonics to noise ratio has been achieved. For example, the value of “a1” signal is 5.001dB 
before processing and 1.701dB afterwards. The increase in improved oesophageal signal, in 
this case, has been 3.3dB. The fourth column in table 1 shows the enhancement of HNR (dB) 
before and after processing. It can be appreciated that the improvement in HNR (dB) ranges 
from 0.916dB, for “a10” signal, to 4.462dB, for “a4”. Taking into account all the database, the 
average HNR improvement (dB) is 2.941dB. 

As can be seen in Fig. 9 the increase of the HNR occurs in all voices of the database. 

 

 

Fig. 9. HNR before and after algorithm 

4. Conclusion 

It can be concluded that the aimed objectives have been achieved because of the fact that the 
algorithms are very suitable. 

The usage of the Wavelet Transform for the analysis and processing of oesophageal voices is 
successful in the improvement of the shimmer, which is the aim of the paper. In a extensive 
analysis its appreciable that it is also good for the improvement of other parameters such as 
the harmonics to noise ratio. Being a single wavelet detail, optimisation of the 
computational calculation when processing a simpler signal favours the application of the 
proposed algorithm to prototypes that process oesophageal signals in real time, in order to 
improve their quality. On the other hand, the close relationship between characterisation 
parameters, such as shimmer or jitter and the values of the signal situated in frequency 
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intervals below 100Hz reinforces the suitability of working with bands inferior to the 
Wavelet Transform, which distinguish spectral components and enable the focusing on 
particular components. 

Therefore, DWT and both pole stabilization improvement are suitable techniques in the 
speech enhancement context. 
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