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1. Introduction 

Changes in radon and other soil-gas concentrations, and other parameters, before and after 

earthquakes have been widely reported (Asada, 1982; Chyi et al., 2001; Climent et al., 1999; 

Crockett et al., 2006a; Crockett & Gillmore, 2010; Igarishi et al., 1995; Kerr, 2009; Koch & 

Heinicke, 1994; Planinic et al., 2000; Plastino et al., 2002; Wakita, 1996; Walia et al., 2005; 

Walia et al., 2006; Zmazek et al., 2000). However, in the majority of such radon cases, changes 

in magnitude in single time-series have been reported, often large changes recorded using 

integrating detectors, and the majority of radon time-series analysis is reported for single 

time-series (e.g. Baykut et al., 2010; Bella & Plastino, 1999; Finkelstein et al., 1998). With a 

single time-series, recorded at a single location, there is no measure of the spatial extent of 

any anomaly and, to a great extent, only anomalies in magnitude can be investigated. With 

two, or more, time-series from different locations, it is possible to investigate the spatial 

extent of anomalies and also investigate anomalies in time, i.e. frequency and phase 

components, as well as anomalies in magnitude. 

The aim of this chapter is to present techniques, developed and adapted from techniques 

more familiar in the field of signal analysis, for investigating paired time-series for 

simultaneous similar anomalous features. A paired radon time-series dataset is used to 

illuminate these techniques. This is not to imply that the techniques are restricted to radon 

time-series: it is simply that the investigation at the University of Northampton of these 

techniques in the context of earthquake precursory phenomena has been conducted on 

radon datasets. This work commenced in the autumn of 2002, following the Dudley 

earthquake of 23 September which was felt in Northampton and which occurred 

approximately three months into a radon monitoring programme being conducted as part of 

another project (Crockett et al., 2006a; Phillips et al., 2004). 

1.1 UK earthquakes 
The UK is not generally regarded as a seismically active region. In general, across the UK as 
a whole, in any given year there might be a few earthquakes of magnitude up to 3 or 4 and 
every 5-10 years there might be an earthquake of magnitude 5 or thereabouts (e.g. Bolt, 2004; 
Musson, 1996). This is simultaneously an advantage and disadvantage to this research. It is 
an advantage in that with so few earthquakes there is very little seismic ‘noise’ in any radon, 
or other, dataset. It is a disadvantage in that with so few earthquakes, long intervals can 
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elapse between events and there is an element of luck in obtaining suitably paired time-
series to investigate for potential earthquake-related anomalies. 
Indeed, in 2002, luck played a major role in stimulating this research. During the latter part 
of 2002 the University of Northampton Radon Research Group had two hourly-sampling 
radon detectors deployed for a period which included the Dudley earthquake and also an 
unusual earthquake swarm in the Manchester area. Subsequently, 5.5 years then elapsed 
until another UK earthquake of similar magnitude occurred at Market Rasen in February 
2008. Again, the University of Northampton had two hourly-sampling radon detectors 
deployed and, although that paired time-series was shorter in duration, it was still possible 
identify simultaneous similar anomalies (Crockett and Gillmore, 2010). 

1.2 Magnitude anomalies, probability of occurrence 
An anomaly in magnitude is, expressed straightforwardly, a magnitude that occurs 
infrequently, at low probability, often determined according to user-defined probability 
criteria in a given context. One commonly used criterion assumes that the magnitudes are 
normally distributed and defines an anomalous magnitude as being one that lies more than 
a specified number of standard deviations from the arithmetic mean. For example, in any 
normally-distributed data, an interval of two standard deviations either side of the mean 
includes 95.45% of the data and any data lying outside this interval can be defined as 
anomalous, occurring only 4.55% of the time (2.28% at each tail of the distribution). This 
straightforward type of criterion is clearly satisfactory for normally distributed data but 
becomes increasingly less robust with divergence of data from normal distributions, 
indicating the use of more rigorous probability criteria. 

1.2.1 Standardised data, Standardised Radon Index (SRI) 
Where the data are not normally distributed, or not sufficiently close to normally distributed 

in a given context, account must be taken of the specific probability distribution. In some 

cases, it is possible to map onto a normal distribution, via an equiprobability mapping, and 

then use the mapped-onto distribution to investigate magnitude anomalies. This is 

essentially the approach taken with, for example, Standardised Precipitation Indices (SPIs) 

as described by McKee et al. (1993) which are a representation of (precipitation) data in 

terms of standard normal variables, i.e. standard deviations around a zero mean. 

Alternatively, where the data are lognormally distributed, as is generally the case with 

radon datasets, or for example, square-root or cube-root normally distributed (Fu et al., 

2010), it is possible to define magnitude anomalies in terms of the normal distributions of 

the logarithms, square-roots or cube-roots of the data respectively, again a representation of 

the data in terms of standard normal variables. This is the premise underpinning the 

Standardised Radon Indices (SRIs) proposed by Crockett & Holt (2011). SRIs are determined 

from the normally-distributed logarithms of lognormally distributed radon data, a 

representation of the data in terms of standard normal variables. Thus, a given magnitude of 

SRI is determined by the probability of occurrence of a given magnitude of radon 

concentration within a dataset. 

In addition to transforming radon data, or other data by extension, such that the familiar 
normal-distribution definitions of magnitude anomaly can be used reliably, SRIs also allow 
radon time-series to be compared more fully than by considering relative magnitude as 
obtained by normalising the data, e.g. scaling the data to unit mean value. Such 
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normalisation does not account for different radon responses to identical stimuli as might 
arise from differences in emission properties of rocks, soils, groundwater etc. SRIs, in 
standardising according to probability of occurrence, allow comparison of different radon 
datasets having different, possibly non-linear, responses to changes in radon emission in 
response to identical stimuli. In the case of paired time-series, as being considered herein, if 
values in the time-series have the same probabilities of occurrence they will have the same 
SRI even if their (relative) magnitudes are different. 
Whilst not the focus of this chapter, this technique is discussed briefly, with an example, in 
Section 3. 

1.3 Quality of data, validity of comparison 
In any application of any of the correlation and coherence techniques described herein, 

the durations and sampling intervals of the paired time-series must be equal. Ideally, the 

two time-series should be sampled at the same times so as to avoid a built-in time-

difference between pairs of data. Where there is such a time difference, it might be 

possible to pre-process the time series, e.g. via a moving average, to minimise its 

significance, although this must be balanced against the resultant loss of high-frequency 

content. Under some circumstances where the sampling intervals are different but one is a 

multiple of the other, it can be possible to aggregate shorter-interval data to correspond to 

longer-interval data. 

In the following sections, it is implicitly assumed that differences between the paired time-

series do not arise from different monitoring equipment responses. Where both time-series 

are of the same parameter or process recorded using the same equipment, this is generally a 

safe assumption. However, where this is not the case, e.g. the same parameter or process 

recorded using different equipment for each time-series or different parameters or processes 

(recorded using different equipment), it will generally be necessary to pre-process the time-

series to minimise such differences. In such cases, filtering or spectral decomposition 

techniques can be used. In particular, Empirical Mode Decomposition (EMD), in 

decomposing a time-series into separate components (Intrinsic Mode Functions) according 

to frequency content, has shown promise (Crockett & Gillmore, 2010; Feng, 2011; Huang et 

al., 1998; Rilling et al. 2003). 

2. Correlation and coherence 

Correlation and coherence are techniques for comparing time-series (more generally, 

waveforms, signals). In brief, correlation compares shape, i.e. envelope, and is a time-

domain technique; coherence compares composition, i.e. frequency (harmonic) content, and 

is a frequency-domain technique. Neither technique directly compares scale, i.e. neither 

directly detects magnitude anomalies. 

Correlation is a relatively familiar and straightforward technique, widely used in various 

forms to compare datasets in general. However, correlation can be misleading, particularly 

if used in isolation as sole means of comparison. For example, consider a pair of identical 

time-series, such as two equal-frequency sinusoids in the simplest case. If the two sinusoids 

are exactly in-phase, then their correlation coefficient will be 1 (maximum positive 

correlation) because both time-series are always changing in the same sense (positively or 

negatively) at the same time. Conversely, if they are exactly, i.e. a half-cycle, out-of-phase 
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then their correlation coefficient will be –1 (maximum negative correlation) because one 

time-series is always changing in the opposite sense to the other. Depending on their phase 

difference, their correlation coefficient will be between or equal to these two limiting values. 

However, if they are a quarter-cycle out of phase, their correlation coefficient will be zero. 

This is because in consecutive quarter-periods the time-series are alternately changing in the 

same or opposite sense, yielding alternate quarter-periods of positive and negative 

correlation, equal in magnitude, which sum to zero over a complete period. Thus, whilst a 

zero, or small, correlation coefficient can indicate a real lack of similarity between two time-

series, it can be misinterpreted if there is no information with regard to their frequency 

content (and phase relationship). 

This leads to the less familiar coherence technique. Coherence measures common frequency 

content, with or without phase information depending on the exact definition. Strictly, the 

coherence coefficient (i.e. “coherence”) measures similarity of frequency content only, 

irrespective of relative phase, but the overall coherence analysis readily yields a phase-

difference for each frequency considered for the coherence coefficient. In the hypothetical 

case of paired equal-frequency sinusoids considered above, the coherence would be 

maximal, i.e. coherence coefficient of 1, in all cases irrespective of the phase difference, 

although the coherence-derived phase-difference would vary exactly as the actual phase-

difference. If there is no common frequency content, the coherence is zero. 

Correlation is a time-domain technique, coherence is a frequency-domain technique: they 

are related via their Fourier transforms. Before considering correlation and coherence, 

therefore, a brief review of Fourier transforms – discrete Fourier transforms – will be given. 

2.1 Fourier transform and Discrete Fourier Transform (DFT) 

For a continuous function of time, ( )x t , of infinite duration its continuous Fourier transform is: 

 







  2( ) ( ) iftX f x t e dt , (1) 

and it is a frequency-domain representation of it (its spectrum). The inverse transform is: 

 






  2( ) ( ) iftx t X f e df . (2) 

In practice, time-series are neither continuous nor infinite, and so the Discrete Fourier 

Transform (DFT) is used, generally via a Fast Fourier Transform (FFT) algorithm. Subject to 

constraints arising from the finite and discrete nature of the time-domain function ( )x t , its 

DFT, ( )X f , is a frequency-domain representation of it comprising a spectrum of discrete 

frequencies on a finite frequency interval. Thus, the forward DFT, ( ) ( )x t X f , is: 

 

   
 




 
21

1
0 1 1

0

, for ( ) , ,..., ; = ( ) ;  samples

iN nk
N

n k N k kN
k

X x e x t x x x x x t N , (3) 

The inverse DFT (IDFT), ( ) ( )X f x t , is: 
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   
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For further information on and fuller descriptions of Fourier transforms and their properties 
see, for example, Riley, 1974; Gabel & Roberts, 1986; Proakis & Manolakis, 2006. 

2.2 Correlation analysis 
Covariance and correlation are measures of similarity of shape, correlation is normalised 
covariance and so is independent of scale (e.g. Cramer, 1946; Mood et al. 1974). Generalising 
from the simple case outlined above, the correlation coefficient between two datasets (or 
samples) will be +1 or –1 if they have the same shape, in-phase or out-of-phase/sign-
inverted respectively. The magnitude of the correlation coefficient will reduce according to 
differences in shape and, as noted above, mismatch in phase. 

More formally, in summary, for the comparison of two N-sample time-series, { },{ }i ix y , e.g. 

to ascertain if they contain similar features possibly occurring with a lag between them, 

there is lagged covariance,  ( )xy k , and lagged cross-correlation, ( )xyR k , i.e.: 

   


   
1

( ) ( )( ) , for 
N

xy n x n k y
n

k x y k N , (5) 

 


 


( )
( )

xy
xy

x y

k
R k . (6) 

The straightforward unlagged covariance and (cross-) correlation of two time-series are (5) 
and (6) evaluated at zero-lag, i.e.: 

    


   
1

(0) ( )( )
N

xy xy n x n y
n

x y , (7) 

 


 
 

(0)
(0)

xy
xy xy

x y

R R . (8) 

Where, in equations (5) – (8): 

,i ix y  are the ith members of time-series { },{ }i ix y  respectively 

 ,x y  are the mean values of { },{ }i ix y respectively 

 ,x y  are the standard deviations of { },{ }i ix y respectively 

For the comparison of a time-series against lagged versions of itself, e.g. to find the period(s) 

of any cyclic features, there is (lagged) autocovariance,  ( )xx k , and (lagged) autocorrelation 

( )xxR k , i.e.: 

   


  
1

( ) ( )( )
N

xx n x n k x
n

k x x , (9) 

 
 
 

 
( ) ( )

( )
(0)

xx xx
xx

xx xx

k k
R k , (10) 
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which are (5) and (6) with both time-series the same, and clearly both have their maximum 
values (i.e. autocorrelation is +1) at zero lag. 

2.2.1 Rolling/sliding correlation 
Whilst lagged cross-correlation reveals any lag between two time-series and cross-

correlation of whole time-series gives an overall measure of similarity, neither reveals any 

time-dependence of similarity during the time-series, i.e. sections where the time-series 

correlate to greater or lesser extents. One means of achieving this is to window the paired 

time-series, starting at the beginning, cross-correlate across the window, roll/slide the 

window forwards a number of samples and repeat the cross-correlation, repeating the 

roll/slide-and-correlate procedure until the end of the time-series is reached. This yields a 

time-series of correlation coefficients which reveals those sections of the paired time-series 

which are varying exactly in phase (R = 1), those which are varying exactly out-of-phase (R 

= –1) and all intermediate values. This can be repeated for different window-durations and, 

for example, the results presented as a contour plot to reveal the time-duration relationships 

of any periods of significant cross-correlation between the time-series, analogous to the 

more familiar spectrogram representation of time-frequency relationships in single time-

series, and to cross-coherence, as described below (e.g. Crockett et al., 2006a). 

2.3 Coherence (cross-spectral) analysis 
Coherence (cross-coherence, magnitude-squared coherence) can be useful in that it 

measures the similarity of two signals, i.e. time-series in this context, in terms of their 

frequency composition (Brockwell & Davis, 2009; Penny, 2009; Proakis & Manolakis, 2006; 

Venables & Ripley, 2002). It is a normalised measure of power cross-spectral density and is a 

frequency-domain measure of correlation of the two signals (time-series). 

2.3.1 Power spectral density 
The concept of “signal power” is not itself useful in this context but the terminology is 

established and is retained herein for reasons of simplicity. In signals which transmit 

energy, power, it is significant and is determined by the square of the amplitude. 

The power spectral density is obtained via the Discrete Fourier Transform and is the 
proportion of the total power content, i.e. square-of-magnitude, carried at given frequencies. 
As defined by the Wiener-Khintchine Theorem (Proakis & Manolakis, 2006), the power 

spectral density, xxG , of a signal (time-series) is the Fourier transform of the autocovariance, 

i.e.: 

 




 


 

21

0

( ) ( )
N i nk

N
xx xx

n

G k n e . (11) 

Also, the power cross-spectral density, xyG , of two signals (time-series) is the Fourier 

transform of their cross-covariance, i.e.: 

 



 


 

21

0

( ) ( )
N i nk

N
xy xy

n

G k n e . (12) 

www.intechopen.com



 
Identification of Simultaneous Similar Anomalies in Paired Time-Series 

 

131 

2.3.2 Coherence (magnitude-squared coherence) 

The coherence (coherence-coefficient), xyC , is the cross-spectral density (complex) 

normalised by the product of the individual spectral densities (real), i.e.: 

 

2
( )

( )
( ) ( )

xy

xy
xx yy

G k
C k

G k G k
, (13) 

and the phase difference, xy , is given by: 

  
Im( ( ))

tan( ( ))
Re( ( ))

xy
xy

xy

G k
k

G k
. (14) 

The coherence, xyC , is real and varies between zero, i.e. no common components of the 

signals (time-series) at frequency k, and 1, i.e. equal proportional components of the signals 

(time-series) at frequency k. 

2.4 Summary 
This section has outlined the mathematics of correlation and coherence and also 
summarised their strengths and weaknesses. Both techniques have their strengths and 
weaknesses but complement each other. Correlation compares shape (envelope), effectively 
in-phase periodic features, but gives no information regarding frequency content and so can 
be misleading with regard to out-of-phase features. Conversely, coherence compares 
periodic structure (frequency composition and phase difference) and so informs with regard 
to similarity of composition and structure, accounting for phase difference, but not with 
regard to overall shape. Thus, used in combination, a much more complete comparison can 
be obtained than by using either in isolation. 

3. Case-study: July – November 2002 

The techniques outlined above have been investigated, developed and adapted using 
primarily one paired time-series dataset: this is a radon dataset comprising two hourly-
sampled time-series spanning 5.5 months from late June to mid December 2002. This period 
also included the ML=5 Dudley (UK) earthquake of 23 September (22 September GMT), 
which was widely felt by people in Northampton (and elsewhere in the English Midlands), 
and the Manchester (UK) earthquake swarm of 21-29 October, which wasn’t felt in 
Northampton but was widely felt in southern parts of NW England and northern parts of 
the English Midlands. Such events are unusual for the UK and, the Dudley earthquake in 
particular, were the stimulus for the original investigation (Crockett et al., 2006a). 
In effect, this is an investigation of three time-series, one of earthquake incidence and two of 
hourly-sampled radon concentrations, for common radon responses to earthquake stimuli. 
The hypothesis for this investigation is that a big disturbance, such as an earthquake, 
occurring at a relatively large distance compared to the detector separation could be 
expected to produce simultaneous similar radon anomalies (Crockett et al., 2006a). 
Conversely, any anomalies which are neither simultaneous nor similar are more likely to 
arise from stimuli local to individual monitoring locations. This hypothesis is appropriate 
under the circumstances for the radon time-series considered herein, as described below. 
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However, under different circumstances, e.g. where the detector separation is greater in 
comparison to the distance from the stimulus, or where one detector location is significantly 
closer to the stimulus than the other, the analysis might have to modified appropriately to 
account for a time lag, e.g. moving one time-series relative to the other in the time domain as 
indicated by lagged cross-correlation. Also, where the individual time-series arise from 
different monitored substances or processes (e.g. radon and another soil-gas or rock 
property), pre-processing as indicated in section 1.3 (or otherwise) might be appropriate. 

3.1 The time-series 
The radon data were collected using Durridge RAD7s, operated 2.25 km apart in 
Northampton (Phillips et al., 2004; Crockett et al., 2006a,b). A central 20-week extract, 14 July 
– 30 November 2002, of the 5.5-month paired time-series is shown in Figure 1. 
 

 

Fig. 1. The paired radon time-series, central 20-week period. 

In summary, both time-series are lognormally distributed, with correlation coefficients to 
lognormal distributions of > 0.91, although TS1a recorded radon levels typically 30-40 times 
greater than TS1b (Crockett et al., 2006a). Both time-series are characterised by weak, noisy, 
non-stationary 24 h cycles having short autocorrelation times, ca. 1-2 days, as shown in the 
spectrograms and autocorrelograms in Figures 2 and 3 respectively. There is also weak 
evidence of 7 day cycles, typical of anthropogenic influences, and in TS1b there is evidence 
of some longer-period variations, durations ca. 15 and 30 days, which are possibly 
attributable to lunar-tidal influences (Crockett et al., 2006a, 2006b). With the exception of 
rainfall, behind which TS1a and TS1b lag by 14 and 10 days respectively, there are no 
observed meteorological dependencies (Crockett et al., 2006a). 
The spectrograms are for 6 day windows, stepped at 1 day intervals. This window duration 
gives the best balance between resolution in the time and frequency domains in light of the 
durations of the periods of high correlation and coherence discussed below. 
The earthquake data for the monitoring period, for earthquakes occurring within 250 km of 
Northampton, are presented in Table 1 (BGS (http://www.bgs.ac.uk) 2003; USGS/ANSS 
(http://quake.geo.berkeley.edu/anss), 2011). The next nearest earthquakes during this 
period occurred at distances greater than 420 km, i.e. there is a distance interval of 170 km  
between the earthquakes listed and the next nearest earthquakes. As well as the Dudley and 
Manchester earthquakes, there were other earthquakes of interest, these being an English 
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Channel earthquake on 26 August and a North Sea earthquake on 22 November (not of 
identified interest in previous stages of this research). 
 

 

Fig. 2. Spectrograms of the radon time-series, central 20-week period. The amplitude is 
calibrated in dB, from maximum 0 dB (red) to –50 dB (blue-white). The vertical axes are 
cycles per day. 

 

 

Fig. 3. Autocorrelograms of the radon time-series, central 20-week period (TS1a in red, TS1b 
in blue). 

 
Date / Time

(GMT) 
Lat. Lon. Depth

(km) 
Mag.
(ML) 

Dist.
(km) 

Location 

26/08/2002    23:41 50.048 -0.009 4.0 3.0 247 Eng. Channel 
22/09/2002    23:53 52.520 -2.150 9.4 5.0 94 Dudley 
23/09/2002    03:32 52.522 -2.136 9.3 3.2 93 Dudley 
21/10/2002    07:45 53.475 -2.000 5.0 3.7 161 Manchester 
21/10/2002    11:42 53.478 -2.219 5.0 4.3 169 Manchester 
22/10/2002    12:28 53.473 -2.146 4.2 3.5 165 Manchester 
23/10/2002    01:53 53.477 -2.157 5.0 3.3 166 Manchester 
24/10/2002    08:24 53.485 -2.179 3.7 3.8 168 Manchester 
29/10/2002    04:42 53.481 -2.198 5.0 3.1 168 Manchester 
22/11/2002    01:40 52.921 2.430 10.0 3.4 237 North Sea 

Table 1. Earthquakes ( LM 3 ) within 250km of Northampton, July – December 2002. 
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3.2 Correlation results 
The rolling/sliding windowed correlation, for windows of duration 1-10 days, is shown 

contour-plotted in the upper plot of Figure 4 (vertical axis is window duration), with the 

radon time-series and earthquake timings also shown in the lower plot. In this and 

subsequent figures the time-series are shown normalised to unit mean, to assist visual 

comparison. This is a simple scaling of amplitudes: in terms of the waveforms of the time-

series, the shape and phase are preserved unaltered by this normalisation. 

 

 

Fig. 4. Rolling/sliding windowed cross-correlation shown contour-plotted (upper plot, 
strong red and pale yellow areas indicate high positive and negative correlation 
respectively) with time-series and earthquake incidence (lower plot, TS1a and TS1b in red 
and blue respectively, earthquake timings as vertical black lines). 

Figure 4 (upper) shows two distinct periods of high positive correlation (i.e. red); around (i) 

21-23 September, across window durations of up to 10 days, and (ii) 25-27 August, across 

window durations of up to 5-6 days. The correlation coefficient for the whole period is 

 R 0.08  and the mean values of the correlation coefficient across all ten window durations 

is |R| 0.036.  Therefore, the paired time-series typically do not correlate and periods of high 

correlation are anomalous: e.g. the maximum values of the correlation coefficient for 1-5 day 

windows occur less than 5% of the time and do so predominantly in these two periods. The 

more significant of these two periods, 21-23 September, corresponds temporally to the 

Dudley earthquake of 22 September. The other period, 25-27 August, corresponds 

temporally to the English Channel earthquake of 26 August. Each period lasts ca. 5-7 days 

and, in each, correlation peaks prior to the earthquakes by ca. 1 day. There is no similar 

period of high positive correlation at the time of the Manchester or North Sea earthquakes. 

3.3 Coherence results 
The coherence, for windows of duration 6 days stepped at 1 day intervals, is shown in 
Figure 5. The corresponding phase coherence is shown in Figure 6 (phase difference of TS1b 
relative to TS1a). In these (upper) figures, the coherence information is contour-plotted to 
show the variation in coherence (Fig. 5) and phase-difference (Fig. 6) at frequencies of 0-3 
cycles per day (vertical axes). The 6 day window duration corresponds to the window 
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duration used for the spectrograms and also to the durations of the two periods of high 
positive correlation. 
In both coherence and phase-coherence, it is the 24 h cycles, as revealed by the spectrograms 

and autocorrelograms, which are the focus as these constitute the main frequency 

component in each time series and, thus, the main frequency at which the time-series could 

cohere. The figures also show coherence and phase-coherence for 12 h cycles, i.e. twice the 

frequency of the main cycles, because coherence at this frequency also reveals some 

information. There is no significant coherence information outside this frequency range. 

 

 

Fig. 5. Coherence shown contour-plotted (upper plot, strong red and pale yellow areas 
indicate high and low coherence respectively) with time-series and earthquake incidence 
(lower plot, TS1a and TS1b in red and blue respectively, earthquake timings as vertical black 
lines). 

 

 

Fig. 6. Phase coherence shown contour-plotted (upper plot, strong red and pale yellow areas 
indicate positive and negative phase difference respectively, mid-orange indicates small 
phase difference) with time-series and earthquake incidence (lower plot, TS1a and TS1b in 
red and blue respectively, earthquake timings as vertical black lines). 
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Figure 5 (upper) shows two conspicuous periods of high coherence (i.e. red) for both 24 h 

and 12 h cycles; i.e. late August, late September, and another less conspicuous period in 

mid-late November. The late August and late September periods correspond to the periods 

of high positive correlation shown in Figure 4 and correspond temporally to the English 

Channel and Dudley earthquakes respectively. The mid-late November period occurs a few 

days before the North Sea earthquake of 22 November. Additionally, there is a period of 

high coherence for 24 h cycles in late October, which corresponds temporally to the end of 

the Manchester earthquake swarm, and also a period of high coherence for 24 h cycles in 

late July with no apparent correspondence to any recorded earthquakes in the region. 

Figure 6 (upper) shows two periods where the time-series are in phase (i.e. approximately 

zero phase difference, medium orange) for both 24 h and 12 h cycles, one in late August and 

the other in late September. These two periods confirm the two periods of high correlation: 

if the principal periodic content (24 h) and a principal harmonic (12 h) are in phase then 

there will be underlying in-phase similarities in the envelopes, giving rise to (high) positive 

correlation. However, across the time-series as a whole, the daily maxima typically occur at 

ca. 18:00 and 16:00 GMT for TS1a and TS1b respectively, i.e. typically the time-series are not 

in-phase. This is confirmed directly in Figure 6, which shows variations in phase-difference 

throughout the period, and also confirmed by the short autocorrelation times shown in 

Figure 3 and the small average cross-correlation coefficients shown in Figure 4. 

3.4 Summary of results 
The rolling/sliding windowed correlation, as reported in the initial investigation (Crockett 
et al. 2006a), reveals strong evidence that the two radon time-series correlate positively at the 
time of the Dudley earthquake, and also evidence that they correlate positively at the time of 
the English Channel earthquake, but that in general they do not correlate. These results are 
confirmed by the coherence results, both coherence coefficients and phase-difference. 
Seven day details from the time-series are shown in Figure 7, for the period around the 
Dudley earthquake and Figure 8, for the period around the English Channel earthquake. 
 

 

Fig. 7. Late September Anomalies (TS1a in red, TS1b in blue, earthquake timings as vertical 
black lines). 

The two periods are similar in showing the daily maxima, i.e. spikes of ca. 6 h duration, 
occurring simultaneously (i.e. in-phase), and are dissimilar to the remainder of the time-
series. Some of these simultaneous maxima occur before the earthquakes – and are 
potentially earthquake precursory phenomena. 
It is clear from these figures, however, that the relative magnitudes of these daily maxima 

are 2-4 times greater in TS1b than TS1a, indicating that the radon emission characteristics in 
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the two locations are different. The reasons for this will be differences in the rocks and soils 

at the two locations and possibly different ventilation characteristics in the two basements 

where the RAD7s were placed. However, if the time-series are represented in terms of SRIs, 

effectively standard normal variables, then these different responses are (partially) equalised 

in terms of probability of occurrence. This is shown in Figure 9 for the September anomalies. 
 

 

Fig. 8. Late August Anomalies (TS1a in red, TS1b in blue, earthquake timing as a vertical 
black line). 

Figure 9 shows that these simultaneous daily maxima are more similar in probability than in 

relative magnitude. In SRIs, these maxima have magnitudes ca. 1.5-2.5, i.e. 1.5-2.5 standard 

deviations from the mean. Thus, some of these would ‘pass’ a plus-or-minus 2 standard 

deviations criterion for magnitude anomaly whilst others would not, and none would ‘pass’ 

a plus-or-minus 3 standard deviations criterion. Therefore, what the correlation and 

coherence analyses have identified are anomalies in the time domain, i.e. anomalies in 

frequency composition and phase, rather than in the magnitude domain. 
 

 

Fig. 9. Late September Anomalies (TS1a in red, TS1b in blue, earthquake timings as vertical 
black lines). 

The late September and late August periods are identified as time-domain anomalies by 

correlation, coherence and phase-coherence (at 24 h and 12 h cycles), and these periods 

temporally correspond to the Dudley and English Channel earthquakes. The mid-late 

November period of coherence (at 24 h and 12 h cycles), but without significant correlation 

or phase-coherence, is another time-domain anomaly, which has similarities to (coherence) 

and differences from (correlation, phase-coherence) the late September and late August 

time-domain anomalies. This mid-late November anomaly occurs a few days prior to the 22 

November earthquake but any temporal association with that earthquake is weakened by 

the absence of corresponding correlation or phase-coherence information. The two periods 

of 24 h coherence (without 12 h coherence) are clearly ambiguous: the late October period 
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corresponds temporally to the later Manchester earthquakes but the late July period does 

not correspond temporally to any recorded earthquake in the region. 

Noting the relative magnitudes and proximities of the Manchester earthquakes compared 
to the English Channel earthquake, it is perhaps surprising the there is no similarly well-
defined time-domain anomaly in the radon time-series at the time of Manchester 
earthquakes. The reasons for this are not currently understood but there are essentially 
two possibilities. First, any such temporal correspondence between earthquake and time-
domain anomalies in the radon time-series is coincidental, as discussed below. Second, 
the temporal correspondence is not coincidental but the natures of the geologies at and 
between Northampton and Manchester are such that any earthquake-related radon-
stimuli are blurred and attenuated. For information on geology see, for example, Boulton, 
1992; Hains & Horton, 1969; Poole et al., 1968; Smith et al., 2000 and Toghill, 2003. 
However, having also identified time-domain radon anomalies which temporally 
correspond to the Market Rasen earthquake of 27 February 2008 (Crockett & Gillmore, 
2010), the second reason is arguably more probable but more data are required, both 
earthquake and radon, to investigate this more fully. 
In these data, another potential geophysical explanation is possible: i.e. lunar-tidal 
influences, which have been reported for TS1b in terms of cyclic variations in radon 
concentration (Crockett et al., 2006b). Tidal influences might account for the periods of 24 h 
coherence which temporally correspond to tidal maxima associated with the full moons of 
24 July, 22 August, 21 September and 20 November, but not the absence of any coherence 
around the 21 October full moon. This potential explanation is further weakened by the 
absence of (a) consistent coherence around the new-moon maxima and (b) consistent 
correlation or phase coherence around both sets of maxima. Also, a tidal-maximum 
explanation does not account for the anomalies in the February 2008 time-series, which 
temporally correspond to the Market Rasen earthquake but not a tidal maximum. Lastly, 
despite the apparent similarities in timing, it is unknown whether there is any lunar-tidal 
influence on the English Channel, Dudley, Manchester and North Sea earthquakes and no 
such influence has been reported for UK earthquakes in general. 

4. Conclusions 

Both correlation and coherence show when two, or more, time-series behave similarly in 
the time domain, according to shape (correlation) or frequency composition (coherence). 
Thus, these techniques allow the identification of time-domain anomalies, i.e. periods in 
time when the common behaviour of two, or more, time-series changes from the typical to 
the anomalous. In the radon data used to illustrate the techniques, the paired time-series 
typically neither correlate nor cohere but do so anomalously for short periods. In other 
data, the emphasis might be different, e.g. the time series might typically both correlate 
and cohere but contain anomalous periods where they do not or, the time-series might 
typically cohere at some frequencies but contain anomalous periods where the cohering 
frequencies change. 
Correlation does not imply causality, is not proof of causality: at most, correlation might be 
evidence to support causality. In the dataset analysed above, despite the clear temporal 
correspondence of the late September and late August time-domain anomalies to 
earthquakes, and the temporal correspondence of the mid-late November less well-defined 
time-domain anomaly to another earthquake, this is all that is shown, i.e. temporal 

www.intechopen.com



 
Identification of Simultaneous Similar Anomalies in Paired Time-Series 

 

139 

correspondence. The analysis does not prove that the anomalies are related to the 
earthquakes, i.e. does not demonstrate that an earthquake-stimulus radon-response 
relationship exists, but such analysis does provide necessary evidence towards the 
demonstration that such a relationship might exist. 
With regard to magnitude anomalies, care must be taken to apply criteria used for 
identifying anomalies correctly dependent upon the probability distribution(s) of the data 
being investigated. Noting the simplicity and familiarity of the normal distribution, and 
associated de facto standard criteria for determining anomalies, a technique such as the SRI 
which maps data onto standard normal variables is useful, but this technique is also useful 
in effectively equalising different, generally non-linear radon-emission characteristics and 
facilitating comparison in terms of probability of occurrence. 
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