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1. Introduction

One of the most important results of mathematics in the 20th century is the Kolmogorov model
of probability and statistics. It gave many impulses for research and develop so in theoretical
area as well as in applications in a large scale of subjects.

It is reasonable to ask why the Kolmogorov approach played so important role in the
probability theory and in mathematical statistics. In disciplines which have been very
successfull for many centuries.

Of course, Kolmogorov stated probability and statistics on a new and very effective
foundation - set theory. For the first time in the history basic notions of probability theory
have been defined precisely but simply. So a random event has been defined as a subset of a
space, a random variable as a measurable function and its mean value as an integral. More
precisely, abstract Lebesgue integral. It is hopeful to wait some new stimuls from the fuzzy
generalization of the classical set theory. The aim of the chapter is a presentation of some
results of the type.

2. Fuzzy systems and their algebraizations

Any subset A of a given space Ω can be identified with its characteristic function

χA : Ω → {0, 1}

where
χA(ω) = 1,

if ω ∈ A,
χA(ω) = 0,

if ω /∈ A. From the mathematical point of view a fuzzy set is a natural generalization of χA(see
[73]). It is a function

ϕA : Ω → [0, 1].

Evidently any set (i.e. two-valued function on Ω, χA → {0, 1}) is a special case of a fuzzy set
(multi-valued function), ϕA : Ω → [0, 1].
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2 Will-be-set-by-IN-TECH

There are many possibilities for characterizations of operations with sets (union A ∪ B and
intersection A ∩ B). We shall use so called Lukasiewicz characterization:

χA∪B = (χA + χB) ∧ 1,

χA∩B = (χA + χB − 1) ∨ 0.

(Here ( f ∨ g)(ω) = max( f (ω), g(ω)), ( f ∧ g)(ω) = min( f (ω), g(ω)).) Hence if ϕA, ϕB : Ω →
[0, 1] are fuzzy sets, then the union (disjunction ϕA or ϕB of corresponding assertions) can be
defined by the formula

ϕA ⊕ ϕB = (ϕA + ϕB − 1) ∧ 1,

the intersection (conjunction ϕA and ϕB of corresponding assertions) can be defined by the
formula

ϕA ⊙ ϕB = (ϕA + ϕB − 1) ∨ 0.

In the chapter we shall work with a natural generalization of the notion of fuzzy set so-called
IF-set (see [1], [2]), what is a pair

A = (µA, νA) : Ω → [0, 1]× [0, 1]

of fuzzy sets µA, νA : Ω → [0, 1], where

µA + µA ≤ 1.

Evidently a fuzzy set ϕA : Ω → [0, 1] can be considered as an IF-set, where

µA = ϕA : Ω → [0, 1], νA = 1 − ϕA : Ω → [0, 1].

Here we have
µA + νA = 1,

while generally it can be µA(ω) + νA(ω) < 1 for some ω ∈ Ω. Geometrically an IF-set can be
regarded as a function A : Ω → ∆ to the triangle

∆ = {(u, v) ∈ R2 : 0 ≤ u, 0 ≤ v, u + v ≤ 1}.

Fuzzy set can be considered as a mapping ϕA : Ω → D to the segment

D = {(u, v) ∈ R2; u + v = 1, 0 ≤ u ≤ 1}

and the classical set as a mapping ψ : Ω → D0 from Ω to two-point set

D0 = {(0, 1), (1, 0)}.

In the next definition we again use the Lukasiewicz operations.

Definition 1.1. By an IF subset of a set Ω a pair A = (µA, νA) of functions

µA : Ω → [0, 1], νA; Ω → [0, 1]

is considered such that
µA + νA ≤ 1.
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Analysis of Fuzzy Logic Models 3

We call µA the membership function, νA the non membership function and

A ≤ B ⇐⇒ µA ≤ µB, νA ≥ νB.

If A = (µA, νA), B = (µB, νB) are two IF-sets, then we define

A ⊕ B = ((µA + µB) ∧ 1, (νA + νB − 1) ∨ 0),

A ⊙ B = ((µA + µB − 1) ∨ 0, (νA + νB) ∧ 1),

¬A = (1 − µA, 1 − νA).

Denote by F a family of IF sets such that

A, B ∈ F =⇒ A ⊕ B ∈ F , A ⊙ B ∈ F ,¬A ∈ F .

Example 1.1. Let F be the set of all fuzzy subsets of a set Ω. If f : Ω → [0, 1] then we define

A = ( f , 1 − f ),

i.e. νA = 1 − µA.

Example 1.2. Let (Ω,S) be a measurable space, S a σ-algebra, F the family of all pairs such
that µA : Ω → [0, 1], νA : Ω → [0, 1] are measurable. Then F is closed under the operations
⊕,⊙,¬.

Example 1.3. Let (Ω, T ) be a topological space, F the family of all pairs such that µA : Ω →
[0, 1], νA : Ω → [0, 1] are continuous. Then F is closed under the operations⊕,⊙,¬.

Remark. Of course, in any case A ⊕ B, A ⊙ B,¬A are IF-sets, if A, B are IF-sets. E.g.

A ⊕ B = ((µA + µB) ∧ 1, (νA + νB − 1) ∨ 0),

hence
(µA + µB) ∧ 1 + (νA + νB − 1) ∨ 0 =

= ((µA + µB) ∧ 1 + (νA + νB − 1)) ∨ ((µA + µB) ∧ 1) =

= ((µA + µB + νA + νB − 1) ∧ (1 + νA + νB − 1)) ∨ ((µA + µB) ∧ 1) ≤
≤ ((1 + 1 − 1) ∧ (νA + νB)) ∨ ((µA + µB) ∧ 1) =

= (1 ∧ (νA + νB)) ∨ ((µA + µB) ∧ 1) ≤
≤ 1 ∨ 1 = 1.

Probably the most important algebraic model of multi-valued logic is an MV-algebra
([48],[49]). MV-algebras play in multi-valued logic a role analogous to the role of Boolean
algebras in two-valued logic. Therefore we shall present a short information about MV-alegras
and after it we shall prove the main result of the section: a possibility to embed the family of
IF-sets to a suitable MV-algebra.

Let us start with a simple example.
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4 Will-be-set-by-IN-TECH

Example 1.4. Consider the unit interval [0, 1] in the set R of all real numbers. It will stay an
MV-algebra, if we shall define two binary operations ⊕,⊙ on [0, 1], one unary operation ¬
and the usual ordering ≤ by the following way:

a ⊕ b = min(a + b, 1),

a ⊙ b = max(a + b − 1, 0),

¬a = 1 − a.

It is easy to imagine that a ⊕ b corresponds to the disjunction of the assertions a, b, a ⊙ b to the
conjunction of a, b and ¬a to the negation of a.

By the Mundici theorem ([48])any MV-algebra can be defined similarly as in Example 1.4, only
the group R must be substitute by an arbitrary l-group.

Definition 1.2. By an l-group we consider an algebraic system (G,+,≤) such that

(i) (G,+) is an Abelian group,

(ii) (G,≤) is a lattice,

(iii) a ≤ b =⇒ a + c ≤ b + c.

Definition 1.3. By an MV-algebra we consider an algebraic system (M, 0, u,⊕,⊙) such that
M = [0, u] ⊂ G, where (G,+,≤) is an l-group, 0 its neutral element, u a positive element, and

a ⊕ b = (a + b) ∧ u,

a ⊙ b = (a + b − u) ∨ 0,

¬a = u − a.

Example 1.5. Let (Ω,S) be a measurable space, S a σ-algebra,

G = {A = (µA, νA); µA, νA : Ω → R},

A + B = (µA + µB, νA + νB − 1) = (µA + µB, 1 − (1 − νA + 1 − νB)),

A ≤ B ⇐⇒ µA ≤ µB, νA ≥ νB.

Then (G,+,≤) is an l-group with the neutral element 0 = (0, 1), A − B = (µA − µB, νA −
νB + 1), and the lattice operations

A ∨ B = (µA ∨ µB, vA ∧ νB),

A ∧ B = (µA ∧ µB, νA ∨ νB).

Put u = (1, 0) and define the MV-algebra

M = {A ∈ G; (0, 1) = 0 ≤ A ≤ u = (1, 0)},

A ⊕ B = (A + B) ∧ u =

= (µA + µB, νA + νB − 1) ∧ (1, 0) =

= ((µA + µB) ∧ 1, (νA + νB − 1) ∨ 0,

A ⊙ B = (A + B − u) ∨ (0, 1) =
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Analysis of Fuzzy Logic Models 5

= ((µA + µB, νA + νB − 1)− (1, 0)) ∨ (0, 1)=

= (µA + µB − 1, νA + νB − 1 − 0 + 1) ∨ (0, 1) =

= ((µA + µB − 1) ∨ 0, (νA + νB) ∧ 1),

¬A = (1, 0)− (µA, νA) =

= (1 − µA, 0 − νA + 1) =

= (1 − µA, 1 − νA).

Connections with the family of IF-sets (Definition 1.1) is evident. Hence we can formulate the
main result of the section.

Theorem 1.1. Let (Ω,S) be a measurable space, F the family of all IF-sets A = (µA, νA) be
such that µA, νA are S-measurable. Then there exists an MV-algebra M such that F ⊂ M, the
operations ⊕,⊙ are extensions of operations on F and the ordering ≤ is an extension of the
ordering in F .

Proof. Consider MV-algebra M constructed in Example 1.5. If A, B ∈ F , then the operations
on M coincide with the operations on F . The ordering ≤ is the same.

Theorem 1.1 enables us in the space of IF-sets to use some results of the well developed
probability theory on MV-algebras ([66 - 68]). Of course, some methods of the theory can be
generalized in so-called D-posets ([28]). The system (D ≤,−, 0, 1) is called D-poset, if (D,≤)
is partially ordered set with the smallest element 0 and the largest element 1, − is a partially
binary operation satisfying the following statements:

1. b − a is defined if and only if a ≤ b.

2. a ≤ b implies b − a ≤ b and b − (b − a) = a.

3. a ≤ b ≤ c implies c − b ≤ c − a and (c − a)− (c − b) = b − a.

3. Probability on IF-events

In IF-events theory an original terminology is used. The main notion is the notion of a state
([21], [22],[57], [58], [61][, [62]). It is an analogue of the notion of probability in the Kolmogorov
classical theory. As before F is the family of all IF-sets A = (µA, νA) such that µA, νA :
(Ω,S) → [0, 1] are S-measurable.

Definition 2.1. A mapping m : F → [0, 1] is called a state if the following properties are
satisfied:

(i) m(1Ω, 0Ω) = 1, m(0Ω, 1Ω) = 0,

(ii) A ⊙ B = (0Ω, 1Ω) =⇒ m((A ⊕ B)) = m(A) + m(B),

(iii) An ր A =⇒ m(An) ր m(A).

Of course, also the notion with the name probability has been introduced in IF-events theory.

Definition 2.2. Let J be the family of all compact intervals in the real line, J = {[a, b]; a, b ∈
R, a ≤ b}. Probability is a mapping P : F → J satisfying the following conditions:

223Analysis of Fuzzy Logic Models
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6 Will-be-set-by-IN-TECH

(i) P(1Ω, 0Ω) = [1, 1], P(0Ω, 1Ω) = [0, 0],

(ii) A ⊙ B = (0Ω, 1Ω) =⇒ P((A ⊕ B)) = P(A) + P(B),

(iii) An ր A =⇒ P(An) ր P(A).

It is easy to see that the following property holds.

Proposition 2.1. Let P : F → J , P(A) = [P♭(A), P♯(A)]. Then P is a probability if and only if

P♭, P♯ : F → [0, 1] are states.

Hence it is sufficient to characterize only the states ([4], [5], [54]).

Theorem 2.1. For any state m : F → [0, 1] there exist probability measures P, Q : S → [0, 1]
and α ∈ [0, 1] such that

m((µA, νA)) =
∫

Ω
µAdP + α(1 −

∫
Ω
(µA + νA)dQ).

Proof. The main instrument in our investigation is the following implication, a corollary of
(ii):

f , g ∈ F , f + g ≤ 1 =⇒ m( f , g) = m( f , 1 − f ) + m(0, f + g). (1)

We shall define the mapping P : S → [0, 1] by the formula P(A) = m(χA, 1 − χA). Let
A, B ∈ S , A∩ B = ∅. Then χA + χB ≤ 1, hence (χA, 1− χA)⊙ (χB, 1− χB) = (0, 1). Therefore

P(A) + P(B) = m(χA, 1 − χA) + m(χB, 1 − χB) =

= m((χA, 1 − χA)⊕ (χB, 1 − χB)) =

= m(χA + χB, 1 − χA − χB) = m(χA∪B, 1 − χA∪B = P(A ∪ B).

Let An ∈ S(n = 1, 2, ...), An ր A. Then

χAn
ր χA, 1 − χAn

ց 1 − χA,

hence by (iii)
P(An) = m(χAn

, 1 − χAn
) ր m(χA, 1 − χA) = P(A).

Evidently P(Ω) = m(χΩ, 1 − χΩ) = m((1, 0)) = 1, hence P : S → [0, 1] is a probability
measure.

Now we prove two identities. First the implication:

A1, ..., An ∈ S , α1, ..., αn ∈ [0, 1], Ai ∩ Aj = ∅(i �= j) =⇒

m(
n

∑
i=1

αiχAi
, 1 −

n

∑
i=1

αiχAi
) =

n

∑
i=1

m(αiχAi
, 1 − αiχAi

). (2)

It can be proved by induction. The second identity is the following

0 ≤ α, β ≤ 1 =⇒ m(αβχA, 1 − αβχA) = αm(βχA, 1 − βχA). (3)
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First it can be proved by induction the equality

qm(
1

q
βχA, 1 − 1

q
βχA) = m(βχA, 1 − βχA)

holding for every q ∈ N. Therefore

m(
1

q
βχA, 1 − 1

q
βχA) =

1

q
m(βχA, 1 − βχA)

m(
p

q
βχA, 1 − p

q
βχA) =

p

q
m(βχA, 1 − βχA),

hence (3) holds for every rational α. Let α ∈ R, α ∈ [0, 1]. Take αn ∈ Q, αn ր α. Then

αnχA ր αχA, 1 − αnχA ց 1 − αχA.

Therefore
m(αβχA, 1 − αβχA) = lim

n→∞
m(αnβχA, 1 − αnβχA) =

= lim
n→∞

αnm(βχA, 1 − βχA) = αm(βχA, 1 − βχA),

hence, (3) is proved, too. Particularly, if we give β = 1, then

m(αχA, 1 − αχA) = αm(χA, 1 − χA).

Let f : Ω → [0, 1] be simple, S-measurable, i.e.

f =
n

∑
i=1

αiχAi
, Ai ∈ S(i = 1, ., , , n), Ai ∩ Aj = ∅(i �= j).

Combining (2), (3), and the definition of P we obtain

m( f , 1 − f ) =
n

∑
i=1

m(αiχAi
, 1 − αiχAi

) =

=
n

∑
i=1

αim(χAi
, 1 − χAi

) =

=
n

∑
i=1

αiP(Ai) =
∫

Ω
f dP,

hence

m( f , 1 − f ) =
∫

Ω
f dP,

for any f : Ω → [0, 1]simple. If f : Ω → [0, 1] is an arbitrary S-measurable function, then
there exists a sequence ( fn) of simple measurable functions such that fn ր f . Evidently,
1 − fn ց 1 − f . Therefore

m( f , 1 − f ) = lim
n→∞

m( fn, 1 − fn) = lim
n→∞

∫
Ω

fndP =
∫

Ω
f dP,

225Analysis of Fuzzy Logic Models
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8 Will-be-set-by-IN-TECH

hence

m( f , 1 − f ) =
∫

Ω
dP, (4)

for any measurable f : Ω → [0, 1].

Now take our attention to the second term m(0, f + g) in the right side of the equality (1). First
define M : S → [0, 1] by the formula

M(A) = m(0, 1 − χA).

As before it is possible to prove that M is a measure. Of course,

M(Ω) = m(0, 0) = α ∈ [0, 1].

Define Q : S → [0, 1] by the formula

m(0, 1 − χA) = αQ(A).

As before, it is possible to prove

m(0, 1 − f ) = α

∫
Ω

f dQ,

for any f : Ω → [0, 1] measurable, or

m(0, h) = α

∫
Ω
(1 − h)dQ, (5)

for any h : Ω → [0, 1],S-measurable. Combining (1), (4), and (5) we obtain

m(A) = m((µA, νA) = m((µA, 1 − µA)) + m((0, µA + νA))

=
∫

Ω
µAdP + α(1 −

∫
Ω
(µA + νA)dQ).

A simple consequence of the representation theorem is the following property of the mapping
P − αQ : S → R.

Proposition 2.2. Let P, Q : S → [0, 1] be the probabilities mentioned in Theorem 2.1, α is the
corresponding constant. Then

P(A)− αQ(A) ≥ 0

for any A ∈ S .

Proof. Put B = (0, 0), C = (χA, 0). Then B ≤ C, hence m(0, 0) ≤ m(χA, 0). Therefore

α = m(0, 0) ≤ m(χA, 0) = P(A) + α(1 − Q(A)).

Theorem 1.1 is an embedding theorem stating that every IF-events algebra F can be embedded
to and MV-algebra M. Now we shall prove that any state m : F → [0, 1] can be extended to a
state m : M → [0, 1] ([63]).

Theorem 2.2. Let M ⊃ F be the MV-algebra constructed in Theorem 1.1. Then every state
m : F → [0, 1] can be extended to a state m : M → [0, 1].
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Proof. It is easy to see that any element (µA, νA) ∈ M can be presented in the form

(µA, νA)⊙ (0, 1 − νA) = (0, 1),

(µA, 0) = (µA, νA)⊕ (0, 1 − νA).

If (µA, νA) ∈ F , then

m((µA, 0)) = m((µAνA)) + m((0, 1 − νA)).

Generally, we can define m : M → [0, 1] by the formula

m((µA, νA)) = m((µA, 0))− m((0, 1 − νA)),

so that m is an extension of m. Of course, we must prove that m is a state. First we prove that
m is additive.

Let A = (µA, νA) ∈ M, B = (µB, νB) ∈ M, A ⊙ B = (0, 1), hence

((µA + µB − 1) ∨ 0, (νA + νB) ∧ 1) = (0, 1),

µA + µB ≤ 1, 1 − νA + 1 − νB ≤ 1.

Therefore
m(A) + m(B) = m(µA, νA) + m(µB, νB)

= m(µA, 0)− m(0, 1 − νA) + m(µB, 0)− m(0, 1 − νB) =

= m(µA + µB, 0)− m(0, 1 − νA − νB) =

= m(µA + µB, νA + νB) = m(A ⊕ B).

Before the continuity of m we shall prove its monotonicity. Let A ≤ B, i.e. µA ≤ µA, νA ≥ νB.
Then by Theorem 2.1

m(A) = m(µA, 0)− m(0, 1 − νA) =

=
∫

Ω
µAdP + α(1 −

∫
Ω
(µA + 0)dQ −

∫
Ω

0dP − α(1 −
∫

Ω
(0 + 1 − νA)dQ) =

=
∫

Ω
µAdP + α(1 −

∫
Ω
(µA + νA)dQ).

Therefore

m(B)− m(A) =
∫

Ω
µBdP + α − α

∫
Ω

µBdQ − α

∫
Ω

νBdQ−

−(
∫

Ω
µAdP + α − α

∫
Ω

µAdQ − α

∫
Ω

νAdQ) =

=
∫

Ω
(µB − µA)dP − α

∫
Ω
(µB − µA)dQ + α

∫
Ω
(νA − νB)dQ.

Of course, as an easy consequence o Proposition 2.1 we obtain the inequality

∫
Ω

f dP − α

∫
Ω

f dQ ≥ 0

227Analysis of Fuzzy Logic Models
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10 Will-be-set-by-IN-TECH

for any non-negative measurable f : Ω → R. Therefore

m(B)− m(A) =
∫

Ω
f dP − α

∫
Ω

f dQ + α

∫
Ω
(νA − µB)dQ ≥ 0.

Finally let An = (µAn
, νAn

) ∈ M, A = (µA, νA) ∈ M, An ր A, i.e. µAn
ր µA, νAn

ց νA. We
have

m(An) =
∫

Ω
µAn

dP − α

∫
Ω

µAn
dQ + α − α

∫
Ω

νAn
dQ ր

ր
∫

Ω
µAdP − α

∫
Ω

µAdQ + α − α

∫
Ω

νAdQ = m(A).

4. Observables

In the classical probability there are three main notions:

probability = measure

random variable = measurable function

mean value = integral.

The first notion has been studied in the previous section. Now we shall define the second two
notions.

Classically a random variable is such function ξ : (Ω,S) → R that ξ−1(A) ∈ S for any Borel
set A ∈ B(R) (here B(R) = σ(J ) is the σ-algebra generated by the family J of all intervals).
Now instead of a σ-algebra S we have the family F of all IF-events, hence we must give to
any Borel set A an element of F . Of course, instead of random variable we shall use the term
observable ([15], [16], [18], [32], [35]).

Definition 3.1. An observable is a mapping

x : σ(J ) → F

satisfying the following conditions:

(i)
x(R) = (1, 0), x(∅) = (0, 1),

(ii)
A ∩ B = ∅ =⇒ x(A)⊙ x(B) = (0, 1), x(A ∪ B) = x(A)⊕ x(B),

(iii)
An ր A =⇒ x(An) ր x(A).

Proposition 3.1. If x : σ(J ) → F is an observable, and m : F → [0, 1] is a state, then

mx = m ◦ x : σ(J ) → [0, 1]

defined by
mx(A) = m(x(A))

is a probability measure.
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Analysis of Fuzzy Logic Models 11

Proof. First
mx(R) = m(x(R)) = m((1, 0)) = 1.

If A ∩ B = ∅, then x(A)⊙ x(B) = (0, 1), hence

mx(A ∪ B) = m(x(A ∪ B)) = m((x(A)⊕ x(B)) =

= m(x(A)) + m(x(B)) = mx(A) + mx(B).

Finally, An ր A implies x(An) ր x(A), hence

mx(An) = m(x(An)) ր m(x(A)) = mx(A).

Proposition 3.2. Let x : σ(J ) → F be an observable, m : F → [0, 1] be a state. Define
F : R → [0, 1] by the formula

F(u) = m(x((−∞, u))).

Then F is non-decreasing, left continuous in any point u ∈ R,

lim
u→∞

F(u) = 1, lim
u→−∞

F(u) = 0.

Proof. If u < v, then

x((−∞, v)) = x((−∞, u))⊕ x((u, v)) ≥ x((−∞, u)),

hence
F(v) = m((−∞, v)) ≥ m(x((−∞, u))) = F(u),

F is non decreasing. If un ր u, then

x((−∞, un)) ր x((−∞, u)),

hence
F(un) = m(x((−∞, un))) ր m(x((−∞, u))) = F(u),

F is left continuous in any u ∈ R. Similarly un ր ∞ implies

x((−∞, un)) ր x((−∞, ∞)) = (1, 0).

Therefore
F(un) = m(x((−∞, un))) ր m((1, 0))) = 1

for every un ր ∞, hence limu→∞ F(u) = 1. Similarly we obtain

un ց −∞ =⇒ −un ր ∞,

hence
m(x((un,−un))) ր m(x(R)) = 1.

Now
1 = lim

n→∞
F(−un) = lim

n→∞
m(x((un,−un))) + lim

n→∞
F(un) =

= 1 + lim
n→∞

F(un),
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hence limn→∞ F(un) = 0 for any un ց −∞.

Of course, we must describe also the random vector T = (ξ, η) : Ω → R2. We have

T−1(C × D) = ξ−1(C) ∩ η−1(D).

In the IF case we shall use product of functions instead of intersection of sets ([47], [56], [68]).

Definition 3.2. The product A.B of two IF-events A = (µA, νA), B = (µB, νB) is the IF set

A.B = (µA.µB, 1 − (1 − νA).(1 − νB)) = (µA.µB, νA + νB − νA.νB).

Definition 3.3. Let x1, ..., xn : σ(J ) → F be observables. By the joint observable of x1, ..., xn

we consider a mapping h : σ(J n) → F (J n being the set of all intervals of Rn) satisfying the
following conditions:

(i) h(Rn) = (1, 0)

(ii) A ∩ B = ∅ =⇒ h(A)⊙ h(B) = (0, 1), and h(A ∪ B) = h(A)⊕ h(B),

(iii) An ր A =⇒ h(An ր h(A),

(iv) h(C1 × C2 × ... × Cn) = x1(C1).x2(C2).....xn(Cn), for any C1, C2, ..., Cn ∈ J .

Theorem 3.1. ([63]) For any observables x1, ..., xn : σ(J ) → F there exists their joint
observable h : σ(J n) → F .

Proof. We shall prove it for n = 2. Consider two observables x, y : σ(J ) → F . Since
x(A) ∈ F , we shall write

x(A) = (x♭(A), 1 − x♯(A))

and similarly

y(B) = (y♭(B), 1 − y♯(B)).

By the definition of product we obtain

x(C).y(D) = (x♭(C).y♭(D), 1 − x♯(C).y♯(D)).

Therefore, we shall construct similarly

h(K) = (h♭(K), 1 − h♯(K))

Fix ω ∈ Ω and define µ, ν : σ(J ) → [0, 1] by

µ(A) = x♭(A)(ω), ν(B) = y♭(B)(ω).

Let µ × ν be the product of the probability measures µ, ν. Put

h♭(K)(ω) = µ × ν(K).

Then
h♭(C × D)(ω) = µ(C).ν(D) = x♭(C).y♭(D)(ω)
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hence
h♭(C × D) = x♭(C).y♭(D).

Analogously

h♯(C × D) = x♯(C).y♯(D).

If we define
h(A) = (h♭(A), 1 − h♯(A)), A ∈ σ(J 2),

then
h(C × D) = (x♭(C).y♭(D), 1 − x♯(C).y♯(D)) = x(C).y(D).

Now we shall present two applications of the notion of the joint observable. The first is the
definition of function of a finite sequence of observables, e.g. their sum. In the classical case

ξ + η = g ◦ T : Ω → R

where g(u, v) = u + v, T(ω) = (ξ(ω), η(ω)). Hence ξ + η can be defined by the help of
pre-images:

(ξ + η)−1 = T−1 ◦ g−1 : B(R) → S .

Definition 3.4. Let x1, ..., xn : B(R) → F be observables, g : Rn → R be a measurable function.
Then we define

g(x1, ..., xn) : B(R) → F
by the formula

g(x1, ..., xn)(C) = h(g−1(C)), C ∈ B(R),

where h : B(Rn) → F is the joint observable of the observables x1, ..., xn.

Example 3.1. x1 + ... + xn : B(R) → F is the observable defined by the formula (x1 + ... +
xn)(C) = h(g−1(C)), where h : B(Rn) → F is the joint observable of x1, ..., xn, and g : Rn → R
is defined by the equality g(u1, ..., un) = u1 + ... + un.

The second application of the joint observable is in the formulation of the independency.

Definition 3.5. Let m : F → [0, 1] be a state, (xn)∞
n=1 be a sequence of observables,

hn : σ(J n) → F be the joint observable of x1, ..., xn(n = 1, 2, ...). Then (xn)∞
n=1 is called

independent, if

m(hn(C1 × C2 × ... × Cn)) = m(x1(C1)).m(x2(C2)).....m(xn(Cn))

for any n ∈ N and any C1, ..., Cn ∈ σ(J ).

Now let us return to the notion of mean value of an observable. In the classical case

E(g ◦ ξ) =
∫

Ω
g ◦ ξdP =

∫
R

gdF

where F is the distribution function of ξ.

Definition 3.6. Let x : B(R) → F be an observable, m : F → [0, 1] be a state, g : R → R be
a measurable function, F be the distribution function of x (F(t) = m(x((−∞, t)))). Then we

231Analysis of Fuzzy Logic Models

www.intechopen.com



14 Will-be-set-by-IN-TECH

define the mean value E(g ◦ x) by the formula

E(g ◦ x) =
∫

R
gdF

if the integral exists.

Example 3.2. Let x be discrete, i.e. there exist xi ∈ R, pi ∈ (0, 1], i = 1, ..., k such that

F(t) = ∑
xi<t

pi.

Then

E(x) =
∫

R
tdF(t) =

k

∑
i=1

xi pi.

The second classical case is the continuous distribution, where

F(t) =
∫ t

−∞
ϕ(u)du.

Then

E(x) =
∫

R
tdF(t) =

∫ ∞

−∞
tϕ(t)dt.

Example 3.3. Let us compute the dispersion

σ2(x) = E(g ◦ x),

where
g(u) = (u − a)2, a = E(x).

Here we have two possibilities. The first

σ2 =
∫

R
(t − a)2dF(t)

i.e.

σ2(x) =
k

∑
i=1

(xi − a)2 pi

in the discrete case, and

σ2(x) =
∫ ∞

−∞
(t − a)2 ϕ(t)dt

in the continuous case. The second possibility is the equality

σ2(x) = E((x − a)2) = E(x2)− 2aE(x) + E(a2) =

= E(x2)− a2, a = E(x).

Since a = E(x) is known, it is sufficient to compute E(x2). In the case we have g(t) = t2, hence

E(x2) =
∫

R
g(t)dF(t) =

∫
R

t2dF(t).
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In the discrete case we have

E(x2) =
k

∑
1=i

x2
i pi,

in the continuous case we obtain

E(x2) =
∫ ∞

−∞
t2 ϕ(t)dt.

5. Sequences

In the section we want to present a method for studying of limit properties of some
sequences (xn)n, xn : B(R) → F of observables ([7], [25], [31], [32], [49]). The main idea
is a representation of the given sequence by a sequence of random variables (ξn)n, ξn :
(Ω,S , P) → R. Of course, the space (Ω,S) depends on a concrete sequence (xn)n, for different
sequences various spaces (Ω,S , P) can be obtained.

The main instrument is the Kolmogorov consistency theorem ([67]). It starts with a sequence
of probability measures (µn)n, µn : σ(Jn) → [0, 1] such that

µn+1|σ(Jn)× R = µn

i. e. µn+1(A × R) = µn(A) for any A ∈ σ(Jn) (consistency condition). Let C be the family of
all cylinders in the space RN , i. e. such sets A ⊂ RN that

A = {(tn)n; (t1, ..., tk) ∈ B},

where k ∈ N, B ∈ B(Rk) = σ(J k). Then by the Kolmogorov consistency theorem there exists
exactly one probability measure

P : σ(C) → [0, 1]

such that
P(A) = µk(B). (6)

If we denote by πn the projection πn : RN → Rn,

πn((ti)
∞
i=1) = (t1, t2, ..., tn),

then we can formulate the assertion (6) by the equality

P(π−1
n (B)) = µn(B), (7)

for any B ∈ C.

Theorem 4.1. Let m be a state on a space F of all IF-events. Let (xn)n be a sequence of
observables, xn : B(R) → F , and let hn : B(Rn) → F be the joint observable of x1, ..., xn, n =
1, 2, .... If we define µn : B(Rn) → [0, 1] by the equality

µn = m ◦ hn,

then (µn)n satisfies the consistency condition

µn+1|(σ(Jn)× R) = µn.
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Proof. Let C1, C2, ..., Cn ∈ B(R). Then by Definition 3.3. and Definition 3.1

µn+1(C1 × C2 × ... × Cn × R) = m(x1(C1)).x2(C2).....xn(Cn).xn+1(R)) =

= m(x1(C1)).x2(C2).....xn(Cn).(1, 0)) =

= m(x1(C1)).x2(C2).....xn(Cn)) =

= µn(C1 × C2 × ... × Cn),

hence µn+1|(Jn × R) = µn|Jn. Of course, if two measures coincide on Jn then they coincide
on σ(Jn), too.

Now we shall formulate a translation formula between sequences of observables in (F , m)
and corresponding random variables in (RN , σ(C), P) ([67]).

Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied. Let gn : Rn → R be Borel
measurable functions n = 1, 2, .... Let C be the family of all cylinders in RN , ξn : RN → R be
defined by the formula ξn((ti)i) = tn,

ηn : RN → R, ηn = gn(ξ1., ..., ξn),

yn : B(Rn) → F , yn = hn ◦ g−1
n .

Then
P(η−1

n (B)) = m(yn(B))

for any B ∈ B(R).

Proof. Put A = g−1
n (B). By Theorem 4.1.

m(yn(B)) = m(hn(g−1
n (B))) = P(π−1

n (g−1
n (B))) =

= P((gn ◦ πn)
−1(B)) = P(η−1

n (B)).

As an easy corollary of Theorem 4.2 we obtain a variant of central limit theorem. In the
classical case

lim
n→∞

P({ω;
1
n ∑

n
i=1 ξi(ω)− a

σ√
n

< t}) = 1√
2π

∫ t

−∞
e−

u2

2 du

Of course, we must define for observables the element

(

√
n

σ

n

∑
i=1

xi − a)(−∞, t)

It is sufficient to put

gn(u1, ..., un) =

√
n

σ

n

∑
i=1

ui − a

Theorem 4.3. Let (xn)n be a sequence of square integrable, equally distributed, independent
observables, E(xn) = a, σ2(xn) = σ2(n = 1, 2, ...). Then

lim
n→∞

m(
1
n ∑

n
i=1 xi − a

σ√
n

(−∞, t) =
1√
2π

∫ t

−∞
e−

u2

2 du
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Proof. We shall use the notation from the last two theorems. Then for C ∈ σ(J )

m(xn(C)) = m(hn(R × ... × R × C) = P(π−1
n (R × ... × R × C)) = P(ξ−1

n (C)),

hence

E(ξn) =
∫ ∞

−∞
tdPξn

(t) =
∫ ∞

−∞
tdmxn (t) = E(xn) = a,

and
σ2(ξn) = σ2(xn) = σ2.

Moreover,
P(ξ−1

1 (C1) ∩ ... ∩ ξ−1
n (Cn)) = P(π−1

n (C1 × ... × Cn)) =

= m(hn(C1 × ... × Cn) = m(x1(C1)).....m(xn(Cn)) = P(ξ−1
1 (C1)).....P(ξ

−1
n (Cn)),

hence ξ1, ..., ξn are independent for every n. Put gn(u1, ..., un) =
√

n
σ ∑

n
i=1 ui − a. By Theorem

4.2. we have

m(

√
n

σ
(

n

∑
i=1

xi − a)((−∞, t)) = m(hn(g−1
n (−∞, t))) = m(yn((−∞, t)) =

= P(η−1
n ((−∞, t))) = P({(ω);

√
n

σ

n

∑
i=1

ξi(ω)− a < t}).

Therefore by the classical central limit theorem

lim
n→∞

m(
1
n ∑

n
i=1 xi − a

σ√
n

(−∞, t)) =
1√
2π

∫ t

−∞
e−

u2

2 du

Let us have a look to the previous theorem from another point of view, say, categorial. We had

lim
n→∞

P(η−1
n ((−∞, t)) = φ(t)

We can say that (ηn)n converges to φ in distribution. Of course, there are important
possibilities of convergencies, at least in measure and almost everywhere.

A sequence (ηn)n of random variables (= measurable functions) converges to 0 in measure
µ : S → [0, 1], if

lim
n→∞

µ(η−1(−ε, ε)) = 0

for every ε > 0. And the sequence converges to 0 almost everywhere, if

lim
n→∞

P(∩∞
p=1 ∪∞

k=1 ∩∞
n=kη−1

n ((− 1

p
,

1

p
)) = 1

Certainly, if ηn(ω) → 0,then

∀ε > 0∃k∀n > k : −ε < η(ω) < ε
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If we instead of ε use 1
p , p ∈ N, then ηn(ω) → 0 if and only if

∀p∃k∀n > k : ω ∈ η−1
n ((− 1

p
,

1

p
)).

And ηn → 0 almost everywhere, if the set {ω; η(ω) → 0} has measure 1.

Definition 4.1. A sequence (yn)n of observables

(i) converges in distribution to a function F : R → R, if

lim
n→∞

m(yn((−∞, t)) = F(t)

for every t ∈ R;

(ii) it converges to 0 in state m : F → [0, 1], if

lim
n→∞

m(yn((−ε, ε))) = 0

for every ε > 0;

(iii) it converges to 0 m-almost everywhere, if

lim
p→∞

lim
k→∞

lim
i→∞

m(∧k+i
n=kyn(−

1

p
,

1

p
)) = 0.

Theorem 4.4. Let (yn)n be a sequence of observables, (ηn)n be the sequence of corresponding
random variables. Then

(i) (yn)n converges to F : R → R in distribution if and only if (ηn)n converges to F;

(ii) yn)n converges to 0 in state m : F → [0, 1] if and only if (ηn)n converges to 0 in measure
P : S → [0, 1]

(iii) if (ηn)n converges P-almost everywhere to 0, then (yn)n m-almost everywhere converges
to 0.

The details can be found in [66]. Many applications of the method has been described in [25],
[31], [35], [37], [39] , [52].

6. Conditional probability

Conditional entropy (of A with respect to B) is the real number P(A|B) such that

P(A ∩ B) = P(B)P(A|B).

When A, B are independent, then P(A|B) = P(A), the event A does not depend on the ocuring
of event B. Another point of view:

P(A ∩ B) =
∫

B
P(A|B)dP.
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The number P(A|B) can be regarded as a constant function, Constant functions are
measurable with respect to the σ-algebra S0 = {∅, Ω}.

Generally P(A|S0) can be defined for any σ-algebra S0 ⊂ S , as an S0-measurable function
such that

P(A ∩ C) =
∫

C
P(A|S0)dP, C ∈ So.

If S0 = S , then we can put P(A|S0) = χA, since χA is S0-measurable, and

∫
C

χAdP = P(A ∩ C).

An important example of S0 is the family of all pre-images of a random variable ξ : Ω → R

S0 = {ξ−1(B); B ∈ σ(J )}.

In this case we shall write P(A|S0) = P(A|ξ), hence

∫
C
(P(A|ξ)dP = P(A ∩ C), C = ξ−1(B), B ∈ σ(J ).

By the transformation formula

P(A ∩ ξ−1(B)) =
∫

ξ−1(B)
g ◦ ξdP =

∫
B

gdPξ , B ∈ σ(J )

And exactly this formulation will be used in our IF-case,

m(A.x(B)) =
∫

B
p(A|x)dmx =

∫
B

p(A|x)dF.

Of course, we must first prove the existence of such a mapping p(A|x) : R → R ([34], [70],
[72]). Recall that the product of IF-events is defined by the formula

K.L = (µK .µL, νK + νL − νK .νL).

Theorem 5.1. Let x : σ(J ) → F be an observable, m : F → [0, 1] be a state, and let A ∈ F .
Define ν : σ(J ) → [0, 1] by the equality

ν(B) = m(A.x(B)).

Then ν is a measure.

Proof. Let B ∩ C = ∅, B, C ∈ B(R) = σ(J ). Then x(B).x(C) = (0, 1), hence

A.(x(B)⊕ x(C)) = (A.x(B))⊕ (A.x(C)),

and therefore

ν(B ∪ C) = m(A.x(B ∪ C)) = m(A.(x(B)⊕ x(C)) = m((A.x(B))⊕ (A.x(C))) =

= m(A.x(B)) + m(A.x(C)) = ν(B) + ν(C).
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Let Bn ր B. Then x(Bn) ր x(B), hence A.x(Bn) ր A.x(B). Therefore

ν(Bn) = m(A.x(Bn)) ր m(A.x(B)) = ν(B).

Theorem 5.2. Let x : σ(J ) → F be an observable, m : F → [0, .1] be a state, and let A ∈ F .
Then there exists a Borel measurable function f : R → R (i. e. B ∈ σ(J ) =⇒ f−1(B) ∈ σ(J ))
such that

m(A.x(B)) =
∫

B
f dmx

for any B ∈ σ(J ). If g is another such a function, then

mx({u ∈ R; f (x) �= g(x)}) = 0.

Proof. Define µ, ν : σ(J ) → [0, 1] by the formulas

µ(B) = mx(B) = m(x(B)), ν(B) = m(A.x(B)).

Then µ, ν : σ(J ) → [0, 1] are measures, and ν ≤ µ.

By the Radon - Nikodym theorem there exists exactly one function f : R → R (with respect to
the equality µ- almost everywhere) such that

m(A.x(B)) = ν(B) =
∫

B
f dµ =

∫
B

f dmx, B ∈ σ(J ).

Definition 5.1. Let x : σ(J ) → F be an observable A ∈ F . Then the conditional probability
p(A|x) = f is a Borel measurable function (i. e. B ∈ J =⇒ f−1(B) ∈ σ(J )) such that

∫
B

p(A|x)dmx = m(A.x(B))

for any B ∈ σ(J ).

7. Algebraic world

At the end of our communication we shall present two ideas. The first one is in some
algebraizations of the product

A.B = (µA.µB, νA + νB − νA.νB).

The second idea is a presentation of a dual notion to the notion of IF-event.

In MV-algebras the product was introduced independently in [56] and [47]. Let us return to
Definition 1.3 and Example 1.5.

Definition 6.1. An MV-algebra with product is a pair (M, .), where M is an MV-algebra, and .
is a commutative and associative binary operation on M satisfying the following conditions:

(i) 1.a = a

(ii) a.(b ⊙¬c) = (a.b)⊙¬(a.c).
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Example 6.1. Let M ⊃ F be the MV-algebra defined in Theorem 1.1 (Example1.5). Then M
with the product A.B = (µAµB, νA + νB − νAνB) is an MV-algebra with product. Indeed,

(1, 0).(µA, νA) = (1.µA, 0 + νA − 0.νA) = (µA, νA).

Moreover
(µA, νA).((µB, νB)⊙ (1 − µC, 1 − νC)) =

= (µA((µB − µC) ∨ 0), νA + (νB − νC + 1) ∧ 1 − νA((νB + 1 − νC) ∧ 1)).

On the other hand
((µA, νA).(µB, νB))⊙ (¬(µA, νA).(µC, νC)) =

((µA(µB − µC)) ∨ 0, (νA + (νB − νC + 1)− νA(νB + 1 − νC)) ∧ 1).

Denote
νB − νC + 1 = k.

If 1 ≤ k, then
νA + k ∧ 1 − νA(k ∧ 1) = νA + 1 − νA = 1,

(νA + k − νAk) ∧ 1 = (νA + k(1 − νA)) ∧ 1 = 1.

If k < 1, then
νA + k ∧ 1 − νAk ∧ 1 = νA + k − νAk,

(νA + k − νAk) ∧ 1 = νA + k − νAk,

hence actually
A.(B ⊙¬C) = (A.B)⊙ (¬(A.C)).

Similarly as in Section 1 we can define a product in D-posets, we shall name such D-posets
Kôpka D-posets.

Definition 6.2. A Kôpka D-poset is a pair (D, ∗), where D is a D-poset, and ∗ is a commutative
and associative operation on D satisfying the following conditions:

1. ∀a ∈ D : a ∗ 1 = a;

2. ∀a, b ∈ D, a ≤ b, ∀c ∈ D : a ∗ c ≤ b ∗ c;

3. ∀a, b ∈ D : a − (a ∗ b) ≤ 1 − b;

4. ∀(an)n ⊂ D, an ր a, ∀b ∈ D : an ∗ b ր a ∗ b.

Evidently every IF-family F can be embedded to an MV-algebra with product and it is a
special case of a Kôpka D-poset, hence any result from the Kôpka D-poset theory can be
applied to our IF-events theory ([26], [64]).

Now let us consider a theory dual to the IF-events theory, theory of IV-events. A prerequisity
of IV-theory is in the fact that it considers natural ordering and operations of vectors. On the
other hand the IV-theory is isomorphic to the IF-theory ([65],[43]).

Definition 6.3. Let (Ω,S) be a measurable space, S be a σ-algebra. By an IV-event a pair
A = (µA, νA) : Ω → [0, 1]2 is considered such that

A ≤ B ⇐⇒ µA ≤ µB, νA ≤ νB;
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A ⊞ B = ((µA + µB) ∧ 1, (νA + νB) ∧ 1);

A ⊡ B = ((µA + µB − 1) ∨ 0, (νA + νB − 1) ∨ 0).

Denote by V the family of all IV-events. By an IV-state a map m : V → [0, 1] is considered such
that the following properties are satisfied:

(i) m((0, 0)) = 0, m((1, 1)) = 1;

(ii) A ⊡ B = (0, 0) =⇒ m(A ⊞ B) = m(A) + m(B);

(iii)An ր A =⇒ m(An) ր m(A).

Theorem 6.1. Let V be the family of all IV-events (with respect to Ω,S)), m : →[0, 1] be an
IV-state. Define

F = {(µA, 1 − νA); (µA, νA) ∈ V},

m : F → [0, 1], m((µA, νA)) = 1 − m(µA, 1 − νA)),

ϕ : V → F , ϕ((µA, νA)) = (µA, 1 − νA).

Then F is the family of all IF-events (with respect to (Ω,S), m is an IF-state and ϕ is an
isomorphism such that

ϕ((0, 0)) = (0, 1), ϕ((1, 0)) = (1, 1),

ϕ(A ⊡ B) = ϕ(A)⊙ ϕ(B),

ϕ(A ⊞ B) = ϕ(A)⊕ ϕ(B),

ϕ(¬A) = ¬ϕ(A),

m(A)) = m(ϕ(A)), A ∈ V .

Proof. It is almost straightforward. Of course, the using of the family V is more natural and
the results can be applied immediately to probability theory on F .

8. Conclusion

The structures studied in this chapter have two aspects: the first one is practical, the second
theoretical one. Fuzzy sets and their generalization - Atanassov intuitionistic fuzzy sets - in
both directions new possibilities give.

From the practical point of view we can recommend e. g. [1], [9], [69]. Of course, the whole IF
- theory can be motivated by practical problems and applications (see[10],[44 - 46], [53]).

The main contribution of the presented theory is a new point of view on human thinking
and creation. We consider algebraic models for multi valued logic: IF-events, and more
generally MV-algebras, D-posets, and effect algebras. They are important for many valued
logic as Boolean algebras for two valued logic. Of course, we presented also some results
about entropy ([11], [12], [40 - 42], [59]), or inclusion - exclusion principle ([6], [26], [30])for an
illustration. But the more important idea is in building the probability theory on IF-events.

The theoretical description of uncertainty has two parts in the present time : objective -
probability and statistics, and subjective - fuzzy sets. We show that both parts can be
considered together.
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[64] Riečan, B., Lašová. L.: On the probability on the Kôpka D-posets. In: Developments in
Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and related Topics I (K. Atanassov
et al. eds.), Warsaw 2010, 167 - 176.
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