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Taiwan 

1. Introduction  

Measurement of radon-222 in groundwater has been frequently used in earthquake 
prediction (Igarashi et al. 1995; Liu et al. 1985; Noguchi & Wakita 1977; Teng, 1980; Wakita et 
al. 1980; Kuo et al. 2006, 2010a, 2010b). According to a worldwide survey (Hauksson 1981; 
Toutain & Baubron 1999), more than 80 % of radon (Rn-222) anomalies associated with 
earthquakes show increases in radon concentration precursor to a rupture while a few 
anomalies manifested decreases in radon. The purpose of this chapter is to provide a 
practical guide of monitoring groundwater radon for the early warning of local disastrous 
earthquakes. In this chapter, methods of monitoring groundwater radon including 
procedures of sample collection and radon determination will be addressed. The following 
sections outline suitable geological conditions to consistently catch precursory declines in 
groundwater radon, in-situ radon volatilization mechanism for interpreting anomalous 
decreases in groundwater radon prior to earthquakes, and mathematical model for 
quantifying gas saturation developed in newly created cracks preceding an earthquake. 
Case studies are provided to illustrate the application of recurrent radon precursors for 
forecasting local large and moderate earthquakes. 

2. Sample collection radon determination 

Accurate sampling for radon measurements depends on appropriate monitoring wells. 
Because radon concentration in groundwater relates to emanation rates of geological layers, 
representative sampling must be from properly constructed wells. A submersible pump is 
commonly used in monitoring wells for groundwater sampling except artesian wells. Every 
sampling starts with flushing the stagnant water in the well and especially in the screen 
zone. Inadequate purging can be a major source of error, because the water sample is a 
mixture of stagnant water from the well bore, pore water from the filter gravel and 
groundwater influenced by the natural emanation rate of the aquifer. Fig. 1 shows the radon 
concentration in the well discharge during continuous sampling in a monitoring well. 
During the first period of flushing, the radon concentration of the water samples is 
practically zero and then increases rapidly to 529 pCi/L. The mean radon concentration 
measured for this monitoring well was 529 ± 19 pCi/L (eleven samples). A minimum of 3 
well-bore volumes was purged before taking samples for radon measurements. 
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Fig. 1. Radon concentration and electrical conductivity in the well discharge during 
continuous sampling in a deep observation well 

A 40-ml glass vial with a TEFLON lined cap was used for sample collection. After collecting 
a sample, the sample vial was inverted to check for air bubbles. If any bubbles were present, 
the sample was discarded and the sampling procedure repeated. The date and time of 
sampling was recorded and the sample stored in a cooler. The maximum holding time 
before analysis was 4 days.  
For the determination of the activity concentration of radon-222 in groundwater, a modified 
method described by Prichard and Gesell (1977) was adopted. Radon was partitioned 
selectively into a mineral-oil scintillation cocktail immiscible with the water sample 
(Noguchi 1964). The sample was dark-adapted and equilibrated, and then counted in a 
liquid scintillation counter (LSC) using a region or window of the energy spectrum optimal 
for radon alpha particles (Lowry 1991). 
Radon concentrations were determined by drawing a 15-ml sample directly from a field 
sample into a clean syringe. Care was taken to prevent aeration of the samples in the 
process. The samples were then injected beneath a 5-ml layer of mineral-oil-based 
scintillation solution in 24-ml vials. The vials were vigorously shaken to promote phase 
contact, dark-adapted and held for at least three hours to ensure equilibrium between 
radon-222 and its daughters, and then assayed with a liquid scintillation counter. The results 
were corrected for the amount of radon decay between sampling and assay. 
The results of the measurements were determined in units of counts per minute (cpm). It 
was essential to ensure that only the activity of radon-222 was measured. Using the TRI-
CARB software of Packard 1600TR, it was possible to view the alpha spectrum (Fig. 2). The 
peaks of radon-222 (5.49 MeV), polonium-218 (6.00 MeV) and polonium-214 (7.69 MeV) can 
be distinguished. 
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Fig. 2. Alpha spectrum of radon-222 and its daughter nuclides represented by TRI-CARB 
software 

A calibration factor for the LSC measurements of 7.1 ± 0.1 cpm/pCi (Fig. 3) was calculated 
using an aqueous Ra-226 calibration solution, which is in secular equilibrium with Rn-222 
progeny. For a count time of 50 min and background less than 6 cpm, a detection limit 
below 18 pCi/L was achieved using the sample volume of 15-ml (Prichard et al. 1992). 
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Fig. 3. Calibration factor and background for LSC measurements 
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Verification of radon-222 as the radioisotope responsible for activity in the well water tested 
was obtained by the repeated counting of three samples from two wells. The half-life of 3.841 
days experimentally determined for samples from Well Liu-Ying (I) located in Tainan Plain, 
Taiwan compares favorably with the accepted value of 3.825 days as shown in Fig. 4. When 
the counting vials are lack of tightness, radon will escape from counting vials and the half-life 
times experimentally determined for samples will be apparently shorter. Fig. 4 also shows an 
example of such a case from Well Wen-Tsu (II) located in Choshui River Alluvial Fan, Taiwan.  
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Fig. 4. Measurement of half life from semi-logarithmic decay curve 

3. Suitable geological conditions to catch recurrent radon precursors 

The 2003 Chengkung earthquake of magnitude (M) 6.8 on December 10, 2003 was the 
strongest earthquake near the Chengkung area in eastern Taiwan since 1951. The Antung 
radon-monitoring well (D1, Fig. 5) was located 20 km from the epicenter. Approximately 65 
days prior to the 2003 Chengkung earthquake, precursory changes in radon concentration in 
ground water were observed. Specifically, radon decreased from a background level of 780 
pCi/L to a minimum of 330 pCi/L (Fig. 6). Both geological conditions near the Antung hot 
spring and the vapor-liquid phase behavior of radon were investigated to explain the 
anomalous decrease of radon precursory to the 2003 Chengkung earthquake.  
The production interval of the well ranges from 167 m to 187 m below ground surface and is 
pumped more or less continuously for water supply purposes. Discrete samples of 
geothermal water were collected for analysis of radon (Rn-222) twice per week. Liquid 
scintillation method was used to determine the activity concentration of radon-222 in 
ground water (Noguchi 1964; Prichard et al. 1992). The radon concentration was fairly stable 
(780 pCi/L in average) from July 2003 to September 2003 (Fig. 6). Sixty-five days before the 
magnitude (M) 6.8 earthquake (December 10, 2003), the radon concentration of ground 
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water started to decrease and continued to decrease for 45 days. Twenty days prior to the 
earthquake, the radon concentration reached a minimum value of 330 pCi/L and before 
starting to increase. Just before the earthquake, the radon concentration recovered to the 
previous background level of 780 pCi/L. The main shock also produced a sharp anomalous 
coseismic decrease (~300 pCi/L). After the earthquake, some irregular variations were 
observed, which we interpret as an indication that the strain release by the main shock was 
not complete and that some accumulation and release of strain continued in the region. 
 

 

Fig. 5. Map of the epicentral and hypocentral distributions of the mainshock and aftershocks 
of the 2003 Chengkung earthquake and 1951 mainshocks (star: mainshock, open circles: 
aftershocks). 

The Antung hot spring (Fig. 7) is in a unique tectonic setting located at the boundary 

between the Eurasian and Philippine Sea plates near the Coastal Range. Four stratigraphic 

units are present. The Tuluanshan Formation consists of volcanic units such as lava and 

volcanic breccia as well as tuffaceous sandstone. The Fanshuliao and Paliwan Formations 

www.intechopen.com



 
Earthquake Research and Analysis – Statistical Studies, Observations and Planning 

 

166 

consist of rhythmic sandstone and mudstone turbidites. The Lichi mélange occurs as a 

highly deformed mudstone that is characterized by penetrative foliation visible in outcrop. 

The Antung hot spring is situated in a brittle tuffaceous-sandstone block surrounded by a 

ductile mudstone of the Paliwan Formation (Chen & Wang 1996). Well-developed minor 

faults and joints are common in the tuffaceous-sandstone block displaying intensively brittle 

deformation. It is possible that these fractures reflect deformation and disruption by the 

nearby faults. Hence, geological evidence suggests the tuffaceous-sandstone block displays 

intensively brittle deformation and develops in a ductile-deformed mudstone strata. 

Ground water flows through the fault zone and is then diffused into the block along the 

minor fractures. 

 

 

Fig. 6. Radon concentration data at the monitoring well (D1) in the Antung hot spring. Stage 
1 is buildup of elastic strain. Stage 2 is dilatancy and development of cracks and gas 
saturation. Stage 3 is influx of ground water and diminishment of gas saturation. 

Under geological conditions such as those of the Antung hot spring, we  hypothesized that 
when regional stress increases, dilation of the rock mass occurs at a rate faster than the rate 
at which pore water can flow into the newly created pore volume (Brace et al. 1966; Scholz et 
al. 1973). During this stage (Stage 2 in Fig. 6), gas saturation and two phases (vapor and 
liquid) develop in the rock cracks. Meanwhile, the radon in ground water volatilizes and 
partitions into the gas phase and the concentration of radon in ground water decreases. 
Thus, the sequence of events for radon data prior to the 2003 Chengkung earthquake (Fig. 6) 
can be interpreted in three stages. From July 2003 to September 2003 (Stage 1), radon was 
fairly stable (around 780 pCi/L). During this time, there was an accumulation of tectonic 
strain, which produced a slow, steady increase of effective stress. Sixty-five days before the 
magnitude (M) 6.8 earthquake, the concentration of radon started to decrease and reached a  
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Fig. 7. Geological map and cross section near the radon-monitoring well in the area of 

Antung hot spring (Q: Holocene deposits, Lc: Lichi mélange, Plw: Paliwan Formation, Fsl: 

Fanshuliao Formation, Tls: Tuluanshan Formation, Bl: tuffaceous fault block, D1: radon-

monitoring well, ①: Chihshang, or, Longitudinal Valley Fault, ①: Yongfeng Fault). See Fig. 6 

for map location. 

minimum value of 330 pCi/L twenty days before the earthquake. During this 45-day period 

(Stage 2), dilation of the rock mass occurred and gas saturation developed in cracks in the 
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rock and radon volatilized into the gas phase. Stage 3 started at the point of minimum radon 

concentration when water saturation in cracks and pores began to increase and radon 

increased and recovered to the background level. The main shock produced a sharp 

coseismic anomalous decrease (~300 pCi/L). After the earthquake, some irregular variations 

were observed, which we attribute to strain release as some accumulation and release of 

strain continued in the region. 

4. In-situ radon volatilization mechanism  

Radon partitioning into the gas phase can explain the anomalous decreases of radon 

precursory to the earthquakes (Kuo et al., 2006). To support the hypothesis of radon 

volatilization from ground water into the gas phase, radon-partitioning experiments were 

conducted to determine the variation of the radon concentration remaining in ground water 

with the gas saturation at formation temperature (60 ℃) using formation brine from the 

Antung hot spring. Five levels of gas saturation were investigated, specifically gS  = 5 %, 10 

%, 15 %, 20 %, and 25 % where gS  is gas saturation. Triplicate experiments were conducted 

for each level of gas saturation. Every experiment started with 40-ml of formation brine. Five 

levels of headspace volume at 2 ml, 4 ml, 6 ml, 8 ml, and 10 ml were then created above the 

liquid phase for five levels of gas saturation at 5 %, 10 %, 15 %, 20 %, and 25 %, respectively. 

Two-phase equilibrium was achieved for each experiment in 30 minutes at the formation 

temperature (60 ℃).  
A kinetic study of radon volatilization from ground water into the gas phase was conducted 

to determine the time required to reach equilibrium. In the kinetic experiment, formation 

brine from the Antung hot spring with an initial radon concentration of 479 ± 35 pCi/L was 

used. Every sample started with 40-ml formation brine and a headspace volume at 6 ml was 

then created above the liquid phase. A total of five samples were prepared. The radon 

concentration remaining in ground water was determined at various volatilization times 

(i.e., 2 min, 5 min, 15 min, 30 min, and 60 min). The time required to reach equilibrium for 

radon volatilization was only about 5 minutes.  

Data from the vapor-liquid two-phase equilibrium radon-partitioning experiments (Fig. 8) 

were regressed with the two-phase partitioning model to determine Henry’s coefficient as 

follows. 

 
0

( 1 )w gC C H S    (1) 

where 
0

C is initial radon concentration in groundwater precursory to each radon 

anomaly, pCi/L; wC is the radon minimum in groundwater observed in well D1 during an 

anomalous decline, pCi/L; gS is gas saturation, fraction; H is Henry’s coefficient for 

radon at formation temperature (60 ℃), dimensionless. Fig. 8 shows the regressed line 

with H  ＝ 12.8 and R2 ＝ 0.9919 (regression coefficient). Henry’s coefficient for radon at 

60 ℃ determined for the Antung formation brine (12.8) is higher than the value (7.91) for 

water at 60 ℃ (Clever, 1979). Fig. 8 can be used to estimate the amount of gas saturation 

required for various decreases in concentration of radon. For example, the anomalous 

decrease of radon concentration from 780 pCi/L to 330 pCi/L required a gas saturation of 

10 % in cracks in the rock.  
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Fig. 8. Variation of radon concentration remaining in ground water with gas saturation at 60 ºC 
using formation brine from the Antung hot spring. 

5. Case study 

We have monitored groundwater radon since July 2003 at well D1 at the Antung hot spring 

that is located about 3 km southeast of the Chihshang fault (Fig. 9). The Chihshang fault is 

part of the eastern boundary of the present-day plate suture between the Eurasia and the 

Philippine Sea plates. The Chihshang fault ruptured (Hsu, 1962) during two 1951 

earthquakes of magnitudes M = 6.2 and M = 7.0. The annual survey of geodetic and GPS 

measurements has consistently revealed the active creep of the Chihshang fault that is 

moving at a rapid steady rate of about 2-3 cm/yr during the past 20 years (Angelier et al., 

2000; Yu & Kuo, 2001; Lee et al., 2003).  

Fig. 10 shows the radon concentration data since July 2003 at the monitoring well (D1) in the 

Antung hot spring. Radon-concentration errors are ±1 standard deviation after simple 

averaging of triplicates. Recurrent groundwater radon anomalies were observed to precede 

the earthquakes of magnitude wM  = 6.8, wM   = 6.1, wM   = 5.9, and wM   = 5.4 that occurred 

on December 10, 2003, April 1, 2006, April 15, 2006, and February 17, 2008 at the Antung D1 

monitoring well. We consider the wM  5.9 earthquake that occurred on April 15, 2006 

triggered by stress transfer in response to the 2006 wM  6.1 Taitung earthquake. All the three 

recurrent anomalous decreases observed at Antung follow the same v-shaped progression 

and are marked with green inverted triangles in Fig. 10. Environmental records such as 

atmospheric temperature, barometric pressure, and rainfall were examined to check 

whether the radon anomaly could be attributed to these environmental factors. The 
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atmospheric temperature, barometric pressure, and rainfall are periodic in season. It is 

difficult to explain such a large radon decrease by these environmental factors. There was 

also no heavy rainfall responsible for the radon anomaly.  
 
 
 
 

 
 
 
 

Fig. 9. Map of the epicenters of the earthquakes that occurred on December 10, 2003, April 1 
and 15, 2006, February 17, 2008 near the Antung hot spring. (a) Geographical location of 
Taiwan. (b) Study area near the Antung hot spring. 

The box-and-whisker plot is used on the right-hand side in Fig. 10. It shows the median 

(50th percentile, 764 pCi/L) as a center bar, and the quartiles (25th and 75th percentiles, 692 

pCi/L and 849 pCi/L) as a box. The whiskers (456 pCi/L and 1077 pCi/L) cover all but the 

most extreme values in the data set. Based on the box-and-whisker plot, the threshold 

concentration of anomalous radon minima at the Antung D1 monitoring well is estimated as 

456 pCi/L. The radon minimum recorded prior to the 2008 wM  = 5.4 Antung earthquake is 

close to the threshold concentration and can be easily masked by the noisy background. On 
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the other hand, the radon anomalous minima, recorded precursory to strong earthquakes 

( wM ＞ 6.0), the 2003 wM  = 6.8 Chengkung and 2006 wM  = 6.1 Taitung earthquakes, are 

low enough to be clearly distinguished from the background noise.  

The radon minima, measured prior to local moderate earthquakes, are easily masked by the 

noisy background. Fig. 10 also shows the large background variation in radon data 

following the 2003 wM  = 6.8 Chengkung, 2006 wM  = 6.1 Taitung, and 2008 wM  = 5.4 

Antung earthquakes. Four local earthquakes with magnitudes ( wM ) of 5.5, 5.2, 6.2, and 5.2 

occurred on 12/11/2003, 1/1/2004, 5/19/2004, and 9/26/2005, respectively. Based upon 

their magnitudes and locations, we consider these as aftershocks and induced events of the 

2003 Chengkung earthquake. The large scatter in radon data between the 2003 wM  = 6.8 

Chengkung and 2006 wM  = 6.1 Taitung earthquakes can be related to these aftershocks. The 

2006 Mw 6.1 Taitung earthquake also triggered the Mw 5.9 earthquake that occurred on 

April 15, 2006. One local earthquake of magnitude wM  = 4.9 that occurred on 6/4/2006 can 

be considered as an aftershock of the 2006 wM  = 6.1 Taitung earthquake. The wM  = 4.9 

aftershock also caused a large scatter in radon data following the 2006 wM  = 6.1 Taitung 

earthquake. The large background variation in radon data following the 2008 wM  = 5.4 

Antung earthquake can also be attributed to local earthquakes, such as a local earthquake of 

magnitude wM  = 5.3 that occurred on 12/2/2008.  
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Fig. 10. Radon concentration data at well D1 in the Antung hot spring (open inverted 
triangles: anomalous radon minima; green inverted triangles: v-shaped pattern; long 

arrows: mainshocks; short arrows: aftershocks; earthquake magnitude wM  shown beside 

arrows).  
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Fig. 11. Observed radon anomalies at well D1 prior to (a) 2003 Chengkung, (b) 2006 Taitung, 

and (c) 2008 Antung earthquakes. Stage 1 is buildup of elastic strain. Stage 2 is development 

of cracks. Stage 3 is influx of ground water. 
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The observed v-shaped pattern prior to the three main shocks clearly progresses in a 

sequence of three stages (Kuo et al. 2006). The sequence of events for radon anomalies prior 

to the 2003 wM  = 6.8 Chengkung, 2006 wM  = 6.1 Taitung, and 2008 wM  = 5.4 Antung 

earthquakes were characterized into three stages in Figs. 11a, 11b, and 11c, respectively (Kuo 

et al. 2006, 2010a). During Stage 1, the radon concentration in ground water was fairly 

stable; there was an accumulation of tectonic strain and a slow, steady increase of regional 

stress. The Antung hot spring is a fractured aquifer with limited recharge surrounded by 

ductile mudstone (Chen & Wang 1996). When the regional stress increased under these 

geological conditions, dilation of brittle rock masses occurred at a rate faster than the rate at 

which ground water could recharge into the newly created rock cracks (Brace et al. 1966;  

Nur 1972; Scholz et al. 1973). During this stage (Stage 2 in Fig. 11), gas saturation and two 

phases (vapor and liquid) developed in the rock cracks. The radon in ground water 

volatilized into the gas phase and the radon concentration in ground water decreased. Stage 

3 started at the point of minimum radon concentration when the water saturation in cracks 

and pores began to increase again. During this stage (Stage 3 in Fig. 11), the radon 

concentration in groundwater increased and recovered to the previous background level 

before the main shock.  

Figs. 11a, 11b, and 11c show that during Stage 2 prior to the 2003 wM  = 6.8 Chengkung, 

2006 wM  = 6.1 Taitung, and 2008 wM  = 5.4 Antung earthquakes the radon concentration in 

ground water kept decreasing for a significantly long period of 45, 47, 31 days, respectively. 

Combining the use of box-and-whisker plot, the v-shaped radon pattern shown in Figs. 10 

and 11 prior to the 2003 wM  = 6.8 Chengkung, 2006 wM  = 6.1 Taitung, and 2008 wM  = 5.4 

Antung earthquakes can be clearly distinguished from other scattering radon data which 

appear to be related to smaller local earthquakes and aftershocks.  

As shown in Fig. 11, radon decreased from background levels of 787 ± 42, 762 ± 57, and 700 

± 57 pCi/L to minima of 326 ± 9, 371 ± 9, and 480 ± 43 pCi/L prior to the 2003 wM  = 6.8 

Chengkung, 2006 wM  = 6.1 Taitung, and 2008 wM  = 5.4 Antung earthquakes, respectively. 

Kuo et al. (2010b) recognized that the observed precursory minimum in radon concentration 

decreases as the local earthquake magnitude increases. Kuo et al. (2010b) also proposed an 

empirical correlation for local applications as follows.  

 1063 110w wC M   (2) 

where wC is the radon minimum in groundwater observed in well D1 during an anomalous 

decline, pCi/L; wM is the earthquake magnitude. Eq. (2) did not take the initial stable radon 

concentration in groundwater precursory to each radon anomaly into account. Our 

observations in well D1 indicate that the initial stable radon concentration in groundwater 

precursory to each radon anomaly does vary occasionally. Eq. (2) will be improved by 

taking into account the initial stable radon concentration in groundwater precursory to each 

radon anomaly.  
Based on radon phase behavior and rock dilatancy, Kuo et al. (2006, 2010a) developed a 

mechanistic model correlating the observed decline in radon with the volumetric strain 

change. The model consists of two parts, i.e., the radon-volatilization model and the rock-

dilatancy model. The radon-volatilization model can be expressed as follows.  
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( 1 )w gC C H S    (1) 

where 
0

C is initial radon concentration in groundwater precursory to each radon anomaly, 

pCi/L; wC is the radon minimum in groundwater observed in well D1 during an anomalous 

decline, pCi/L; gS is gas saturation, fraction; H is Henry’s coefficient for radon at 

formation temperature (60 ℃), dimensionless. The radon-volatilization model correlates the 

radon decline to the gas saturation for a given fracture porosity.  
The rock-dilatancy model can be expressed as follows.  

 gd S   (3) 

where d is volumetric strain, fraction;  is initial fracture porosity before rock dilatancy, 

fraction; gS is gas saturation, fraction. The rock-dilatancy model correlates the volumetric 

strain to the gas saturation for a given fracture porosity.  
Combining the radon volatilization and rock dilatancy models, equations (1) and (3), the 
groundwater radon concentrations can be correlated to the strain changes associated with 
earthquake occurrences as follows.  

 0 1
w

C
d

H C


 

   
 

 (4) 

where 0 1
w

C

C

 
  

 
 is normalized radon decline, dimensionless. The Henry’s coefficients ( H ) at 

formation temperature (60 ℃) is 7.91 for radon (Clever, 1979). Given an average fracture 

porosity of 0.00003 for the Antung hot spring, Eq. (4) can be used to calculate the crust 
strain.  
Using the radon minima precursory to the 2003, 2006, and 2008 quakes, the calculated crust 
–strain and observed dimensionless radon-decline are plotted as a function of earthquake 
magnitude in Fig. 12. The best-fitting straight line is obtained by means of the least-square 
method with a high value of the sample correlation squared regression coefficient (i.e., R2 = 
0.9802). The regressed equations are as follows.  

 2.5893 12.0948wd M    (5) 

 
0 1 0.6827 3.189w

w

C
M

C

 
    

 
 (6) 

where 
0

C is initial radon concentration in groundwater precursory to each radon anomaly, 

pCi/L; wC is the radon minimum in groundwater observed in well D1 during an anomalous 

decline, pCi/L; wM is the earthquake magnitude; d is volumetric strain, fraction. Eq. (6) 

would be quite useful locally in predicting earthquake magnitude nearby the Chihshang 

fault from the radon minimum observed in well D1 during an anomalous decline.  

Three precursory radon minima associated with nearby large and moderate earthquakes 

have been recorded from the same monitoring well (D1). The same v-shaped pattern 

www.intechopen.com



Application of Recurrent Radon Precursors  
for Forecasting Local Large and Moderate Earthquakes 

 

175 

recognized in all the three recurrent radon anomalies and the threshold concentration are 

useful for the early warning of potentially disastrous earthquakes ( wM  ＞ 6.0) in the 

southern segment of coastal range and longitudinal valley of eastern Taiwan.  
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Fig. 12. Calculated crust-strain ( d ) and observed radon-decline ( 0 1
w

C

C
 ) at well D1 that 

occurred on December 10, 2003, April 1, 2006, February 17, 2008 as a function of earthquake 

magnitude ( wM ). Radon-concentration errors are ±1 standard deviation. 

6. Conclusions 

Since July 2003, we have recorded three recurring radon anomalies (precursory to the 2003 

wM  = 6.8 Chengkung, 2006 wM  = 6.1 Taitung, and 2008 wM  = 5.4 Antung earthquakes) at 

well D1, located at the Antung hot spring. The local geological conditions near the Antung 

hot spring with well D1 situated in a fractured aquifer surrounded by ductile mudstone and 

the in-situ volatilization of groundwater radon were attributed for causing the recurrent 

radon anomalies precursory to the nearby large and moderate earthquakes. The following 

conclusions can be drawn from this study.  
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1. Radon anomalous declines in groundwater consistently recorded prior to local large 
and moderate earthquakes near the Antung hot spring in eastern Taiwan provide 
the reproducible evidence to catch radon precursors under suitable geological 
conditions.  

2. “A low-porosity fractured aquifer surrounded by ductile formation in a seismotectonic 
environment” is a suitable geological site to consistently catch precursory declines in 
groundwater radon and dissolved gases prior to local large and moderate earthquakes.  

3. Radon partitioning into the gas phase (the mechanism of in-situ radon volatilization) 
may explain the radon anomalous declines in groundwater consistently recorded 
prior to local large and moderate earthquakes near the Antung hot spring in eastern 
Taiwan 

4. The observed precursory minimum in radon concentration decreases as the 
earthquake magnitude increases. The observed relationship between radon minima 
and earthquake magnitude provides a possible means to forecast local disastrous 
earthquakes.  
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