
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

6

Intelligent Problem Solvers in Education:
Design Method and Applications

Nhon Van Do
University of Information Technology

Vietnam

1. Introduction

In this chapter we present the method for designing intelligent problem solvers (IPS),
especially those in education. An IPS, which is an intelligent system, can consist of AI-
components such as theorem provers, inference engines, search engines, learning
programs, classification tools, statistical tools, question-answering systems, machine-
translation systems, knowledge acquisition tools, etc (Sowa, John F. 2002). An IPS in
education (IPSE) considered here must have suitable knowledge base used by the
inference engine to solve problems in certain knowledge domain, and the system not only
give human readable solutions but also present solutions as the way teachers and
students usually write them. Knowledge representation methods used to design the
knowledge base should be convenient for studying of users and for using by inference
engine. Besides, problems need to be modeled so that we can design algorithms for
solving problems automatically and propose a simple language for specifying them. The
system can solve problems in general forms. Users only declare hypothesis and goal of
problems base on a simple language but strong enough for specifying problems. The
hypothesis can consist of objects, relations between objects or between attributes. It can
also contain formulas, determination properties of some attributes or their values. The
goal can be to compute an attribute, to determine an object, a relation or a formula. After
specifying a problem, users can request the program to solve it automatically or to give
instructions that help them to solve it themselves. The second function of the system is
"Search for Knowledge". This function helps users to find out necessary knowledge
quickly. They can search for concepts, definitions, properties, related theorems or
formulas, and problem patterns. By the cross-reference systems of menus, users can easily
get knowledge they need.

Knowledge representation has a very important role in designing the knowledge base and

the inference engine of the system. There are many various models and methods for

knowledge representation which have already been suggested and applied in many fields

of science. Many popular methods for knowledge representation such as logic, frames,

classes, semantic networks, conceptual graphs, rules of inference, and ontologies can be

found in George F. Luger (2008), Stuart Russell & Peter Norvig (2010), or in Sowa, John F.

(2000). These methods are very useful in many applications. However, they are not

enough and not easy to use for constructing an IPSE in practice. Knowledge

www.intechopen.com

Intelligent Systems

122

representation should be convenient for studying of users and for using by inference

engine. Besides, problems need to be modeled so that we can design algorithms for

solving problems automatically and propose a simple language for specifying them.

Practical intelligent systems expect more powerful and useful models for knowledge

representation. The Computational Object Knowledge Base model (COKB) presented in

Nhon Van Do (2010) will be used to design the system. This model can be used to

represent the total knowledge and to design the knowledge base component of systems.

Next, computational networks (Com-Net) and networks of computational objects

(CO-Net) in Nhon Van Do (2009) and Nhon Van Do (2010) can be used for modeling

problems in knowledge domains. These models are tools for designing inference engine of

systems.

We used COKB model, CO-Net and Com-Net in constructing some practical IPSE such as
the program for studying and solving problems in plane geometry presented in Nhon Van
Do (2000) and Nhon Do & Hoai P. Truong & Trong T. Tran (2010), the system that supports
studying knowledge and solving of analytic geometry problems, the system for solving
algebraic problems in Nhon Do & Hien Nguyen (2011), the program for solving problems in
electricity, in inorganic chemistry, etc. The applications have been implemented by using
programming tools and computer algebra systems such as C++, C#, JAVA, and MAPLE.
They are very easy to use for students in studying knowledge, to solve automatically
problems and give human readable solutions agree with those written by teachers and
students.

The chapter will be organized as follows: In Section 2, the system architecture and the
design process will be presented. In Section 3, models for knowledge representation are
discussed. Designing the knowledge base and the inference engine of an IPSE will be
presented in Section 4. Some applications will be introduced in section 5. Conclusions and
future works are drawn in Section 6.

2. System architecture and the design process

The structure of an IPSE are considered here consists of the components such as knowledge

base, inference engine, interface, explanation component, working memory and knowledge

manager. In this setion, these components will be studied together with relationships

between them; we will also study and discuss how an IPSE runs, and present a process to

construct the system together with methods and techniques can be used in each phase of the

process.

2.1 Components of the system

An IPSE is also a knowledge base system, which supports searching, querying and solving
problems based on knowledge bases; it has the structure of an expert system. We can design
the system which consists of following components:

 The knowledge base.

 The inference engine.

 The explanation component.

 The working memory.

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

123

 The knowledge manager.

 The interface.

Knowledge Bases contain the knowledge for solving some problems in a specific knowledge

domain. It must be stored in the computer-readable form so that the inference engine can

use it in the procedure of automated deductive reasoning to solve problems stated in

general forms. They can contain concepts and objects, relations, operators and functions,

facts and rules.

The Inference engine will use the knowledge stored in knowledge bases to solve problems,

to search or to answer for the query. It is the "brain" that systems use to reason about the

information in the knowledge base for the ultimate purpose of formulating new conclusions.

It must identify problems and use suitable deductive strategies to find out right rules and

facts for solving the problem. In an IPSE, the inference engine also have to produce solutions

as human reading, thinking, and writing.

The working memory contains the data that is received from the user during operation of

the system. Consequents from rules in the knowledge base may create new values in

working memory, update old values, or remove existing values. It also stores data, facts and

rules in the process of searching and deduction of the inference engine.

The explanation component supports to explain the phases, concepts in the process of

solving the problem. It presents the method by which the system reaches a conclusion may

not be obvious to a human user, and explains the reasoning process that lead to the final

answer of the system.

The knowledge manager aims to support updating knowledge into knowledge base. It also

supports to search the knowledge and test consistence of knowledge.

The user interface is the means of communication between a user and the system problem-

solving processes. An effective interface has to be able to accept the queries, instructions or

problems in a form that the user enters and translate them into working problems in the

form for the rest of the system. It also has to be able to translate the answers, produced by

the system, into a form that the user can understand. The interface component of the system

is required to have a specification language for communication between the system and

learners, between the system and instructors as well.

The figure 1 below shows the structure of the system.

The main process for problem solving: From the user, a problem in a form that the user
enter is input into the system, and the problem written by specification language is created;
then it is translated so that the system receives the working problem in the form for the
inference engine, and this is placed in the working memory. After analyzing the problem,
the inference engine generates a possible solution for the problem by doing some automated
reasoning strategies such as forward chaining reasoning method, backward chaining
reasoning method, reasoning with heuristics. Next, The first solution is analyzed and from
this the inference engine produces a good solution for the interface component. Based on the
good solution found, the answer solution in human-readable form will be created for output
to the user.

www.intechopen.com

Intelligent Systems

124

Fig. 1. Structure of a system

2.2 Design process

The process of analysis and design the components of the systems consists of the following
stages.

Stage 1: Determine the knowledge domain and scope; then do collecting real knowledge

consisting of data, concepts and objects, relations, operators and functions, facts and rules,

etc. The knowledge can be classified according to some ways such as chapters, topics or

subjects; and this classification help us to collect problems appropriately and easily.

Problems are also classified by some methods such as frame-based problems, general forms

of problems.

Stage 2: Knowledge representation or modeling for knowledge to obtain knowledge base
model of the system. This is an important base for designing the knowledge base. Classes of
problem are also modeled as well to obtain initial problem models.

The above stages can be done by using the COKB model, Com-Nets, CO-Nets, and their
extensions. These models will be presented in section 3.

Stage 3: Establishing knowledge base organization for the system based on COKB model
and its specification language. Knowledge base can be organized by structured text files.
They include the files below.

 Files stores names of concepts, and structures of concepts.

 A file stores information of the Hasse diagram representing the component H of COKB
model.

 Files store the specification of relations (the component R of COKB model).

 Files store the specification of operators (the component Ops of COKB model).

 Files store the specification of functions (the component Funcs of COKB model).

 A file stores the definition of kinds of facts.

 A file stores deductive rules.

 Files store certain objects and facts.

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

125

Stage 4: Modeling of problems and designing algorithms for automated reasoning. General
problems can be represented by using Com-Nets, CO-Nets, and their extensions. The CO-
Net problem model consists of three parts:

O = O1, O2, . . ., On, F = f1, f2, . . ., fm,

Goal = [g1, g2, . . ., gm].

In the above model the set O consists of n Com-objects, F is the set of facts given on the
objects, and Goal is a list, which consists of goals.

The design of deductive reasoning algorithms for solving problems and the design of
interface of the system can be developed by three steps for modeling:

Step 1. Classify problems such as problems as frames, problems of a determination or a
proof of a fact, problems of finding objects or facts, etc…

Step 2. Classify facts and representing them based on the kinds of facts of COKB model.
Step 3. Modeling kinds of problems from classifying in step 1 and 2. From models of each

kind, we can construct a general model for problems, which are given to the system
for solving them.

The basic technique for designing deductive algorithms is the unification of facts. Based on

the kinds of facts and their structures, there will be criteria for unification proposed. Then it

produces algorithms to check the unification of two facts.

The next important work is doing research on strategies for deduction to solve problems on

computer. The most difficult thing is modeling for experience, sensible reaction and

intuitional human to find heuristic rules, which were able to imitate the human thinking for

solving problems.

Stage 5: Creating a query language for the models. The language helps to design the
communication between the system and users by words.

Stage 6: Designing the interface of the system and coding to produce the application.

Intelligent applications for solving problems in education of mathematic, physic, chemistry

have been implemented by using programming tools and computer algebra systems such as

Visual Basic.NET or C#, SQL Server, Maple. They are very easy to use for students, to

search, query and solve problems.

Stage 7: Testing, maintaining and developing the application. This stage is similar as in
other computer systems.

The main models for knowledge representation used in the above process will be presented
in the next section.

3. Knowledge representation models

In artificial intelligence science, models and methods for knowledge representation play an
important role in designing knowledge base systems and expert systems, especially
intelligent problem solvers. Nowadays there are many various knowledge models which
have already been suggested and applied. In the books of Sowa (2002), George F. Luger

www.intechopen.com

Intelligent Systems

126

(2008), Michel Chein & Marie-Laure Mugnier (2009) and Frank van Harmelem & Vladimir &
Bruce (2008) we have found popular methods for knowledge representation. They include
predicate logic, semantic nets, frames, deductive rules, conceptual graphs. The above
methods are very useful for designing intelligent systems, especially intelligent problem
solvers. However, they are not suitable to represent knowledge in the domains of reality
applications in many cases, especially the systems that can solve problems in practice based
on knowledge bases. There have been new models proposed such as computational
networks, networks of computational objects in Nhon Van Do (2009) and model for
knowledge bases of computational objects (COKB) in Nhon Van Do (2010).
The COKB model can be used to represent the total knowledge and to design the knowledge
base component of practical intelligent systems. Networks of computational objects can be
used for modeling problems in knowledge domains. These models are tools for designing
inference engine of systems. The models have been used in designing some intelligent
problem solvers in education (IPSE) such as the program for studying and solving problems
in Plane Geometry in Nhon (2000), the program for solving problems about alternating
current in physics. These applications are very easy to use for students in studying
knowledge, to solve automatically problems and give human readable solutions agree with
those written by teachers and students. In this section, the COKB model and computational
networks, that are used for designing IPSE will be presented in details.

3.1 COKB model

The model for knowledge bases of computational objects (COKB) has been established from
Object-Oriented approach to represent knowledge together with programming techniques
for symbolic computation. There have been many results and tools for Object-Oriented
methods, and some principles as well as techniques were presented in Mike (2005). This
way also gives us a method to model problems and to design algorithms. The models are
very useful for constructing components and the whole knowledge base of intelligent
system in practice of knowledge domains.

3.1.1 Computational objects

In many problems we usually meet many different kinds of objects. Each object has
attributes and internal relations between them. They also have basic behaviors for solving
problems on its attributes.

Definition 3.1: A computational object (or Com-object) has the following characteristics:

1. It has valued attributes. The set consists of all attributes of the object O will be denoted
by M(O).

2. There are internal computational relations between attributes of a Com-object O. These
are manifested in the following features of the object:
- Given a subset A of M(O). The object O can show us the attributes that can be

determined from A.
- The object O will give the value of an attribute.
- It can also show the internal process of determining the attributes.

The structure computational objects can be modeled by (Attrs, F, Facts, Rules). Attrs is a set
of attributes, F is a set of equations called computation relations, Facts is a set of

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

127

properties or events of objects, and Rules is a set of deductive rules on facts. For example,
knowledge about a triangle consists of elements (angles, edges, etc) together with
formulas and some properties on them can be modeled as a class of C-objects whose sets
are as follows:

Attrs = {A, B, C, a, b, c, R, S, p, ...} is the set of all attributes of a triangle,

F = {A+B+C = ; a/sin(A) = 2R; b/sin(B) = 2R; c/sin(C) = 2R; a/sin(A) = b/sin(B); ... },

Facts = {a+b>c; a+c>b; b+c>a ; …},

Rules = { {a>b}  {A>B}; {b>c}  {B>C}; {c>a}  {C>A}; {a=b}  {A=B};

{a^2= b^2+c^2}  {A=pi/2}; {A=pi/2}  {a^2 = b^2+c^2, b  c}; ...}.

An object also has basic behaviors for solving problems on its attributes. Objects are

equipped abilities to solve problems such as:

1. Determines the closure of a set of attributes.

2. Executes deduction and gives answers for questions about problems of the form:

determine some attributes from some other attributes.

3. Executes computations

4. Suggests completing the hypothesis if needed.

For example, when a triangle object is requested to give a solution for problem {a, B, C}  S,

it will give a solution consists of three following steps:

Step 1: determine A, by A =  -B-C;
Step 2: determine b, by b = a.sin(B)/sin(A);
Step 3: determine S, by S = a.b.sin(C)/2;

3.1.2 Components of COKB model

Definition 3.2: The model for knowledge bases of computational objects (COKB model)
consists of six components:

(C, H, R, Ops, Funcs, Rules)

The meanings of the components are as follows:

 C is a set of concepts of computational objects. Each concept in C is a class of Com-

objects.

 H is a set of hierarchy relation on the concepts.

 R is a set of relations on the concepts.

 Ops is a set of operators.

 Funcs is a set of functions.

 Rules is a set of rules.

There are relations represent specializations between concepts in the set C; H represents

these special relations on C. This relation is an ordered relation on the set C, and H can be

considered as the Hasse diagram for that relation.

www.intechopen.com

Intelligent Systems

128

R is a set of other relations on C, and in case a relation r is a binary relation it may have

properties such as reflexivity, symmetry, etc. In plane geometry and analytic geometry,

there are many such relations: relation “belongs to” of a point and a line, relation “central

point” of a point and a line segment, relation “parallel” between two line segments, relation

“perpendicular” between two line segments, the equality relation between triangles, etc.

The set Ops consists of operators on C. This component represents a part of knowledge

about operations on the objects. Almost knowledge domains have a component consisting

of operators. In analytic geometry there are vector operators such as addition, multiplication

of a vector by a scalar, cross product, vector product; in linear algebra there are operations

on matrices. The COKB model helps to organize this kind of knowledge in knowledge

domains as a component in the knowledge base of intelligent systems.

The set Funcs consists of functions on Com-objects. Knowledge about functions is also a

popular kind of knowledge in almost knowledge domains in practice, especially fields of

natural sciences such as fields of mathematics, fields of physics. In analytic geometry we

have the functions: distance between two points, distance from a point to a line or a plane,

projection of a point or a line onto a plane, etc. The determinant of a square matrix is also a

function on square matrices in linear algebra.

The set Rules represents for deductive rules. The set of rules is certain part of knowledge

bases. The rules represent for statements, theorems, principles, formulas, and so forth.

Almost rules can be written as the form “if <facts> then <facts>”. In the structure of a

deductive rule, <facts> is a set of facts with certain classification. Therefore, we use

deductive rules in the COKB model. Facts must be classified so that the component Rules

can be specified and processed in the inference engine of knowledge base system or

intelligent systems.

3.1.3 Facts in COKB model

In the COKB model there are 11 kinds of facts accepted. These kinds of facts have been

proposed from the researching on real requirements and problems in different domains of

knowledge. The kinds of facts are as follows:

 Fact of kind 1: information about object kind. Some examples are ABC is a right
triangle, ABCD is a parallelogram, matrix A is a square matrix.

 Fact of kind 2: a determination of an object or an attribute of an object. The following
problem in analytic geometry gives some examples for facts of kind 2.

Problem: Given the points E and F, and the line (d). Suppose E, F, and (d) are determined.

(P) is the plane satisfying the relations: E  (P), F  (P), and (d) // (P). Find the general
equation of (P).

In this problem we have three facts of kind 3: (1) point E is determined or we have already
known the coordinates of E, (2) point F is determined, (3) line (d) is determined or we have
already known the equation of (d).

 Fact of kind 3: a determination of an object or an attribute of an object by a value or a
constant expression. These are some examples in plane geometry and in analytic

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

129

geometry: in the triangle ABC, suppose that the length of edge BC = 5; the plane (P) has
the equation 2x + 3y – z + 6 = 0, and the point M has the coordinate (1, 2, 3).

 Fact of kind 4: equality on objects or attributes of objects. This kind of facts is also
popular, and there are many problems related to it on the knowledge base. The
following problem in plane geometry gives some examples for facts of kind 4.

Problem: Given the parallelogram ABCD. Suppose M and N are two points of segment AC
such that AM = CN. Prove that two triangles ABM and CDN are equal.

In the problem we have to determine equality between two C-objects, a fact of kind 4.

 Fact of kind 5: a dependence of an object on other objects by a general equation. An
example in geometry for this kind of fact is that w = 2*u + 3*v; here u, v and w are
vectors.

 Fact of kind 6: a relation on objects or attributes of the objects. In almost problems there
are facts of kind 6 such as the parallel of two lines, a line is perpendicular to a plane, a
point belongs to a line segment.

 Fact of kind 7: a determination of a function.

 Fact of kind 8: a determination of a function by a value or a constant expression.

 Fact of kind 9: equality between an object and a function.

 Fact of kind 10: equality between a function and another function.

 Fact of kind 11: a dependence of a function on other functions or other objects by an
equation.

The last five kinds of facts are related to knowledge about functions, the component Funcs
in the COKB model. The problem below gives some examples for facts related to functions.

Problem: Let d be the line with the equation 3x + 4y - 12 = 0. P and Q are intersection points
of d and the axes Ox, Oy.

a. Find the central point of PQ
b. Find the projection of O onto the line d.

For each line segment, there exists one and only one point which is the central point of that

segment. Therefore, there is a function MIDPOINT(A, B) that outputs the central point M of

the line segment AB. Part (a) of the above problem can be represented as to find the point I

such that I = MIDPOINT(P,Q), a fact of kind 9. The projection can also be represented by the

function PROJECTION(M, d) that outputs the projection point N of point M onto line d.

Part (b) of the above problem can be represented as to find the point A such that A =

PROJECTION(O,d), which is also a fact of kind 9.

Unification algorithms of facts were designed and used in different applications such as the

system that supports studying knowledge and solving analytic geometry problems, the

program for studying and solving problems in Plane Geometry, the knowledge system in

linear algebra.

3.1.4 Specification language for COKB model

The language for the COKB model is constructed to specify knowledge bases with
knowledge of the form COKB model. This language includes the following:

www.intechopen.com

Intelligent Systems

130

- A set of characters: letter, number, special letter.

- Vocabulary: keywords, names.

- Data types: basic types and structured types.

- Expressions and sentences.

- Statements.

- Syntax for specifying the components of COKB model.

The followings are some structures of definitions for expressions, Com-Objects, relations,

facts, and functions.

Definitions of expressions:

expr ::= expr | rel-expr | logic-expr

expr ::= expr add-operator term | term

term ::= term mul-operator factor | factor

factor ::= – factor | element ^ factor | element

element ::= (expr) | name | number | function-call

rel-expr ::= expr rel-operator expr

logic-expr ::= logic-expr OR logic-term | logic-expr IMPLIES logic-term |

 NOT logic-term |logic-term

logic-term ::= logic-term AND logic-primary |logic-primary

logic-primary ::= expr | rel-expr |function-call | quantify-expr |TRUE | FALSE

quantify-expr ::= FORALL(name <, name>*), logic-expr | EXISTS(name), logic-

 expr

Definitions of Com-object type:

cobject-type ::= COBJECT name;

 [isa]

 [hasa]

 [constructs]

 [attributes]

 [constraints]

 [crelations]

 [facts]

 [rules]
 ENDCOBJECT;

Definitions of computational relations:

crelations ::= CRELATION:
 crelation-def+
 ENDCRELATION;

crelation-def ::= CR name;

 MF: name <, name>*;

 MFEXP: equation;

 ENDCR;

equation ::= expr = expr

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

131

Definitions of special relations:

isa ::= ISA: name <, name>*;
hasa ::= HASA: [fact-def]

Definitions of facts:

facts ::= FACT: fact-def+
fact-def ::= object-type | attribute | name | equation | relation | expression
object-type ::= cobject-type (name) | cobject-type (name <, name>*)
relation ::= relation (name <, name>+)

Definitions of relations based on facts:

relation-def ::= RELATION name;
 ARGUMENT: argument-def+
 [facts]
 ENDRELATION;
argument-def ::= name <, name>*: type;

Definitions of functions – form 1:

function-def ::= FUNCTION name;
 ARGUMENT: argument-def+
 RETURN: return-def;
 [constraint]
 [facts]
 ENDFUNCTION;
return-def ::= name: type;

Definitions of functions – form 2:

function-def ::= FUNCTION name;
 ARGUMENT: argument-def+
 RETURN: return-def;
 [constraint]
 [variables]
 [statements]
 ENDFUNCTION;
statements ::= statement-def+
statement-def ::= assign-stmt | if-stmt | for-stmt
asign-stmt ::= name := expr;
if-stmt ::= IF logic-expr THEN statements+ ENDIF; |
 IF logic-expr THEN statements+ ELSE statements+ ENDIF;
for-stmt ::= FOR name IN [range] DO statements+ ENDFOR;

3.2 Computational networks

In this section, we present the models computational networks with simple valued variables
and networks of computational objects. They have been used to represent knowledge in
many domains of knowledge. The methods and techniques for solving the problems on the
networks will be useful tool for design intelligent systems, especially IPSE.

www.intechopen.com

Intelligent Systems

132

3.2.1 Computational networks with simple valued variables

In this part a simple model of computational networks will be presented together related

problems and techniques for solving them. Although this model is not very complicated, but

it is a very useful tool for designing many knowledge base systems in practice.

Definition 3.3: A computational network (Com-Net) with simple valued variables is a pair (M, F),

in which M = x1, x2, ..., xn is a set of variables with simple values (or unstructured values),

and F = f1, f2, ..., fm is a set of computational relations over the variables in the set M. Each

computational relation f  F has the following form:

i. An equation over some variables in M, or

ii. Deductive rule f : u(f)  v(f), with u(f)  M, v(f)  M, and there are corresponding
formulas to determine (or to compute) variables in v(f) from variables in u(f).We also

define the set M(f) = u(f)  v(f).

Remark: In many applications equations can be represented as deduction rules.

Problems: Given a computational net (M, F). The popular problem arising from reality

applications is that to find a solution to determine a set H  M from a set G  M. This

problem is denoted by the symbol HG, H is the hypothesis and G is the goal of the

problem. To solve the problem we have to answer two questions below:

Q1: Is the problem solvable based on the knowledge K = (M, F)?

Q2: How to obtain the goal G from the hypothesis H based on the knowledge K = (M, F) in

case the problem is solvable?

Definition 3.4: Given a computational net K = (M, F).

i. For each A  M and f  F, denote f(A) = A  M(f) be the set obtained from A by
applying f. Let S = [f1, f2, ..., fk] be a list consisting relations in F, the notation S(A) =
fk(fk-1(… f2(f1(A)) …)) is used to denote the set of variables obtained from A by applying
relations in S.

ii. The list S = [f1, f2, ..., fk] is called a solution of the problem HG if S(H)  G. Solution S
is called a good solution if there is not a proper sublist S’ of S such that S’ is also a
solution of the problem. The problem is solvable if there is a solution to solve it.

Definition 3.5: Given a computational net K = (M, F). Let A be a subset of M. It is easy to

verify that there exists a unique set A  M such that the problem AA is solvable; the set

A is called the closure of A.

The following are some algorithms and results that show methods and techniques for

solving the above problems on computational nets.

Theorem 3.1: Given a computational net K = (M, F). The following statements are

equivalent.

i. Problem HG is solvable.

ii. H G.

iii. There exists a list of relations S such that S(H)  G.

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

133

Algorithm 3.1: Find a solution of the problem HG.

 Step 1: Solution  empty;

 Step 2: if G  H then begin Solution_found  true; goto step 4; end

 else Solution_found  false;
 Step 3: Repeat

 Hold  H;

 Select f  F;
 while not Solution_found and (f found) do begin
 if (applying f from H produces new facts)
 then begin

 H  H  M(f); Add f to Solution;
 end;

 if G  H then

 Solution_found  true;

 Select new f  F;

 end;  while 
 Until Solution_found or (H = Hold);
 Step 4: if not Solution_found then
 There is no solution found;
 else
 Solution is a solution of the problem;

Algorithm 3.2: Find a good solution from a solution S = [f1, f2, ..., fk] of the problem HG on

computational net (M, F).

Step 1: NewS  []; V  G;

Step 2: for i := k downto 1 do

 If v(fk)  V   the Begin

 Insert fk at the beginning of NewS;

 V  (V – v(fk))  (u(fk) – H);

 End

Step 3: NewS is a good solution.

On a computational net (M, F), in many cases the problem HG has a solution S in which

there are relations producing some redundancy variables. At those situations, we must

determine necessary variables of each step in the problem solving process. The following

theorem shows the way to analyze the solution to determine necessary variables to compute

at each step.

Theorem 3.2: Given a computational net K = (M, F). Let [f1, f2, ..., fm] be a good solution of

the problem HG. denote A0 = H, Ai = [f1, f2, ..., fi](H), with i=1, ..., m. Then there exists a

list [B0, B1, ..., Bm-1, Bm] satisfying the following conditions:

1. Bm = G,

2. Bi  Ai , with i=0, 1, ..., m.

3. For i=1,...,m, [fi] is a solution of the problem Bi-1  Bi but not to be a solution of the

problem B  Bi , with B is any proper subset B of Bi-1.

www.intechopen.com

Intelligent Systems

134

3.2.2 Networks of computational objects

In many problems we usually meet many different kinds of objects. Each object has
attributes and internal relations between them. Therefore, it is necessary to consider an
extension of computational nets in which each variable is a computational object.

Definition 3.6: A computational object (or Com-object) has the following characteristics:

1. It has valued attributes. The set consists of all attributes of the object O will be denoted
by M(O).

2. There are internal computational relations between attributes of a Com-object O. These
are manifested in the following features of the object:
- Given a subset A of M(O). The object O can show us the attributes that can be

determined from A.
- The object O will give the value of an attribute.
- It can also show the internal process of determining the attributes.

Example 3.1: A triangle with some knowledge (formulas, theorems, etc ...) is an object. The

attributes of a “triangle” object are 3 edges, 3 angles, etc. A “triangle” object can also answer

some questions such as “Is there a solution for the problem that to compute the surface from

one edge and two angles?”.

Definition 3.7: A computational relation f between attributes or objects is called a relation

between the objects. A network of Com-objects will consists of a set of Com-objects O = O1,

O2, ..., On and a set of computational relations F = f1, f2, ... , fm. This network of Com-

objects is denoted by (O, F).

On the network of Com-objects (O, F), we consider the problem that to determine (or

compute) attributes in set G from given attributes in set H. The problem will be denoted by

HG.

Example 3.2: In figure 2 below, suppose that AB = AC, the values of the angle A and the

edge BC are given (hypothesis). ABDE and ACFG are squares. Compute EG.

Fig. 2. A problem in geometry

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

135

The problem can be considered on the network of Com-objects (O, F) as follows:

O = {O1: triangle ABC with AB = AC, O2 : triangle AEG, O3 : square ABDE, O4 : square
ACFG }, and F = {f1, f2, f3, f4, f5} consists of the following relations

f1 : O1.c = O3.a the edge c of triangle ABC = the edge of the square ABDE

f2 : O1.b = O4.a the edge b of triangle ABC = the edge of the square ACFG

f3 : O2.b = O4.a the edge b of triangle AEG = the edge of the square ACFG

f4 : O2.c = O3.a the edge c of triangle AEG = the edge of the square ABDE

f5 : O1.A + O2.A = .

Definition 3.8: Let (O, F) be a network of Com-objects, and M be a set of concerned
attributes. Suppose A is a subset of M.

a. For each f  F, denote f(A) is the union of the set A and the set consists of all attributes

in M deduced from A by f. Similarly, for each Com-object Oi  O, Oi(A) is the union of
the set A and the set consists of all attributes (in M) that the object Oi can determine
from attributes in A.

b. Suppose D = [t1, t2, ..., tm] is a list of elements in F  O. Denote A0 = A, A1 = t1(A0), . . .,
Am = tm(Am-1), and D(A) = Am.

We have A0  A1  . . .  Am = D(A)  M. Problem HG is called solvable if there is a list

D  F  O such that D(A)  B. In this case, we say that D is a solution of the problem.

Technically the above theorems and algorithms can be developed to obtain the new ones for

solving the problem HG on network of Com-objects (O,F). They will be omitted here

except the algorithm to find a solution of the problem. The worthy of note is that the objects

may participate in solutions as computational relations.

Algorithm 3.3: Find a solution of the problem HG on a network of Com-objects.

 Step 1: Solution  empty;

 Step 2: if G  H then begin Solution_found  true; goto step 5; end

 Else Solution_found  false;
 Step 3: Repeat

 Hold  H;

 Select f  F;
 while not Solution_found and (f found) do begin
 if (applying f from H produces new facts) then begin

 H  H  M(f); Add f to Solution;
 end;

 if G  H then Solution_found  true;

 Select new f  F;

 end;  while 
 Until Solution_found or (H = Hold);
 Step 4: if not Solution_found then begin

 Select Oi  O such that Oi(H)  H;
 if (the selection is successful) then begin

 H  Oi(H); Add Oi to Solution;

 if (G  H) then begin

www.intechopen.com

Intelligent Systems

136

 Solution_found  true; goto step 5;

 end;

 else

 goto step 3;

 end;

 end;

 Step 5: if not Solution_found then There is no solution found;

 else Solution is a solution of the problem;

Example 3.3: Consider the network (O, F) in example 3.2, and the problem HG, where

H = O1.a, O1.A, and G = O2.a.

Here we have: M(f1) =  O1.c , O3.a , M(f2) =  O1.b , O4.a , M(f3) =  O2.b , O4.a ,

M(f4) =  O2.c , O3.a , M(f5) =  O1. , O2. ,

M =  O1.a, O1.b, O1.c, O1.A, O2.b, O2.c, O2.A , O2.a, O3.a, O4.a .

The above algorithms will produce the solution D =  f5, O1, f1, f2, f3, f4, O2, and the process

of extending the set of attributes as follows:

A0 5f A1 1OA2 1f A3 2f A4 3f A5 4f A6 2O A7

with A0 = A = O1.a , O1.A,

 A1 = O1.a , O1.A, O2.A,

 A2 =  O1.a , O1.A, O2.A, O1.b, O1.c ,

 A3 = O1.a , O1.A, O2.A, O1.b, O1.c, O3.a,

 A4 = O1.a , O1.A, O2.A, O1.b, O1.c, O3.a, O4.a,

 A5 = O1.a , O1.A, O2.A, O1.b, O1.c, O3.a, O4.a, O2.b,

 A6 = O1.a , O1.A, O2.A, O1.b, O1.c, O3.a, O4.a, O2.b, O2.c,

 A7 = O1.a , O1.A, O2.A, O1.b, O1.c, O3.a, O4.a, O2.b, O2.c, O2.a.

3.2.3 Extensions of computational networks

Computational Networks with simple valued variables and networks of computational

objects can be used to represent knowledge in many domains of knowledge. The basic

components of knowledge consist of a set of simple valued variables and a set of

computational relations over the variables. However, there are domains of knowledge based

on a set of elements, in which each element can be a simple valued variables or a function.

For example, in the knowledge of alternating current the alternating current intensity i(t)

and the alternating potential u(t) are functions. It requires considering some extensions of

computational networks such as extensive computational networks and extensive computational

objects networks that are defined below.

Definition 3.9: An extensive computational network is a structure (M,R) consisting of two

following sets:

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

137

 M = Mv  Mf is a set of attributes or elements, with simple valued or functional
valued.Mv = {xv1, xv2, …, xvk} is the set of simple valued variables. Mf = {xf1, xf2, … xfm} is
the set of functional valued elements.

 R = Rvv  Rfv  Rvf  Rfvf is the set of deduction rules, and R is the union of four subsets

of rules Rvv, Rfv, Rvf, Rfvf. Each rule r has the form r: u(r)v(r), with u(r) is the
hypotheses of r and v(r) is the conclusion of r. A rule is also one of the four cases below.

Case 1: r  Rvv. For this case, u(r)  Mv and v(r)  Mv.

Case 2: r  Rfv. For this case, u(r)  Mf and v(r)  Mv.

Case 3: r  Rvf. For this case, u(r)  Mv and v(r)  Mf.

Case 4: r  Rfvf. For this case, u(r)  M, u(r) Mf  , u(r) Mv  , and v(r)  Mf.

Each rule in R has the corresponding computational relation in F = Fvv  Ffv  Fvf  Ffvf.

Definition 3.10: An extensive computational Object (ECom-Object) is an object O has structure
including:

 A set of attributes Attr(O) = Mv  Mf, with Mv is a set of simple valued variables; Mf is a

set of functional variables. Between the variables (or attributes) there are internal

relations, that are deduction rules or the computational relations.

 The object O has behaviors of reasoning and computing on attributes of objects or facts

such as: find the closure of a set A  Attr(O); find a solution of problems which has the

form A→B, with A  Attr(O) and B  Attr(O); perform computations; consider

determination of objects or facts.

Definition 3.11: An extensive computational objects network is a model (O, M, F, T) that has the
components below.

 O = {O1, O2, …, On} is the set of extensive computational objects.

 M is a set of object attributes. We will use the following notations: Mv(Oi) is the set of
simple valued attributes of the object Oi, Mf(Oi) is the set of functional attributes of Oi,

M(Oi) = Mv(Oi)  Mf(Oi), M(O) = M(O1)  M(O2)  …  M(On), and M  M(O).

 F = F(O) is the set of the computational relations on attributes in M and on objects in O.

 T={t1, t2, …, tk} is set of operators on objects.

On the structure (O,T), there are expressions of objects. Each expression of objects has its

attributes as if it is an object.

4. Design of main components

The main components of an IPSE are considered here consists of the knowledge base, the

inference engine. Design of these components will be discussed and presented in this

section.

4.1 Design of knowledge base

The design process of the system presented in section 2 consists of seven stages. After stage

1 for collecting real knowledge, the knowledge base design includes stage 2 and stage 3. It

includes the following tasks.

www.intechopen.com

Intelligent Systems

138

 The knowledge domain collected, which is denoted by K, will be represented or
modeled base on the knowledge model COKB, Com-Net, CO-Net and their
extensions or restrictions known. Some restrictions of COKB model were used to
design knowledge bases are the model COKB lacking operator component (C, H, R,
Funcs, Rules), the model COKB without function component (C, H, R, Ops, Rules),
and the simple COKB sub-model (C, H, R, Rules). From Studying and analyzing the
whole of knowledge in the domain, It is not difficult to determine known forms of
knowledge presenting, together with relationships between them. In case that
knowledge K has the known form such as COKB model, we can use this model for
representing knowledge K directly. Otherwise, the knowledge K can be partitioned
into knowledge sub-domains Ki (i = 1, 2, …, n) with lower complexity and certain
relationships, and each Ki has the form known. The relationships between knowledge
sub-domains must be clear so that we can integrate knowledge models of the
knowledge sub-domains later.

 Each knowledge sub-domain Ki will be modeled by using the above knowledge
models, so a knowledge model M(Ki) of knowledge Ki will be established. The
relationships on {Ki} are also specified or represented. The models {M(Ki)} together
with their relationships are integrated to produce a model M(K) of the knowledge K.
Then we obtain a knowledge model M(K) for the whole knowledge K of the
application.

 Next, it is needed to construct a specification language for the knowledge base of the

system. The COKB model and CO-Nets have their specification language used to

specify knowledge bases of these form. A restriction or extension model of those

models also have suitable specification language. Therefore, we can easily construct a

specification language L(K) for the knowledge K. This language gives us to specify

components of knowledge K in the organization of the knowledge base.

 From the model M(K) and the specification language L(K), the knowledge base
organization of the system will be established. It consists of structured text files that
stores the components concepts, hierarchical relation, relations, operators, functions,
rules, facts and objects; and their specification. The knowledge base is stored by the
system of files listed below,

- File CONCEPTS.txt stores names of concepts, and it has the following structure:
begin_concepts
 <concept name 1>
 < concept name 2>
 ...
end_concepts
For each concept, we have the corresponding file with the file name <concept
name>.txt, which contains the specification of this concept. This file has the following
structure:
begin_concept: <concept name>[based objects]
specification of based objects
begin_variables
<attribute name> : <attribute type>;
...
end_variables

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

139

begin_constraints
specification of constraints
end_constraints
begin_properties

specification of internal facts
end_properties
begin_computation_relations
begin_relation

specification of a relation
end_relation

 ...
end_computation_relations
begin_rules
begin_rule

kind_rule = "<kind of rule>";
hypothesis_part:

{ facts}
goal_part:

 { facts}
end_rule

 ...
end_rules
end_concept

- File HIERARCHY.txt stores information of the Hasse diagram representing the

component H of COKB model. It has the following structure:
begin_Hierarchy

[<concept name 1>, <concept name 2>]

 ...
end_Hierarchy

- Files RELATIONS.txt and RELATIONS_DEF.txt are structured text files that store the

specification of relations. The structure of file RELATIONS.txt is as follows
begin_Relations

[<relation name>, <concept>, <concept>, ...], <property>, <property>, ...;

[<relation name>, <concept>, <concept>, ...], <property>, <property>, ...;

...
end_Relations

- Files OPERATORS.txt and OPERATORS_DEF.txt are structured text files that store the

specification of operators (the component Ops of KBCO model). The structure of file

OPERATORS.txt is as follows
begin_Operators

[<operator symbol>, <list of concepts>, <result concept>], <property>, <property>,

...;

[<operator symbol>, <list of concepts>, <result concept>], <property>, <property>,

...;

...
end_Operators

www.intechopen.com

Intelligent Systems

140

- Files FUNCTIONS.txt and FUNCTIONS_DEF.txt are structured text files that store the
specification of functions (the component Funcs of KBCO model). The structure of file
FUNCTIONS.txt is as follows
begin_Functions
<result concept> <function name>(sequence of concepts);
<result concept> <function name>(sequence of concepts);
...
end_Functions

- File FACT_KINDS.txt is the structured text file that stores the definition of kinds of
facts. Its structure is as follows
begin_Factkinds
1, <fact structure>, <fact structure>, ...;
2, <fact structure>, <fact structure>, ...;
...
end_Factkinds

- File RULES.txt is the structured text file that stores deductive rules. Its structure is as
follows
begin_Rules
begin_rule
kind_rule = "<rule kind>";
<object> : <concept>;
...
hypothesis_part:
<set of facts>
goal_part:
<set of facts>
end_rule
...
end_Rules

- Files OBJECTS.txt and FACTS.txt are the structured text files that store certain objects
and facts. The structure of file OBJECTS.txt is as follows
begin_objects
<object name> : <concept>;
<object name> : <concept>;
...
end_objects

4.2 Design the inference engine

Design the inference engine is stage 4 of the design process. The inference engine design
includes the following tasks:

 From the collection of problems obtained in stage 1 with an initial classification, we can
determine classes of problems base on known models such as Com-Net, CO-Net, and
their extensions. This task helps us to model classes of problems as frame-based
problem models, or as Com-Nets and CO-Nets for general forms of problems.
Techniques for modeling problems are presented in the stage 4 of the design process.

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

141

Problems modeled by using CO-Net has the form (O, F, Goal), in which O is a set of
Com-objects, F is a set of facts on objects, and Goal is a set consisting of goals.

 The basic technique for designing deductive algorithms is the unification of facts. Based
on the kinds of facts and their structures, there will be criteria for unification proposed.
Then it produces algorithms to check the unification of two facts. For instance, when we
have two facts fact1 and fact2 of kinds 1-6, the unification definition of them is as
follows: fact1 and fact2 are unified they satisfy the following conditions
1. fact1 and fact2 have the same kind k, and
2. fact1 = fact2 if k = 1, 2, 6.

[fact1[1], fact1[2..nops(fact1)]] = [fact2[1], fact2[2..nops(fact2)]] if k = 6 and the
relation in fact1 is symmetric.
lhs(fact1) = lhs(fact2) and compute(rhs(fact1)) = compute(rhs(fact2)) if k =3.
(lhs(fact1) = lhs(fact2) and rhs(fact1) = rhs(fact2)) or
(lhs(fact1) = rhs(fact2) and rhs(fact1) = lhs(fact2)) if k = 4.
evalb(simplify(expand(lhs(fact1)-rhs(fact1)- lhs(fact2)+rhs(fact2))) = 0) or
evalb(simplify(expand(lhs(fact1)-rhs(fact1)+ lhs(fact2)-rhs(fact2))) = 0) if k = 5.

 To design the algorithms for reasoning methods to solve classes of problems, the
forward chaining strategy can be used with artificial intelligent techniques such as
deductive method with heuristics, deductive method with sample problems, deductive
method based on organization of solving methods for classes of frame-based problems.
To classes of frame-based problems, designing reasoning algorithms for solving them is
not very difficult. To classes of general problems, the most difficult thing is modeling
for experience, sensible reaction and intuitional human to find heuristic rules, which
were able to imitate the human thinking for solving problems. We can use Com-Nets,
CO-Nets, and their extensions to model problems; and use artificial intelligent
techniques to design algorithms for automated reasoning. For instance, a reasoning
algorithm for COKB model with sample problems can be briefly presented below.

Definition 4.1: Given knowledge domain K = (C, H, R, Ops, Funcs, Rules), knowledge sub-
domain of knowledge K is knowledge domain which was represented by COKB model, it
consists of components as follows

Kp = (Cp, Hp, Rp, Opsp, Funcsp, Rulesp)

where, Cp  C, Hp  H, Rp R, Opsp  Ops, Funcsp  Funcs, Rulesp  Rules.

Knowledge domain Kp is a restriction of knowledge K.

Definition 4.2: Given knowledge sub-domain Kp, Sample Problem (SP) is a problem which
was represented by networks of Com-Objects on knowledge Kp, it consists of three
components (Op, Fp, Goalp); Op and Fp contain objects and facts were specificated on
knowledge Kp.

Definition 4.3: A model of Computational Object Knowledge Base with Sample Problems
(COKB-SP) consists of 7 components: (C, H, R, Ops, Funcs, Rules, Sample); in which, (C, H,
R, Ops, Funcs, Rules) is knowledge domain which presented by COKB model, the Sample
component is a set of Sample Problems of this knowledge domain.

Algorithm 4.1: To find a solution of problem P modelled by (O,F,Goal) on knowledge K of
the form COKB-SP.

www.intechopen.com

Intelligent Systems

142

Step 1. Record the elements in hypothesis part and goal part.

Step 2. Find the Sample Problem can be applied.

Step 3. Check goal G. If G is obtained then goto step 8.

Step 4. Using heuristic rules to select a rule for producing new facts or new objects.

Step 5. If selection in step 3 fails then search for any rule which can be used to deduce new

facts or new objects.

Step 6. If there is a rule found in step 3 or in step 4 then record the information about the

rule, new facts in Solution, and new situation (previous objects and facts together

with new facts and new objects), and goto step 2.

Step 7. Else {search for a rule fails} Conclusion: Solution not found, and stop.

Step 8. Reduce the solution found by excluding redundant rules and information in the

solution.

Algorithm 4.2: To find sample problems.

Given problem P = (O, F, Goal) on on knowledge K of the form COKB-SP. The Sample

Problem can be applied on P has been found by the following procedure:

Step 1: H ← O  F

Step 2: SP ← Sample

 Sample_found← false

Step 3: Repeat

 Select S in SP

 if facts of H can be applied in (S.Op and S.Fp) then

 begin

 if kind of S.Goalp = kind of Goal then

 Sample_found ← true

 Else if S.Goalp  H then

 Sample_found ← true

 end

 SP ← (SP – S)

 Until SP = {} or Sample_found

Step 3: if Sample_found then

 S is a sample problem of the problem;

 else

 There is no sample problem found;

This algorithm simulates a part of human mind when to find SP that relate to practical

problem. Thereby, the inference of system has been more quickly and effectively. Moreover,

the solution of problem is natural and precise.

5. Applications

The design method for IPS and IPSE presented in previous sections have been used to

produce many applycations such as program for studying and solving problems in Plane

Geometry, program for studying and solving problems in analytic geometry, program for

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

143

solving problems about alternating current in physics, program for solving problems in

inorganic chemistry, program for solving algebraic problems, etc. In this section, we

introduce some applications and examples about solutions of problems produced by

computer programs.

 The system that supports studying knowledge and solving analytic geometry problems.

The system consists of three components: the interface, the knowledge base, the

knowledge processing modules or the inference engine. The program has menus for

users searching knowledge they need and they can access knowledge base. Besides,

there are windows for inputting problems. Users are supported a simple language for

specifying problems. There are also windows in which the program shows solutions of

problems and figures.

 The program for studying and solving problems in plane geometry. It can solve

problems in general forms. Users only declare hypothesis and goal of problems base

on a simple language but strong enough for specifying problems. The hypothesis can

consist of objects, relations between objects or between attributes. It can also contain

formulas, determination properties of some attributes or their values. The goal can be

to compute an attribute, to determine an object, a relation or a formula. After

specifying a problem, users can request the program to solve it automatically or to

give instructions that help them to solve it themselves. The program also gives a

human readable solution, which is easy to read and agree with the way of thinking

and writing by students and teachers. The second function of the program is "Search

for Knowledge". This function helps users to find out necessary knowledge quickly.

They can search for concepts, definitions, properties, related theorems or formulas,

and problem patterns.

Examples below illustrate the functions of a system for solving problems of analytic

geometry, a system for solving problems in plane geometry, and a system for solving

algebraic problems. The systems were implemented using C#, JAVA and MAPLE. Each

example presents the problem in natural language, specifies the problem in specification

language to input into the system, and a solution produced from the system.

Example 5.1: Let d be the line with the equation 3x + 4y - 12 = 0. P and Q are intersection

points of d and the axes Ox, Oy.

a. Find the midpoint of PQ

b. Find the projection of O on the line d.

Specification of the problem:

Objects = {[d,line], [P,point], [Q,point]}.

Hypothesis = { d.f = (3*x+4*y-12 = 0), Ox.f = (y = 0), O = [0, 0], P = INTERSECT(Ox, d),

Q = INTERSECT (Oy, d), H = PROJECTION(O, d), Oy . f = (x = 0) }.

Goal = { MIDPOINT(P, Q), H }.

Solution found by the system:

Step 1: {d.f = (3*x+4*y-12 = 0), Ox.f = (y = 0), Oy.f = (x = 0)}  {d.f, Ox.f , Oy.f }.

www.intechopen.com

Intelligent Systems

144

Step 2: {Ox.f, Oy.f, d.f}  {Ox, Oy, d}.

Step 3: {P = INTERSECT(Ox,d), d, Ox} {P = [4, 0]}.

Step 4: {d, Oy, Q = INTERSECT(Oy,d)}  {Q = [0, 3]}.

Step 5: {P = [4, 0], Q = [0, 3]}  {P, Q}.

Step 6: {P, Q}  {MIDPOINT(P,Q) = [2, 3/2]}.

Step 7: {d, H = PROJECTION(O,d), O} { H = [36/25, 48/25]}.

Step 8: {H = [36/25, 48/25]}  {H}.

Example 5.2: Given two points P(2, 5) and Q(5,1). Suppose d is a line that contains the point

P, and the distance between Q and d is 3. Find the equation of line d.

Specification of the problem:

Objects = {[P, point], [Q, point], [d, line]}.

Hypothesis = {DISTANCE(Q, d) = 3, P = [2, 5], Q = [5, 1], ["BELONG", P, d]}.

Goal = [d.f].

Solution found by the system:

Step 1: {P = [2, 5]}  {P}.

Step 2: {DISTANCE(Q, d) = 3}  {DISTANCE(Q, d)}.

Step 3: {d, P}  {2d[1]+5d[2]+d[3] = 0}.

Step 4: {DISTANCE(Q, d) = 3}

 
2 2

|5d[1]+d[2]+d[3]|
3

d[1] [2]d

 


.

Step 5:
2 2

|5d[1]+d[2]+d[3]|
d[1]=1, 2d[1]+5d[2]+d[3]=0, 3

d[1] [2]d

   
   

24 134

d.f=(x+ y- =0),d.f=(x-2=0)
7 7

   
 

 Step 6: 24 134
d.f=(x+ y- =0),d.f=(x-2=0)

7 7

 
 
 

 { d.f }

Example 5.3: Given the parallelogram ABCD. Suppose M and N are two points of segment
AC such that AM = CN. Prove that two triangles ABM and CDN are equal.

Specification of the problem:

Objects = {[A, POINT], [B, POINT], [C, POINT], [D, POINT], [M, POINT], [N, POINT],
 [O1, PARALLELOGRAM[A, B, C, D], [O2, TRIANGLE[A, B, M]],
 [O3, TRIANGLE [C, D, N]]}.
Hypothesis = { [« BELONG », M, SEGMENT[A, C]],

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

145

 [« BELONG », N, SEGMENT[A, C]], SEGMENT[A, M] = SEGMENT[C, N] }.

Goal = { O2 = O3}.

Solution found by the system:

Step 1: Hypothesis

  { O2.SEGMENT[A, M] = O3. SEGMENT[C, N],

 O2.SEGMENT[A, B] = O1. SEGMENT[A, B],

 O3.SEGMENT[C, D] = O1.SEGMENT[C, D]}.

Step 2: Produce new objects related to O2, O3, and O1

  {[O4, TRIANGLE[A, B, C]], [O5, TRIANGLE[C, D, A]]}.

Step 3: {[O1, PARALLELOGRAM[A, B, C, D]}

 {O4 = O5, SEGMENT[A, B] = SEGMENT[C, D]}.

Step 4: { O2.SEGMENT[A, B] = O1.SEGMENT[A, B],

 O3.SEGMENT[C, D] = O1.SEGMENT[C, D],

 SEGMENT[A, B] = SEGMENT[C, D]}

 {O2.SEGMENT[A, B] = O3.SEGMENT[C, D]}.

Step 5: {[« BELONG », M, SEGMENT[A, C]]}

  {O4.angle_A = O2.angle_A}.

Step 6: {[« BELONG », N, SEGMENT[A, C]]}

  { O5.angle_A = O3.angle_A }.

Step 7: {O4 = O5 }

  {O4.angle_A = O5.angle_A}.

Step 8: { O4.angle_A = O2.angle_A ,

 O5.angle_A = O3.angle_A ,

 O4.angle_A = O5.angle_A }

 { O2.angle_A = O3.angle_A}.

Step 9: { O2.SEGMENT[A, M] = O3. SEGMENT[C, N],

 O2.SEGMENT[A, B] = O3.SEGMENT[C, D],

 O2.angle_A = O3.angle_A }

  {O2 = O3}.

Example 5.4: Let the equation, with m is a parameter, and x is a variable:

 2m 4 x 2 m  

Solve this equation by m.

Solution found by the system:

Solve the equation:

 2m 4 x 2 m  

 2m 4 x 2 m   

www.intechopen.com

Intelligent Systems

146

The coefficient of x has a set of roots:

{ 2 , 2}

 + if parameter m 2  , then:

 “This equation has no root”

 + if parameter m 2 , then:

 “This equation has set of roots is the set of real numbers ”

 + if parameter  m 2 , 2  , then:

2

2 m 1
x

m 2m 4

 
 



6. Conclusions and future work

In this chapter, we proposed a method for designing intelligent problem solvers (IPS),

especially those in education (IPSE). These systems have suitable knowledge base used by

the inference engine to solve problems in certain knowledge domain, they not only give

human readable solutions of problems but also present solutions as the way instructors and

learners usually write them. Knowledge bases contain concepts of computational objects

(Com-Objects), relations, operators, functions, facts and rules. The Computational Object

Knowledge Base model (COKB) and its specification language can be used for knowledge

modeling, for designing and implementing knowledge bases. The COKB model has been

established from Object-Oriented approach for knowledge representation together with

programming techniques for symbolic computation. The design of inference engine requires

to model problems and to design reasoning algorithms with heuristics and sample

problems. Computational networks (Com-Net) and networks of computational objects (CO-

Net) can be used effectively for modeling problems and construction of reasoning

algorithms in practical knowledge domains. These models are tools for designing inference

engine of systems.

The proposed design method has been used to produce applycations in many fields such as

mathematics, physics and chemistry. They support studying knowledge and solving

problems automatically based on knowledge bases. Users only declare hypothesis and goal

of problems base on a simple language but strong enough for specifying problems. The

programs produce a human readable solution, which is easy to read and agree with the way

of thinking and writing by students and instructors.

Designing an intelligent problem solver in education is a very challenging task, as domain

knowledge and human thinking are very complicated and abstract. There are domains of

knowledge with functional attributes such as knowledge of alternating current in physics.

This motivates another extensions of COKB model, Com-Net and CO-Net, and develops

design techniques. They will accept simple valued variables and also functional variables.

www.intechopen.com

Intelligent Problem Solvers in Education: Design Method and Applications

147

On the network of computational objects, operators will be considered. Such future works

our models more powerful for representing knowledge in practice. Besides, To have a user-

interface using natural language we have to develop methods for translating problems in

natural language to specification language, and vice versa.

7. References

Chitta Baral (2003). Knowledge Representation, Reasoning and Declarative Problem

Solving. Cambridge University Press, ISBN 0 521 81802 8.

Fatos X.; Leonard B. & Petraq J. P. (2010). Complex intellgent systems and their

applications. Springer Science+Business Media, LLC. ISBN 978-1-4419-1635-8

Frank van Harmelem, Vladimir & Bruce (2008). Handbook of Knowledge Representation.

Elsevier, ISBN: 978-0-444-52211-5.

George F. Luger (2008). Artificial Intelligence: Structures And Strategies For Complex

Problem Solving. Addison Wesley Longman

Johns M. Tim (2008). Artificial Intelligence – A System Approach. Infinity Science Press LLC,

ISBN: 978-0-9778582-3-1

Michel Chein & Marie-Laure Mugnier (2009). Graph-based Knowledge representation:

Computational foundations of Conceptual Graphs. Springer-Verlag London Limited.

ISBN: 978-1-84800-285-2.

Mike O’Docherty (2005). Object-oriented analysis and design: understanding

system development with UML 2.0. John Wiley & Sons Ltd, ISBN-13 978-0-470-

09240-8.

Nhon Do & Hien Nguyen (2011). A Reasoning Method on Computational Network and Its

Applications. Proceedings of the International MultiConference of Engineers and

Computer Scientists 2011 (ICAIA'11), pp. 137-141

Nhon Do & Hoai P. Truong & Trong T. Tran (2010). An Approach for Translating

Mathematics Problems in Natural Language to Specification Language COKB of

Intelligent Education Software. Proceedings of 2010 International Conference on

Artificial Intelligence and Education, Hangzhou, China. 10-2010

Nhon Van Do (2010). Model for Knowledge Bases of Computational Objects. International

Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, pp. 11-20

Nhon Van Do (2009). Computational Networks for Knowledge Representation.

Proceedings of World Academy of Science, Engineering and Technology, Volume 56,

pp. 266-270

Nhon Do (2008). An ontology for knowledge representation And Applications. Proceedings of

World Academy of Science, Engineering and Technology, Volumn 32, pp. 23-31, ISSN

2070-3740

Nhon Van Do (2000). A Program for studying and Solving problems in Plane Geometry.

Proceedings of International on Artificial Intelligence 2000, Las Vegas, USA, 2000, pp.

1441-1447

Sowa, John F. (2002). Architectures for Intelligent Systems. IBM Systems Journal, vol. 41, no.3,

pp. 331-349

Sowa, John F. (2000). Knowledge Representation: Logical, Philosophical and Computational

Foundations. Brooks/Cole Thomson Learning, ISBN 0 534-94965-7

www.intechopen.com

Intelligent Systems

148

Stuart Russell & Peter Norvig (2010). Artificial Intelligence – A modern approach (Third

edition). Prentice Hall, by Pearson Education, Inc.

www.intechopen.com

Intelligent Systems

Edited by Prof. Vladimir M. Koleshko

ISBN 978-953-51-0054-6

Hard cover, 366 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is dedicated to intelligent systems of broad-spectrum application, such as personal and social

biosafety or use of intelligent sensory micro-nanosystems such as "e-nose", "e-tongue" and "e-eye". In

addition to that, effective acquiring information, knowledge management and improved knowledge transfer in

any media, as well as modeling its information content using meta-and hyper heuristics and semantic

reasoning all benefit from the systems covered in this book. Intelligent systems can also be applied in

education and generating the intelligent distributed eLearning architecture, as well as in a large number of

technical fields, such as industrial design, manufacturing and utilization, e.g., in precision agriculture,

cartography, electric power distribution systems, intelligent building management systems, drilling operations

etc. Furthermore, decision making using fuzzy logic models, computational recognition of comprehension

uncertainty and the joint synthesis of goals and means of intelligent behavior biosystems, as well as diagnostic

and human support in the healthcare environment have also been made easier.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Nhon Van Do (2012). Intelligent Problem Solvers in Education: Design Method and Applications, Intelligent

Systems, Prof. Vladimir M. Koleshko (Ed.), ISBN: 978-953-51-0054-6, InTech, Available from:

http://www.intechopen.com/books/intelligent-systems/intelligent-problem-solvers-in-education-design-method-

and-applications

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

