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1. Introduction 

Methane gas has been identified as the most destructive greenhouse gas (Liu et al., 2004). It 

was reported that the global warming potential of methane per molecule relative to CO2 is 

approximately 23 on a 100-year timescale or 62 over a 20-year period (IPCC, 2001). Methane 

has high C-H bond energy of about 439 kJ/mol and other higher alkanes (or saturated 

hydrocarbons) also have a very strong C-C and C-H bonds, thus making their molecules to 

have no empty orbitals of low energy or filled orbitals of high energy that could readily 

participate in chemical reactions as is the case with unsaturated hydrocarbons such as 

olefins and alkynes (Crabtree, 1994; Labinger & Bercaw, 2002). Consequently, only about 

half of the hydrocarbons containing these ubiquitous C-H bonds are reactive enough to take 

part in traditional chemical reactions (Bergman, 2007). This is a great challenge that needs to 

be addressed because several of these un-reactive hydrocarbons are found in petroleum 

from which several organic products including petrochemicals, fine chemicals, plastics, 

paints, important intermediates and pharmaceuticals are produced. Methane, besides being 

a greenhouse gas, is also the major constituent of large, underutilized resources of natural 

gas (located in remote areas of Asia, Siberia, Western Canada and offshore reservoirs of 

Australia, and therefore expensive to transport) and coal bed methane (CBM). It is therefore 

a promising feedstock for producing other value-added products if the problem of C-H 

activation can be solved. The selective transformation of these ubiquitous but stable C-H 

bonds to other functional groups could therefore revolutionize the chemicals industry. A 

clear understanding of the reactions involving C-H activation is therefore an important and 

interesting challenge. 

Generally, there are two routes for converting methane to transportable liquid fuels and 

chemicals, namely indirect and direct routes. At the moment, commercial catalytic 

technologies are based on the indirect route that involves a two-step process in which 

methane is first converted to synthesis gas by steam reforming (Eqn.1), CO2 reforming 

(Eqn. 2) or partial oxidation (Eqn. 3) followed by either Fischer-Tropsch synthesis of 

hydrocarbons (Eqn. 4) or methanol synthesis (Eqns. 5 and 6) and subsequent conversion 

to hydrocarbons. 
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 CH4  +  H2O   →   CO  + 3H2  (
0
298KH  = +206 kJ mol-1) (1) 

 CH4  +  CO2   →   2CO  +  2H2  (
0
298KH  = +247 kJ mol-1) (2) 

 CH4  +  ½O2   →   CO  +  2H2  (
0
298KH  = -36 kJ mol-1) (3) 

 nCO  +  2nH2   →   (-CH2)n  +  nH2O  ( 0
298KH  = -165 kJ mol-1) (4) 

 CO  +  2H2   →   CH3OH(g)  (
0
298KH  = -90.8 kJ mol-1) (5) 

 CO2  +  3H2   →   CH3OH(g)  +  H2O  ( 0
298KH  = -49.5 kJ mol-1) (6) 

The direct route is a one-step process in which methane or natural gas is reacted with 
oxygen or another oxidizing species to give the desired product, e.g. methanol or 
formaldehyde (Eqns. 7 and 8). The direct route is regarded to be more energy efficient than 
the indirect route since it bypasses the energy intensive endothermic steam reforming step 
of syngas formation. 

 CH4  +  ½O2   →   CH3OH(g)  (
0
298KH  = -126.4 kJ mol-1) (7) 

 CH4  +  O2   →   HCHO(g)  +  H2O(g)  (
0
298KH  = -276 kJ mol-1) (8) 

The selective catalytic conversion of methane via partial oxidation into transportable liquids 
such as methanol, formaldehyde and other oxygenates is one direct route for activating and 
converting natural gas- or CBM-derived methane to value-added chemicals. This partial 
oxidation reaction is one of the greatest challenges in heterogeneous catalysis because of the 
high driving force to full oxidative conversion to CO or CO2 (Eqns. 9 and 10).  

 CH4  +  3/2O2   →   CO  +  2H2O(g)  (
0
298KH  = -519.6 kJ mol-1) (9) 

 CH4  +  2O2   →   CO2  +  2H2O(g)  (
0
298KH  = -802.6 kJ mol-1) (10) 

At the moment, oxygenates such as methanol and formaldehyde are produced via a multi-
step process involving first the conversion of methane to syngas followed by the oxygenate 
formation in a second step. Although this multi-step process is highly efficient, the syngas 
production is very expensive due to high capital costs and it is therefore only economically 
viable if it is conducted on a large scale. Thus, a more convenient and economically viable 
process for small scale methanol production (e.g. at remote locations) would be the direct 
methane partial oxidation to methanol. Furthermore, it should be noted that methanol, 
being a precursor to ethylene and propylene, is a primary raw material for the chemical 
industry (Olah et al., 2009; Beznis et al., 2010a, 2010b). It is produced in large quantities as an 
intermediate for the production of a wide range of chemicals including formaldehyde, 
methyl tert-butyl ether and acetic acid, most of which are subsequently used to produce 
many important industrial products such as paints, resins, adhesives, antifreezes and 
plastics (Olah et al., 2009). Thus, the direct catalytic synthesis of methanol from methane 
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would open up the possibility of producing a wide range of important chemicals by the 
chemical industry. Apart from catalytic direct conversion route, an alternative method is the 
biochemical production of methanol from methane, a process which occurs under mild 
conditions and atmospheric pressure. This bio-catalytic route is based on the ability of some 
bacterial species such as methanotrophs and methane monooxygenase (MMO) to oxidize 
methane to methanol and deeper oxidation products. 

Another significant greenhouse gas is carbon dioxide which is considered to be harmful 
pollutant of our atmosphere and a major source of human-caused global warming (Olah et 
al., 2009). On the other hand, carbon dioxide is an ubiquitous carbon source from which 
methanol, dimethyl ether and efficient alternative transportation fuels and their derivatives 
can be produced (Olah et al., 2009). Thus, it has been suggested that an effective feasible 
approach for the disposal and recycling of carbon dioxide is its chemical conversion to 
important chemicals such as methanol, dimethyl ether and liquid fuels (Olah et al., 2009). 
This approach is considered to have the potential to provide solution to the environmental 
problem of increasing levels of carbon dioxide in the atmosphere and the accompanying 
global warming. The chemical transformation of carbon dioxide also makes possible the 
production of renewable and inexhaustible liquid fuels and other important carbon 
chemicals, thus allowing an environmentally neutral use of carbon fuels and derived 
hydrocarbon products (Olah et al., 2009). 

The catalytic reductive conversion of carbon dioxide using hydrogen at non-ambient 
conditions appears to be the most studied direct route to methanol and other oxygenates 
from carbon dioxide (Eqn. 6). Such catalytic reactions have traditionally been heterogeneous 
catalytic, photocatalytic and electrocatalytic pathways (Lu et al., 2006). These methods 
require high temperatures and pressures or additional electric or luminous energy, but both 
selectivity and yields are usually low. Besides these traditional routes, novel biocatalytic 
systems have also been shown to be capable of catalysing the reduction of carbon dioxide at 
ambient conditions (Lu et al., 2006). Such biocatalytic pathways are attractive because they 
occur with high yields and selectivity at milder reaction conditions without pollution and 
the processing involves the use of low purity reactants and is very tolerant to many 
impurities that are toxic to chemical catalysts (Lu et al., 2006; Lu et al., 2010).  For example, 
formate dehydrogenase (FateDH) immobilized in a novel alginate-silica hybrid gel was 
previously used as the biocatalyst to reductively convert carbon dioxide into formic acid 
and reduced nicotinamide adenine dinuncleotide (NADH) as the terminal electron donor 
for the enzymatic reaction (Lu et al., 2006). A combination of biocatalysts has also been used 
for the reduction of CO2 to methanol (Lu et al., 2006). 

This chapter presents a general overview of recent advances in the development of catalytic 
and biocatalytic systems for both the direct partial oxidative conversion of methane and the 
hydrogenation of carbon dioxide to produce methanol and other oxygenates. The review 
will cover both homogeneous and heterogeneous catalytic systems that have been 
developed so far. The electrochemical and photocatalytic reductive conversions of carbon 
dioxide are covered in the review. The chapter also presents a discussion of the progress 
that has been made on the development of chemical systems like MMO that are capable of 
oxidizing methane at ambient conditions. One interesting observation in our previous work 
on catalytic oxidative methylation of aromatics with methane that is directly relevant to the 
conversion of methane to methanol is that it is possible to inhibit the complete oxidation of 
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methane to carbon dioxide in the presence of an additive (Adebajo et al., 2000; Adebajo et al., 
2004). This chapter also provides a brief summary of such oxidative methylation reaction 
and its significance to methanol conversion. 

2. Conversion of methane to oxygenates 

2.1 Recent advances in the catalytic conversion of methane to oxygenates 

The direct conversion of methane to oxygenates such as methanol (CH3OH), formaldehyde 
(HCHO) and acetic acid (CH3COOH) has great potential for producing liquid fuels and 
petrochemicals from natural gas and CBM. This direct conversion route involves partial 
oxidation at 300-500 °C under fuel-rich mixtures to minimize the extent of the more 
thermodynamically favourable combustion reaction which produces unwanted CO and CO2 
(Zhang et al., 2003; Navarro et al., 2006; Alvarez-Galvan et al., 2011). Several reviews which 
provided valuable discussions of various aspects of, and the progress already made in, the 
direct partial oxidation of methane to methanol and other oxygenates have been published 
(Foster, 1985; Gesser et al., 1985; Edwards & Foster, 1986; Pitchai & Klier, 1986; Fujimoto, 
1994; Yang et al., 1997; Adebajo, 1999; Lunsford, 2000; Tabata et al., 2002; Zhang et al., 2003; 
Taniewski, 2004; de Vekki & Marakaev, 2009; Holmen, 2009; Alvarez-Galvan et al., 2011). 
The selective partial oxidation of methane has been carried out in four ways, namely high 
temperature non-catalytic gas-phase homogeneous oxidation, heterogeneous catalytic 
oxidation, low temperature homogeneous catalysis in solution and enzymatic or biological 
catalytic oxidation (Zhang et al., 2003; Holmen, 2009).  

The gas-phase non-catalytic reactions usually occur via a free radical mechanism at high 
temperatures which are unfavourable with respect to the control of selectivity of the desired 
oxygenates (Navarro et al., 2006; Alvarez-Galvan et al., 2011). Thermodynamic and kinetic 
analyses have shown that the rate-limiting step of the partial oxidation of methane is the 
first H-abstraction from the C-H bond to form methyl radicals (Navarro et al., 2006; Alvarez-
Galvan et al., 2011). Thus, initiators and sensitizers have been incorporated into the reaction 
mixture for the purpose of lowering the energy barrier of this H-abstraction (Navarro et al., 
2006; Alvarez-Galvan et al., 2011). In particular, nitrogen oxides have been used to promote 
gas-phase reactions with methane (Otsuka et al., 1999; Tabata et al., 2000; Babero et al., 2002; 
Tabata et al., 2002). The presence of higher hydrocarbons, especially ethane, in small 
quantities has also been observed to lower the initiation temperature and increase methanol 
selectivity and yield (Gesser et al., 1985; Fujimoto, 1994). High selectivities of up to 80% for 
methanol at up to 10% methane conversion have already been achieved under non-catalytic 
conditions by Gesser et al. (Yarlagadda et al., 1988; Hunter et al., 1990; Gesser & Hunter, 
1998). It is generally accepted that high pressure favours the formation of methanol and high 
methane/oxygen enhances methanol selectivity but lowers methane conversion in gas 
phase homogeneous partial oxidation of methane (Zhang et al., 2003, 2008). Most results 
indicate a selectivity of 30-40% at a conversion of 5-10% under the best conditions which are 
mainly temperatures of 450-500 °C and pressures of 30-60 bars (Holmen, 2009). The 
experimental and theoretical evidence obtained so far indicates limited possibilities of 
producing high yields of methanol in the gas-phase system (Holmen, 2009). The presence of 
catalysts in such gas-phase reactions carried out at high pressure appears to have no 
beneficial effect on the reactions. In fact, it has been observed that reactor inertness is 
critically important for obtaining high selectivity of methanol and that even the feed gas 
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should be isolated and not be allowed to make contact with the metal wall. Thus, Quartz 
and Pyrex glass-lined reactors have been shown to yield the best results (Zhang et al., 2008).  

Typical experimental results from several studies for the gas-phase partial oxidation of 
methane are shown in Fig. 1. This figure clearly demonstrates that any improvement in the 
direct conversion of methane to methanol via the gas phase homogeneous oxidation route 
must come from the enhancement of selectivity without reducing the conversion per pass 
which is a great challenge (Holmen, 2009; Alvarez-Galvan et al., 2011). This challenge 
together with the need to operate the gas-phase reactions at high temperatures which make 
the control of selectivity to desired products extremely difficult has made it necessary for 
researchers to make considerable efforts to develop active and selective catalysts for the 
partial oxidation of methane. This review focuses on providing brief discussions of the 
progress that has been made in the conversion of methane to methanol and other 
oxygenates via the heterogeneous catalytic oxidation, homogeneous catalysis in solution 
and bio-catalytic oxidation routes. Such discussions are presented in the following sections. 

 

Fig. 1. Gas-phase partial oxidation of methane from several studies. From Tabata et al., 2002. 

2.1.1 Heterogeneous catalytic partial oxidation of methane 

At much lower pressures (i.e. as low as 1 atm.) than for gas-phase reactions, the catalyst 
becomes very important for the formation of oxygenates by direct partial oxidation of 
methane. In spite of the significant efforts that have been devoted to the development of 
active and selective catalysts, neither the product yield of C1 oxygenates nor the complete 
mechanism of the reaction has been clarified (Navarro et al., 2006; Alvarez-Galvan et al., 
2011). The selective O-insertion into CH3 or other species obtained from the first H-
abstraction of the CH4 molecule is normally carried out on redox oxides of molybdenum 
and vanadium such as MoO3 and V2O3 (Tabata et al., 2002; Navarro et al., 2006; Alvarez-
Galvan et al., 2011). In these catalytic systems, the catalytic performances are optimized by 
keeping isolated metal oxide structures isolated on a silica substrate in a slightly reduced 
state (Faraldos et al., 1996; Chempath & Bell, 2007; Alvarez-Galvan et al., 2011). The presence 
of these partially reduced oxides is believed to allow  the redox cycles of catalytic surfaces to 
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proceed more rapidly and smoothly (Alvarez-Galvan et al., 2011). Most results reported to 
date were obtained at temperatures above 500 °C and formaldehyde has been the main 
oxidation product. When the reaction was carried out at 600 °C in the presence of excess 
water vapour on highly dispersed MoO3/SiO2, high selectivities (about 90 %) to methanol + 
formaldehyde oxygenates (or 20% yield) at methane conversions of 20-25% have been 
reported (Sugino et al., 2000). The improved selectivity which resulted from addition of 
water vapour was attributed to the formation of silicomolybdic acid (SMA: H4SiMo12O40) 
over the silica surface. 

The performance of V2O5/SiO2 catalyst has been observed to change significantly by adding 
small amounts of  radical initiator in the gas feed (Chempath & Bell, 2007). It was reported 
that up to 16% yields of oxygenates (methanol + formaldehyde) were obtained by adding 
about 1 vol.% NO to the feed in the presence of a low specific surface area V2O5/SiO2 
catalyst at 650 °C. The strong effect of NO was ascribed to a heterogeneous-homogeneous 
mechanism involving chain propagation of radical reactions in close vicinity of the catalyst 
bed (Chempath & Bell, 2007). 

It has been reported that isolated molybdate species supported on silica have the highest 
specific activity and selectivity for the direct oxidation of methane to formaldehyde and a 
detailed mechanism of methane oxidation to formaldehyde was presented (Ohler & Bell, 
2006; Chempath & Bell, 2007). 

In addition to MoO3/SiO2 and V2O5/SiO2 catalytic systems which have been most widely 
studied, many other metal oxides have also been investigated. It was observed that when 
9.2% of various oxides were deposited onto silica, Ga2O3 and Bi2O3 which have medium 
electronegativities exhibited maximum conversion at 650 °C and CH4:O2 = 1:1 (Otsuka & 
Hatano, 1987; Navarro et al., 2006; de Vekki & Marakaev, 2009). The dependence of 
conversion on electronegativity was found to show extreme behaviour with maximum 
observed for gallium oxide (Otsuka & Hatano, 1987; de Vekki & Marakaev, 2009). In 
contrast, the selectivity for formaldehyde exhibited a steady increase with increase in the 
electronegativity of the additive elements. A possible arrangement of the oxides in 
decreasing order of selectivity was reported to be P2O5, WO3, B2O3 (> 60%) > Sb2O3, Nb2O3, 
Al2O3, MgO (> 30 %), i.e. the acidic oxides are more selective than the basic oxides (de Vekki 
& Marakaev, 2009).  A binary oxide mixture of Be and B supported on silica (i.e. B2O3-
BeO/SiO2) was found to exhibit optimum methane conversion and HCHO yield of 2.8% and 
1%, respectively at 600 °C (de Vekki & Marakaev, 2009). The 1% yield corresponds to a 
selectivity of 35.7%. 

Ono and co-workers have previously reported the partial oxidation of methane over various 
commercial silica catalysts and silica catalysts prepared from Si metal (Ono et al., 1993; Ono 
& Maruyama, 1996) and over ZSM-5 (MFI) zeolite catalysts (Kudo & Ono, 1997; Ono et al., 
2000) at 600-650 °C and low CH4 pressure of 8-8.5 torr using a closed circulation system and 
quartz reactor. These workers reported that H-ZSM-5 catalysts with SiO2/Al2O3 ratio of 283 
exhibited higher activities than the other commercial silicas. The rate was found to increase 
with increase in O2 concentration. The selectivities to CH3OH were also observed to be 
higher over NaZSM-5 while selectivities to HCHO were higher over H- and Cs-ZSM-5 
catalysts. More recently, these workers investigated the partial oxidation reaction over Al 
doped silica catalysts and various commercial silica catalysts in a flow reactor system 
instead of a closed circulation system (Ono et al., 2008). They observed that not only HCHO 
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and CH3OH but also other products such as C2H6, C2H4 and CO were formed over these 
catalysts and over a quartz reactor without catalysts. The presence of 0.1-0.5 wt% Al in silica 
enhanced methane conversions even at low O2 concentrations. However, even over the 
Al/SiO2 catalysts, the maximum selectivities to CH3OH and HCHO obtained were only 
3.5% and 7%, respectively.  The enhancement of conversion observed over Al/SiO2 catalysts 
was attributed to heterogeneous participation of O2 on sites identified using MAS 27Al  
NMR as isolated tetrahedrally coordinated Al ions. 

Antimony oxides (i.e. Sb2O3 or Sb2O5) highly dispersed on silica were also reported to be 

selective for the partial oxidation of methane to HCHO (Zhang et al., 2004).  SbOx/SiO2 

catalysts with SbOx loadings up to 20 wt% exhibited good HCHO selectivity, even at 

temperatures as high as 650 °C and the more oxidized Sb2O5/SiO2 catalysts were found to 

be more selective than the reduced Sb2O3 counterpart (Zhang et al., 2004). A HCHO 

selectivity of up to 41% was obtained for the Sb2O5/SiO2 catalyst at 600 °C but this was 

reduced to 18% when the reaction temperature was increased to 650 °C 

It is unfortunate that experimental studies on the partial oxidation of methane to methanol 

over a solid catalyst have up till now not been successful. The yield of HCHO on 

MoO3/SiO2 and V2O5/SiO2 which are most widely studied does not exceed 3-4% (de Vekki 

& Marakaev, 2009). Higher yields have been reported for other catalysts but these could not 

be confirmed due to poor reproducibility (Zhang et al., 2003; de Vekki & Marakaev, 2009) . 

Otsuka and Wang (Otsuka & Wang, 2001) have attributed the difficulty in producing 

methanol at the high temperatures required for activation of methane to immediate 

decomposition or oxidation of methanol to formaldehyde and carbon oxides. New catalysts 

that are capable of activating methane at lower temperatures should therefore be developed 

in future investigations for the direct synthesis of methanol. This is obviously a great 

challenge in view of the strong C-H bond in methane.  

2.1.2 Homogeneous liquid phase catalytic oxidation at low temperatures 

The activation of methane at low temperatures has been investigated using homogeneous 

catalysis. Such low temperature activation of C-H bond does not involve radicals and may 

lead to more selective reactions than those promoted by heterogeneous catalysts operating 

at high temperatures. However, the main challenge lies in finding a catalyst system that 

exhibits suitable reactivity and selectivity while tolerating harsh oxidizing and protic 

conditions. Shilov and his co-workers pioneered investigations in this area in the 1970s 

when they showed that methane could be converted to methanol by Pt(II) and Pt(IV) 

complexes because these complexes do not oxidize methanol to carbon oxides, COx 

(Gol'dshleger et al., 1972; Shilov & Shul'pin, 1997, 2000). Subsequently, organometallic 

approaches to functionalization of C-H bonds in methane became a subject mainly after the 

work of Periana et al. (Periana et al., 1993) who proposed a process involving a Hg(II) 

complex in concentrated H2SO4 as the catalyst. Methyl bisulphate is formed as an 

intermediate and this is then readily hydrolyzed to produce methanol (Eqns. 11 & 12): 

 CH4  +  2H2SO4   →   CH3OSO3H  +  SO2  +  2H2O (11) 

 CH3OSO3H  +  H2O   →   CH3OH  +  H2SO4 (12) 
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A bipyrimidyl platinum (II) complex and Tl(III), Pd(II) and Au have also been used as 

oxidation catalysts instead of the mercury complex (Periana et al., 1998). By using the Pt (II) 

complex, a methane conversion of 90% was obtained with a 72% one-pass yield and 81% 

selectivity to methylbisulfate at 220 °C and 35 bar. Pd(II) salts are not as effective as Pt(II) 

complexes because of the reduction of Pd(II) to Pd(0) species and the slow re-oxidation of 

Pd(0) (Alvarez-Galvan et al., 2011). 

The major disadvantages of using H2SO4 as a solvent system include the difficulty of 

separating the methanol product from the sulphuric acid and the need for expensive 

corrosion-resistant materials and periodic regeneration of spent H2SO4 (Alvarez-Galvan et al., 

2011). A complete cycle would require the costly regeneration of concentrated H2SO4 as 

indicated in the proposed catalytic cycle shown in Fig. 2 as reported by Periana et al. (Periana 

et al., 1998). More recent contributions have presented and discussed the key challenges and 

approaches for the development of the next generation of organometallic, alkane 

functionalization  catalysts based on C-H activation (Periana et al., 2004; Bergman, 2007). One 

question that remains to be answered is whether a process consisting of several steps such as 

the ones shown in Fig. 2 can be developed and operated in an economical way. Nevertheless, it 

illustrates a system where the rate constant for breaking the C-H bond in CH4 on Pt is much 

higher than the C-H bond in the methyl bisulfate product (Holmen, 2009).  

 

Fig. 2. Reaction mechanism for oxidation of methane to methyl bisulfate using a bipyrimidyl 
Pt(II) complex in concentrated sulphuric acid (Periana et al., 1998). 

Schüth and co-workers (Palkovits et al., 2009) recently reported a new class of solid catalysts 
for the direct low-temperature oxidation of methane to methanol. The solid catalysts were 
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synthesized by immobilizing Pt(II) within a covalent triazine-based framework (CTF) 
containing bipyridyl fragments (Palkovits et al., 2009). Such sold catalysts showed catalytic 
activity that are comparable to Periana’s system at 215 °C in 30% oleum with selectivity to 
methanol above 75% and were stable over at least five recycling steps. 

Most active catalytsts that operate at low temperature normally require the use of strong, 
environmentally unfriendly  oxidizing agents such as SO3, K2S2O8 and NaIO4 (Rahman et al., 
2011). Ishihara et al. (Rahman et al., 2011) avoided the use of these oxidants in their very 
recent study of the synthesis of formic acid by partial oxidation of methane using H-ZSM-5 
solid acid catalyst. The reaction was studied at 100 °C and 2.6 MPa pressure using the more 
benign hydrogen peroxide as the oxidant. They obtained a 13% yield and 66.8% selectivity 
of formic acid. Triphenylphosphene (Ph3P) was used as a promoter in the reaction system.  
However, a fairly large amount of CO2 was also observed as deep oxidation product. 
Another green chemical process, which uses gold nanoparticles on silica support as catalyst 
and ionic liquid (IL) as solvent, has just been reported for direct methane oxidation to 
methanol (Li et al., 2011). The IL 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) was 
used as the solvent, trifluoroacetic acid (TFA) and trifluoroacetic anhydride (TFAA) as the 
acidic reagents and K2S2O8 as the oxidant. The reaction was performed at 90 °C and 20 atm 
methane pressure. In the presence of 0.01g nano-Au/SiO2 catalyst and 1g IL solvent, 
optimum methane conversion, selectivity and the yield to methanol obtained were 24.9%, 
71.5% and 17.8%, respectively. The selectivity to CO2 and H2 obtained were 1.6% and 0.4%, 
respectively while the yield to these products were 0.6% and 0.1%, respectively. It was 
reported that 96.9% of the nano-Au/SiO2 catalyst and the IL system could be recycled and 
the conversion of methane in the recycled system remained as high as 21.75%. 

Metal-containing zeolites (particularly Fe-ZSM-5 and Cu-ZSM-5) have also been observed to 
show great potential as catalysts for the direct partial oxidation of methane to oxygenates at 
low or ambient temperatures. Fe-ZSM-5 has been shown to be active for this reaction 
although the less attractive N2O was required to be used as the oxidant and this oxidant was 
observed to lead to the formation of a special type of reactive surface oxygen species known 

as -oxygen (Panov et al., 1990; Sobolev et al., 1995; Dubkov et al., 1997). Co-ZSM-5 was also 
shown recently to be active for the conversion of methane to oxygenates using oxygen 
(Beznis et al., 2010b). The activity and selectivity were found to be dependent on the nature 
of cobalt species present in the materials. Cobalt in ion-exchange positions was observed to 
be selective towards formaldehyde while larger Co-oxide species (CoO and Co3O4) prepared 
by impregnation were selective towards methanol (Beznis et al., 2010b). CuZSM-5 has also 
been shown to be active for the conversion of methane to methanol at 100 °C using 
molecular oxygen as oxidant with selectivity >98% (Groothaert et al., 2005; Smeets et al., 
2005). Reactivity was found to occur at a small fraction of the total copper sites in the zeolite. 
The oxygen-activated active site in CuZSM-5 was correlated to a UV-Vis-NIR diffuse 
reflectance spectroscopy (DRS) absorption band at 22,700 cm-1 (Groothaert et al., 2003). 
Additional information was provided by Woertink et al. (Woertink et al., 2009) on the origin 
of Cu species using a combination of resonance Raman (rR) spectroscopy and density 
functional theory (DFT). These workers confirmed that the oxygen activated Cu core is 
defined as bent mono-(µ-oxo)dicupric cluster (CuII-O-CuII) (Woertink et al., 2009). 
Subsequent investigations by Beznis et al. (Beznis et al., 2010a) have now established a linear 
relationship between the intensity of the UV-Vis-NIR DRS charge transfer (CT) band at 
22,700 cm-1 and the amount of methanol produced irrespective of the synthesis route used. 
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The absolute intensity of the 22,700 cm-1 CT band was observed to be always low indicating 
a low number of active sites in the samples. At least two Cu species were identified to be 
present in all Cu-ZSM-5 zeolites, namely Cu-O clusters dispersed on the outer surface of 
ZSM-5 and highly dispersed copper-oxo species inside the channels which are only a 
minority fraction in the sample (Beznis et al., 2010a). Catalytic experiments and FTIR 
measurements of adsorbed pivalonitrile revealed that the Cu-O species on the outer surface 
are inactive for methanol production while the copper species inside the channels are 
responsible for the selective oxidation of methane to methanol (Beznis et al., 2010a). 

2.2 Biological catalytic oxidation at low temperatures 

It is well known that methane monooxygenase enzymes (MMO) naturally catalyze the 

selective oxidation of methane to methanol in water at ambient or physiological conditions. 

(Labinger, 2004) Two types of this enzyme that provide solution to harnessing methane as 

an energy source and for synthesis of molecules required for life exists in nature, namely (i) 

the soluble methane monooxygenase (sMMO) which is a complex of iron found in the 

cytosol of some methane-metabolizing bacteria and (ii) particulate methane monooxygenase 

(pMMO) which is a methanotrophic integral protein and a complex of Cu (Kopp & Lippard, 

2002; Balasubramanian & Rosenzweig, 2007; Himes & Karlin, 2009). pMMO is a membrane 

metalloenzyme produced by all methanotrophs and is composed of three protein subunits, 

pmoA, pmoB and pmoC, arranged in a trimeric ǂ3ǃ3Ǆ3 complex (Balasubramanian et al., 

2010; Bollinger Jr., 2010). It is well understood that the soluble enzyme sMMO uses a co-

factor containing an active di-iron cluster to bind and activate oxygen in the two-electron 

oxidation of methane to methanol. In other words, an essential feature of sMMO is an active 

site containing two iron centres in a non-heme environment (Sorokin et al., 2010; Alvarez-

Galvan et al., 2011). This active di-iron centre and the possible mechanistic pathways for 

sMMO catalysis have been well characterized and studied by Lippard, Lipscomb and their 

co-workers (Merkx et al., 2001; Kovaleva et al., 2007; Tinberg & Lippard, 2011). The 

mechanism of sMMO which involves creation of a very strong oxidizing di-iron species that 

is able to attack a C-H bond in CH4 is quite different from organometallic CH4 activation. In 

contrast to the studies on sMMO, the nature of the pMMO metal active site has been very 

controversial and was not established until very recently when it was shown that the 

methane-oxidizing co-factor was a di-copper cluster in the soluble domains of the 

extramembrane pmoB subunit (Balasubramanian et al., 2010; Bollinger Jr., 2010; Himes et al., 

2010). These newly discovered soluble proteins may now be useful tools for investigating 

the mechanism of oxygen activation and methane hydroxylation at a copper centre 

(Bollinger Jr., 2010). This new discovery of a di-copper co-factor in pMMO is in agreement 

with earlier report of direct methane activation by mono-(µ-oxo)dicopper cores in inorganic 

Cu-ZSM-5 zeolite catalysts (Woertink et al., 2009). Both of these new discoveries appear to 

have the potential to bring our understanding of copper-mediated methane oxidation to the 

level achieved for the better studied di-iron sMMO and relevant inorganic models (Bollinger 

Jr., 2010).  

A chemical system that is capable of oxidizing CH4 at ambient conditions like MMOs would 

be highly desirable. Complexes mimicking the structural organisation and spectral features 

of MMO have been reported but di-iron functional synthetic models capable of oxidizing 
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methane have not yet been created in spite of considerable efforts (Tshuva & Lippard, 2004). 

However, previous studies have indicated that metallophthalocyanines (MPc), especially 

iron phthalocyanines (FePc) are good catalysts for clean oxidation processes (Sorokin et al., 

2008; Sorokin et al., 2010; Alvarez-Galvan et al., 2011). In particular, it has been shown that µ-

nitrido diiron phthalocyanine complexes (Fig. 3) possess remarkable catalytic properties 

(Sorokin et al., 2008; Sorokin et al., 2010).  

 

Fig. 3. Structure of µ-nitrido bridged diiron tetra-tert-butylphthalocyanine (Sorokin et al., 2010). 

Using 13C and 18O labelling experiments, µ-nitrido diiron tetra-tert-butylphthalocyanine, 

(FePctBu4)2N (Fig. 3) supported on silica was shown to activate H2O2 to oxidize methane in 

water at 25-60 °C to methanol, formaldehyde and formic acid under the heterogeneous 

conditions (Sorokin et al., 2008; Sorokin et al., 2010). The use of H2O2 as the clean oxidant, 

water as the clean reaction medium and easily accessible solid catalyst makes this approach 

to be green and practical. These features together with the relevance of the binuclear 

structure of bio-inspired complex to biological oxidation are of great importance from both 

practical and fundamental points of view. Experimental data indicated that the stable µ-

nitrido diiron tetra-tert-butylphthalocyanine complex operates via oxo-transfer mechanism 

involving a high-valent diiron oxo species which acts as a powerful oxidant in the methane 

oxidation reaction (Sorokin et al., 2008; Sorokin et al., 2010). The heterolytic cleavage of the 

O-O bond in FeIVNFeIIIOOH complex and the formation of very strong oxidizing 

FeIVNFeV=O species are favoured in the presence of acid by the protonation of peroxide 

oxygen (Sorokin et al., 2008; Alvarez-Galvan et al., 2011). Thus, significant improvement in 

catalytic activity was observed in the presence of 0.075-0.1 M H2SO4 (Sorokin et al., 2008; 

Sorokin et al., 2010). 

Otsuka and Wang (Wang & Otsuka, 1994, 1995; Otsuka & Wang, 2001) have previously 

shown FePO4 to exhibit a unique catalytic activity when H2 is added to methane plus 

oxygen feed at atmospheric pressure. On this catalyst, both methane conversion and 

selectivity to methanol were enhanced in the presence of H2 as a reductant. However, only 

up to 25.7% and 46% selectivities to methanol and formaldehyde, respectively, were 

obtained at very low conversion of 0.51% even in the presence of hydrogen. Only a trace 
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amount of methanol was obtained during the oxidation of methane in the absence of 

hydrogen (Wang & Otsuka, 1994, 1995).   

The biochemical formation of methanol by the oxidation of methane was recently 

investigated using a biocatalyst based on the cells of the bacteria Methylosinus sporioum B-

2121 (Razumovsky et al., 2008). The biocatalyst was suspended in a medium and 

immobilized in poly(vinyl alcohol) cryogel. It was observed that the use of the immobilized 

biocatalyst made it possible to enhance the productivity of the process more than 5-fold 

compared to that of the free cells and to achieve the highest methanol concentration of 62±2 

mg L-1 in the medium (Razumovsky et al., 2008). A brief review of the classification, 

characteristics and distribution of methanotrophic bacteria and discussion of the approach 

of biocatalytic mechanism of the selective oxidation of methane to methanol was presented 

recently by Liu et al. (Liu et al., 2007). 

2.3 Relevance of oxidative aromatics methylation to methane-to-methanol conversion 

Recent investigations in our laboratory have demonstrated the formation of methanol 

intermediate in the oxidative methylation of aromatics in the presence of large excess of 

methane in a high pressure batch reactor at 400 °C (Adebajo et al., 2000; Adebajo et al., 2004). 

It appears that the methanol intermediate is formed homogeneously in the gas phase since it 

was only formed as the major product in the absence of solid catalyst. When zeolite catalysts 

were introduced into the reactor, the methanol was not detected but was used to methylate 

the aromatics reactants to produce methylated aromatic products or converted directly to 

aromatics in the absence of aromatic reactants (Adebajo et al., 2000; Adebajo et al., 2004). Gas 

phase analysis of reaction products failed to detect any CO2, CO, H2, or C2+ non-aromatic 

hydrocarbon products (Adebajo, 1999; Adebajo et al., 2004). Thus, there appears to be no 

significant complete or incomplete combustion of methane due to failure to detect any CO 

or CO2 deep oxidation products in the gas products. This observation implies that it is 

possible to inhibit the complete oxidation of methane to deep oxidation products in the 

presence of an additive such as aromatics. This observation is similar to earlier observation 

that the presence of small amounts of hydrocarbon additives (especially ethane) lowered the 

initiation temperatures of partial oxidation of methane to methanol and increased the 

methanol selectivity and yield (Gesser et al., 1985; Fujimoto, 1994). This observation 

therefore extends the significance of the oxidative methylation reaction and we had earlier 

suggested that this avenue could be explored further for optimisation of the conversion of 

methane to methanol (Adebajo et al., 2004). 

This work has also demonstrated the possibility of achieving in-situ methylation using 

methane by combining methanol synthesis by partial oxidation of the methane with 

methylation of aromatics. This concept is very similar to earlier demonstration by Gesser et 

al. that methane partial oxidation could be combined with methanol conversion to gasoline 

in a two-stage continuous flow reactor (Yarlagadda et al., 1987). In the first stage of the 

reactor, methane and oxygen reacted to produce methanol homogeneously while the 

methanol was converted by HZSM-5 catalyst in the second stage to produce aromatics (the 

major components of the liquid products), C3+ hydrocarbons, carbon oxides and water 

(Yarlagadda et al., 1987).   
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3. Conversion of carbon dioxide to oxygenates 

3.1 Recent advances in the catalytic conversion of carbon dioxide to oxygenates 

Carbon dioxide is a renewable, non-toxic, abundant (cheap) and inflammable carbonaceous 

raw material. It is therefore considered attractive as an environmentally friendly chemical 

reagent or feedstock for the production of a wide range of value-added chemicals and fuels. 

However, CO2 is rather inert and its chemical transformations are thermodynamically 

highly unfavourable. This is illustrated in Figure 4 (Zangeneh et al., 2011). Its inertness is 

due to its being the most oxidized state of carbon. In other words, it is a raw material in its 

lowest energy level, thus constituting a major obstacle in establishing industrial processes 

for its conversion. A large input of energy is therefore required for its transformation into 

useful chemicals. Nevertheless, several exothermic reactions of CO2 are known and have 

been investigated and many reviews of such transformations have been published recently 

(Jessop et al., 2004; Jessop, 2007; Sakakura et al., 2007; Yu et al., 2008; Olah et al., 2009; 

Zangeneh et al., 2011). Reduction is the only possible route for the conversion of CO2 since it 

is the most oxidized form of carbon. The chemical reduction of CO2 can be either 

homogeneous or heterogeneous reduction. According to Sakakura et. al. in their review 

(Sakakura et al., 2007), four main methodologies for transforming CO2 into useful chemicals 

involve: 

1. Using high-energy starting materials such as hydrogen, unsaturated compounds, small-

membered ring compounds and organometallics. 

2. Choosing oxidized low-energy synthetic targets such as organic carbonates. 

3. Shifting the equilibrium to the product side by removing a particular compound. 

4. Supplying physical energy such as light or electricity. 

 

Fig. 4. Thermodynamics of some reactions of carbon dioxide ((Zangeneh et al., 2011). 
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This review will cover mainly hydrogenation of CO2 using homogeneous and 
heterogeneous catalytic and biocatalytic pathways. Photocatalytic and electrochemical 
reduction of CO2 will also be discussed. 

3.1.1 Homogeneous catalytic hydrogenation of carbon dioxide 

Transition metal complexes have been widely used for the homogeneous catalytic 

hydrogenation of CO2. The mild conditions used for these reactions make the partial 

hydrogenation of CO2 to formic acid and derivatives highly feasible (Eqn. 13) while 

further reduction of the formic acid is more difficult and only limited examples of 

formation of other products such as methanol and methane are known (Zangeneh et al., 

2011): 

 CO2  +  H2   →   HCOOH(l) (
0
298KH  = -31.8 kJ mol-1) (13) 

Homogeneous hydrogenation of CO2 has been attracting a lot of interest and the major focus 

has been to develop active and selective catalysts for the production of valuable organics 

from this cheap and abundant resource. Two comprehensive reviews of advances in the 

developments of catalysts for homogeneous hydrogenation of CO2 to formic acid, 

formamides, formates, methanol, methane and oxalic acid were published in 2004 and 2007 

(Jessop et al., 2004; Jessop, 2007). The earlier review published in 2004 (Jessop et al., 2004) 

covered the advances in the field since 1995. This earlier review indicated that highly active 

and efficient catalysts which are mainly transition metal complexes had been developed for 

the homogeneous hydrogenation of CO2 to formic acid and its derivatives such as 

formamides (Jessop et al., 2004). These metal complexes are usually hydrides or halides with 

phosphines as natural ligands and complexes of Rh and Ru proved to be the most active 

metals (Jessop et al., 2004; Zangeneh et al., 2011). Such active catalysts were developed for 

CO2 hydrogenation in water, organic solvents, supercritical CO2 and ionic liquids (Jessop et 

al., 2004). The 2004 review also indicated that the range of formamides that can be produced 

in high yield had expanded greatly. However, as of the time of this earlier review, very 

limited work had been done on the development of active and selective homogeneous 

catalysts for the production of other oxygenates (such as methyl formate, acetic acid, 

methanol and ethanol) and methane (Jessop et al., 2004). This is so because these other 

products are more difficult to prepare by the homogeneously hydrogenation reaction. The 

synthesis of oxalic acid by this homogeneously catalyzed reaction was not yet reported prior 

to the 2004 review (Jessop et al., 2004). 

A novel non-metal-mediated homogeneous hydrogenation of CO2 to methanol was recently 

reported by Ashley et al. (Ashley et al., 2009) This was carried out using a Frustrated Lewis 

pairs (FLP)-based non-metal-mediated process at low pressures (1-2 atm) and a reaction 

temperature of 160 °C (Ashley et al., 2009). In such FLP systems, the steric environment 

imposed on the donor and acceptor atoms by the substituents prevents a strong donor-

acceptor interaction. The first step in the process involves heterolytic activation of hydrogen 

and subsequent insertion of CO2 into a B-H bond of 2,2,6,6-tetramethylpiperidine (TMP) and 

B(C6F5)3 to form [TMPH][HB(C6F5)3] complex (Ashley et al., 2009). Introduction of CO2 then 

produced the formatoborate complex [TMPH]-[HCO2B(C6F5)3]. Subsequent selective 
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distillation at 100 °C then resulted in the decomposition of the intermediate complex to 

produce methanol (Ashley et al., 2009).   

3.1.2 Heterogeneous catalytic hydrogenation of carbon dioxide 

Heterogeneous catalysis is technically more favourable than the homogeneous reaction in 

terms of the reactor design and the stability, separation, handling and recycling of the 

catalysts. In spite of these practical benefits, there has only been limited number of 

compounds that have been synthesized from CO2 through heterogeneous catalytic 

pathways and the equilibrium composition is complicated by the simultaneous chemical 

equilibria (Zangeneh et al., 2011).  

Metal-catalyzed heterogeneous hydrogenation of carbon dioxide generally produces 

methanol or methane directly depending on the reaction conditions. The syntheses of 

methanol and dimethylether (DME) are generally the most important heterogeneous 

hydrogenation reactions of CO2 because of the potential of these oxygenates to become 

future energy carriers and major feedstock for petrochemical industries through C1 

chemistry (Lunsford, 2000; Olah et al., 2009). Methanol is currently commercially produced 

on a large scale over heterogeneous catalysts from syngas (Eqns. 5 & 6) obtained from non-

renewable natural gas or coal. Syngas contains mainly CO and H2 along with a small 

amount of CO2.  

It is well agreed that the Cu/ZnO/ZrO2 catalysts used for syngas production is also active 

for the direct synthesis of methanol from CO2 and H2 and in the steam reforming of 

methanol (Yu et al., 2008; Olah et al., 2009; Zangeneh et al., 2011). This basic catalyst is often 

modified by addition of different oxides to improve its activity and stability. Apart from 

ZrO2, other irreducible oxides such as Al2O3, TiO2 and Ga2O3 have been investigated 

(Slocynski et al., 2006).  The effects of several other metal (e.g. boron, chromium, tungsten 

and manganese) and metal oxide (e.g. VOx, MnOx and MgO) additives have also been 

reported (Slocynski et al., 2006; Yu et al., 2008). Pd supported on several basic oxides 

including La2O3 and lithium-promoted Pd on SiO2 have also been found to exhibit 

considerable activity and selectivity for methanol synthesis (Lunsford, 2000). 

DME can be produced by dehydration of methanol (Eqn. 14) or directly from syngas over 

bifunctional catalysts (Lunsford, 2000; Arena et al., 2004; Sun et al., 2004). The direct 

synthesis of DME by CO2 hydrogenation over bifunctional catalysts is a two-step process 

involving methanol synthesis followed by in situ dehydration of methanol (Eqn. 14) (Arena 

et al., 2004; Sun et al., 2004). Thus, the bifunctional catalysts contain functionally independent 

catalysts comprising of the methanol forming component based on CuO-ZnO and a 

methanol dehydration component based on suitable zeolites e.g. HZSM-5 and HY zeolites 

(Arena et al., 2004; Sun et al., 2004). 

 2CH3OH   →   CH3OCH3  +  H2O ( 0
298KH  = -23.4 kJ mol-1) (14) 

Very recently, Zhang et al. (Zhang et al., 2009) reported that carbon nanotubes (CNTs) or 

CNT-based materials doped with some transition metals such as Co, Pd, etc., exhibited good 

catalytic activity and selectivity for some catalytic processes related to adsorption-activation 
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and spillover of hydrogen such as CO or CO2 hydrogenation to alcohols. However, further 

detailed investigations of the interactions between CNTs and catalytically active host 

components and between CNTs and reactant molecules are needed in order to gain a better 

understanding of the nature of the promoter action by CNTs (Zhang et al., 2009).  

3.1.3 Photocatalytic reduction of carbon dioxide 

Direct photoreduction of CO2 has recently attracted much attention and many researchers 

have shown that CO2 can be reduced in water vapour or solvent by photocatalysts. 

Photocatalytic systems utilizing semiconductor materials appear to be the most feasible of 

all the photocatalytic systems and processes that have been investigated.  Inoue et al. 

(Inoue et al., 1979) first reported the possibility of reducing carbon dioxide by 

photocatalysis in aqueous medium to produce methanol, formic acid, formaldehyde and 

trace amounts of methane. These workers used photosensitive semiconductors such as 

TiO2, WO3, ZnO, CdS, GaP and SiC. The efficient photoreduction of carbon dioxide in 

aqueous medium is one of the most challenging tasks due to the rather low solubility of 

CO2 at ambient conditions (Sasirekha et al., 2006). TiO2 has been shown to be the most 

suitable semiconductor that offers the highest light conversion efficiency due to its 

excellent physico-chemical properties (Sasirekha et al., 2006). This semiconductor is non-

toxic and possesses high stability towards photo-corrosion and relatively favourable band 

gap energy. Thus, TiO2 is currently the most widely studied. Two review papers were 

recently published on the photocatalytic reduction of CO2 over TiO2-based photocatalysts 

(Dey, 2007; Kočí et al., 2008). One problem with TiO2 is that their photosensitivity is 

limited to the ultraviolet (UV) region with absorption of only about 4-5% of solar energy 

due to their relatively large band gap, thus resulting in low quantum efficiencies. A lot of 

effort has therefore focused on doping TiO2 with various metals and metal oxides in order 

to extend their absorption into the visible region (Slamet et al., 2005; Wang et al., 2005; 

Sasirekha et al., 2006; Wu, 2009; Fan et al., 2011; Wang et al., 2011). In spite of these efforts, 

both recent reviews (Dey, 2007; Kočí et al., 2008) indicate that the photocatalytic reduction 

of CO2 is still in its infancy and that many questions still remain to be answered such as (i) 

how can the photocatalytic efficiency be improved?, (ii) what is the most suitable form of 

photocatalysts?, and (ii) how can the utilization of solar energy be greatly increased? 

Another review suggested that the efficiency of the photocatalytic process for CO2 

reduction can be improved by choosing semiconductors with suitable band-gap energies, 

developing suitable reductant and optimizing operating conditions such as temperature, 

pressure, light intensity and operating wavelength (Usubharatana et al., 2006). This other 

review also suggested that further research should focus on the potential and economics 

of solar reactor and their design (Usubharatana et al., 2006). 

In addition to TiO2-based photocatalysts, InTaO4 was recently reported to exhibit 

outstanding photocatalytic reduction of CO2 into methanol under visible light irradiation 

(Pan & Chen, 2007; Chen et al., 2008). More recently, the activities of a bifunctional N-doped 

InTaO4 photocatalyst for the photocatalytic reduction of CO2 to methanol was demonstrated 

(Tsai et al., 2011). The photocatalyst was prepared by doping InTaO4 with nitrogen and 

incorporating a nanostructured Ni@NiO core-shell co-catalyst. Nitrogen doping produced 

visible-light-responsive photocatalytic activity which further enhanced absorbance. Thus, 
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methanol yield was enhanced when compared with undoped ones and the rate of the 

photoreaction was found to increase with visible light irradiation time (Fig. 5). Moreover, 

the introduction of the co-catalyst enhanced absorbance and methanol yield even further 

(Fig. 5) and efficiently prevented electron-hole recombination that would otherwise be 

caused by electrons and holes separated from the crystal (Tsai et al., 2011).   

 

Fig. 5. The variation of methanol yield with reaction time for the as-prepared InTaO4 and the 
N-doped and co-catalyst treated InTaO4-based samples (Tsai et al., 2011). 

3.1.4 Electrochemical reduction of carbon dioxide 

Direct electrochemical reduction of CO2 to produce methanol can be achieved but is rather 
kinetically complex and needs effective electrocatalysts (Olah et al., 2009). Generally, during 
the electrochemical reduction of CO2 to methanol, formaldehyde and formic acid are also 
produced as shown in Equations 15-17 (Olah et al., 2009). Photoelectrochemical reduction of 
CO2 to methanol has also been demonstrated by the use of solar energy at a semiconductor 
electrode such as p-GaP and such reductive reaction using light energy has been reported to 
show promise (Barton et al., 2008). Secondary treatment steps for the conversion of 
formaldehyde and formic acid by-products to methanol over suitable solid catalysts have 
been developed to overcome the difficulties associated with the formation of product 
mixtures in the electrochemical reduction of CO2. Such secondary treatment steps make it 
possible to significantly increase the overall efficiency of the electrochemical reduction of 
CO2 to methanol. However, it is more desirable to develop more effective catalysts that are 
capable of increasing the selective electrochemical reduction of CO2 to methanol so as to 
eliminate or reduce the secondary treatments.  

 CO2  +  6H+ + 6é   →   CH3OH  +  H2O (15) 

 CO2  +  4H+ + 4é   →   HCHO  +  H2O (16) 

 CO2  +  2H+ + 2é   →   HCOOH (17) 
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The electrochemical reduction of carbon dioxide alone has also been found to produce oxalic 
acid and its derivatives such as glycolic acid, glyoxylic acid, etc., but these reactions have 
low selectivities (Sakakura et al., 2007). 

3.2 Biocatalytic or enzymatic conversion of carbon dioxide 

Heterogeneous catalytic, photocatalytic and electrocatalytic routes which are most commonly 
used for reduction of carbon dioxide with hydrogen to produce methanol and other 
oxygenates require high temperatures and pressures since the reaction is not 
thermodynamically favoured at ambient conditions. The selectivity and yields of the desired 
products are also rather low. Most of the metallic catalysts also require highly pure feedstocks 
for them to maintain their activities. Thus, the thermochemical reduction of carbon dioxide is 
not economically viable for industrial use. In contrast to these traditional pathways, novel 
biocatalytic routes for reduction of CO2 at ambient conditions have been demonstrated. Such 
biocatalytic reductions are attractive because they can be very efficient and can make use of 
low purity reactants and tolerate many impurities that are toxic to chemical catalysts (Lu et al., 
2010). For example, a combination of formate dehydrogenase (FateDH), formaldehyde 
dehydrogenase (FaldDH) and alcohol dehdrogenase (ADH) was used in sequential reduction 
of CO2 to methanol (Obert & Dave, 1999; Jiang et al., 2004; Wu et al., 2004). Reduced 
nicotinamide adenine dinuncleotide (NADH) was used as the terminal electron donor for the 
enzymatic reaction. This sequential enzymatic conversion pathway is represented by Eqn. 18 
below. In a later investigation by Lu et al. (Lu et al., 2006), FateDH immobilized in a novel 
alginate-silica hybrid gel was used as the biocatalyst to convert CO2 into formic acid in the 
presence of reduced NADH as the terminal electron donor (Eqn. 19). The gel was prepared by 
in-situ hydrolysis and polycondensation of tetramethoxysilane in alginate solution followed 
by Ca2+-induced gelation (Lu et al., 2006). The reduction of CO2 by FateDH encapsulated in 
alginate-silica hybrid gel beads resulted in the high-yield production of formic acid (95.6%) 
and the relative activity of the immobilized FateDH after 10 cycles was as high as 69% (Lu et 
al., 2006). Acetogenic bacteria microbes have also been investigated (Song et al., 2011) as 
biocatalysts for the electrochemical reductive conversion of CO2 with efficiency of 80-100% in 
phosphate buffer solution (pH 7) at -0.58 V vs NHE which was near the equilibrium potential 
of CO2/formate. Direct bacterial use for electrochemical CO2 conversion could eliminate 
expensive enzyme purification steps and widens the choice of catalysts to include the naturally 
developed and optimized microorganisms (Song et al., 2011). 

 CO2   NaDH  FateDH,
HCOOH   NaDH   FaldDH,

HCHO   NADH  ADH,
CH3OH (18) 

 CO2  +  NaDH    FateDH
   HCOOH  +  NAD+ (19) 

One challenge for the realization of biocatalytic reduction of CO2 at large scale is the 
efficiency of the reaction; the reported reaction rates and equilibrium yields are generally 
low. There is therefore need to develop faster and more efficient biocatalytic systems. Thus, 
recent research has been focusing on discovery of new enzymes and engineering of the 
reaction systems for improved catalytic efficiency (Baskaya et al., 2010). Thus, Baskaya et al. 
(Baskaya et al., 2010) recently investigated the sequential enzymatic conversion of CO2 to 
methanol from a thermodynamic point of view with a focus on factors that control the 
reaction equilibrium. Their results showed that the enzymatic CO2 conversion is highly 
sensitive to the pH of the reaction solution and that it is possible to shift the biological 
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metabolic reactions to favour the synthesis of methanol by conducting the reactions at low 
pHs (e.g. pH of 5 or 6) and ionic strengths and at elevated temperatures (Baskaya et al., 
2010). However, it may be very difficult to reach such favourable conditions with the 
currently available biocatalysts since native enzymes that catalyze such reactions tend to be 
denatured and inactivated at acidic and elevated temperatures (Baskaya et al., 2010). 

Another major concern for biocatalytic CO2 conversions is the source of chemical energy 
used to drive the reactions forward. Lu et al. (Lu et al., 2010) are of the opinion that since the 
reduced form cofactor NADH carries the energy required for the reactions in the enzymatic 
reduction of CO2, a solar power driven regeneration of the co-factor would provide the 
avenue to use solar energy for production of chemicals and fuels. Thus, these workers 
believe that the integration of multi-enzyme systems on nanostructured electrodes will 
provide a unique approach to harvesting solar energy in the forms of renewable chemicals 
and fuels (Lu et al., 2010). 

4. Conclusions 

It is evident that the direct conversion of methane to oxygenates such as methanol, 
formaldehyde and acetic has great potential for producing liquid fuels and petrochemicals 
while simultaneously reducing the global warming effect of the greenhouse gas. However, 
the major challenge that needs to be overcome before this can be realised is the difficulty in 
activating the strong C-H bond in methane at relatively lower temperatures and pressures to 
make the process economically viable and the problem of achieving high methane 
conversions without reducing product selectivities at these mild conditions. The 
homogeneous catalytic conversion of methane at low temperatures is thus highly desirable 
since the low temperature of activation of C-H bond does not involve radicals and may lead 
to more selective reactions than those promoted by heterogeneous catalysts operating at 
high temperatures. However highly active and selective catalysts under the strong oxidizing 
and protic conditions in which they operate still need to de developed in future 
investigations. Moreover, these harsh conditions are undesirable because they are 
environmentally unfriendly. Although, some other catalytic systems that do not operate 
under such strong oxidizing conditions have been used but their activities and product 
selectivities still need significant improvement. Among the catalysts that do not require 
harsh oxidizing conditions, metal-containing zeolites, especially Fe-ZSM-5 and Cu-ZSM-5, 
have been observed to show great potential for catalytic conversion of methane to 
oxygenates at low or ambient temperatures. In particular, since the active site in the highly 
selective CuZSM-5 has recently been identified to be a bent mono-(µ-oxo)dicopper cluster, 
its catalytic activity and selectivity for the partial methane oxidation should be optimized in 
future investigations. The biocatalytic oxidation of methane using MMOs or a chemical 
system that is capable of oxidizing methane at ambient conditions like MMOs is most highly 
desirable but such biocatalytic systems with desired high activities and selectivities are yet 
to be created in spite of considerable efforts. Nevertheless, now that the active sites in both 
pMMO and Cu-ZSM-5 have been identified to be soluble di-copper clusters, efforts should 
be directed to more detailed investigations of the mechanisms of copper-mediated oxygen 
activation and methane hydroxylation. A deeper understanding of the mechanism of this 
important reaction that will be gained from such studies will also underpin the design of 
novel catalytic systems with high activities and product selectivities, especially now that the 
active centres are known.  
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Important observations from studies in our laboratory indicate that it is possible to inhibit 

the complete oxidation of methane to deep oxidation products in the presence of an additive 

such as aromatics. It is suggested that this avenue should be explored further for optimizing 

the conversion of methane to methanol. Our work has also demonstrated the possibility of 

achieving in-situ methylation or production of aromatics using methane by combining 

methanol synthesis by partial methane oxidation with methylation of aromatics or 

methanol-to-aromatics conversion. 

Carbon dioxide is a renewable, non-toxic, abundant and inflammable carbonaceous raw 

material and its reduction therefore also has great potential for both reduction of 

greenhouse gas emissions to some extent and production of value-added chemicals and 

fuels. Reduction is the only possible pathway for conversion of CO2 since it is the most 

oxidized form of carbon. All types of catalysts (homogeneous, heterogeneous, 

photocatalysts, electrocatalysts and biocatalysts) are generally observed to play a major or 

important role in such reduction reactions. However, CO2 is rather inert and its catalytic 

reduction and other transformations are highly kinetically and thermodynamically 

unfavourable. The greatest challenge common to all the different types of catalyst systems 

therefore lies in developing highly efficient and selective catalysts that do not undergo rapid 

deactivation and in overcoming the thermodynamic barrier. The thermodynamic limitation 

could be overcome by adopting either a physical approach (e.g. by using a suitable 

membrane reactor) or a chemical approach (e.g. by conversion to more stable products). The 

economic viability of the hydrogenation reactions depends on the sources of energy and 

hydrogen, thus these should also be taken into consideration in future investigations.  

Among the different types of catalytic systems that have been investigated, photocatalytic 

reduction of CO2 is highly attractive in view of the utilization of solar energy but the 

efficiency of the process still needs significant improvement by carefully choosing 

semiconductors with suitable band gap energy, developing appropriate reductants and 

optimizing reaction conditions. However, a recently reported bifunctional N-doped InTaO2 

photocatalyst containing a nanostructured Ni@NiO core-shell co-catalyst shows some great 

potential. Thus, other novel photocatalytic systems could be developed using this strategy 

in future investigations. The biocatalytic pathways for reduction of CO2 are most attractive 

because they can operate at ambient temperatures and therefore highly economical. These 

biocatalytic routes can also be very efficient and can make use of low purity reactants and 

tolerate many impurities that are toxic to chemical catalysts. However, the reported reaction 

rates and equilibrium yields are still generally low, thus the efficiency of the reaction still 

requires significant improvement before it can operate at large scale. Faster and more 

efficient biocatalytic systems should therefore be developed. Another challenge for 

biocatalytic conversion is the source of chemical energy for driving the reaction forward. 

Some workers (Lu et al., 2010) have suggested that the integration of multi-enzyme systems 

on nanostructured electrodes will provide a unique approach to harvesting solar energy in 

the forms of renewable chemicals and fuels. 

In short, the goal of catalytically and/or biocatalytically converting methane and carbon 

dioxide to value-added chemicals and fuels while simultaneously reducing greenhouse 

emissions is far from being realised in terms of efficiency and economic and commercial 

viability. Nevertheless, the progress that has been made so far cannot be undermined.  
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