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1. Introduction  

Oryza glaberrima, an African monocarpic annual rice derived from Oryza barthii, is grown in 
traditional rice producing wetland areas of West Africa. Oryza sativa, an Asian rice that varies 
from annual to perennial, is derived from Oryza rufipogon (Sakagami et al., 1999). Genotypes of 
O. glaberrima are inherently lower yielding than those of O. sativa and are therefore cultivated 
in fewer areas (Linares, 2002). However, because they grow adequately in unstable 
environments such as those with water stress, they appear to tolerate severe environmental 
stress. Flooding imposes severe selection pressure on plants, principally because excess water 
in the plant surroundings can deprive them of certain basic needs, notably of oxygen and of 
carbon dioxide and light for photosynthesis. It is a major abiotic influence on species’ 
distribution and agricultural productivity world-wide. Strong submergence-induced 
elongation is a widespread escape mechanism that helps submerged plants regain or retain 
contact with the aerial environment on which they depend (Arber, 1920). This mechanism 
enables plants to resume anaerobic metabolism and photosynthetic fixation of CO2 by raising 
their shoots above water. Escape strategies based on elongation by stem or leaves are 
prominent characteristics of deep-water and floating rice. However, rapid elongation by leaves 
of young plants in response to short-term submergence flash flood (for up to 2 weeks) 
adversely affects tolerance by depleting carbohydrates that would otherwise support survival 
during and after submergence (Chaturvedi et al., 1995; Setter & Laureles, 1996; Kawano et al., 
2002; Ram et al., 2002: Jackson & Ram, 2003; Joho et al., 2008). The submergence tolerance gene, 
Sub-1A, depresses shoot elongation under short-term submergence to ensure survival. 
Submergence-tolerant rice varieties tend to accumulate more starch in their stem section than 
susceptible varieties do. They experience less carbohydrate depletion after submergence (Karin 
et al., 1982; Emes et al., 1988). To improve the circumstances of tolerant plants to survive under 
flooding conditions is a major constraint for sustainable agriculture in unstable environments 
undergoing climate change. Consequently, in this chapter, we describe physiological 
mechanisms related to photosynthesis on submergence tolerance for rice species that are 
widely cultivated in West Africa. 

2. Physiological mechanism on flooding tolerance in rice species 

Kawano (2009) showed that suppression of underwater elongation brought about by the 

mutated form of Sub-1A in O. sativa is beneficial for the endurance of complete 
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submergence. Consequently, non-shoot-elongation-cultivars during submergence show 

tolerance to short-term submergence, so-called flash flooding, for a few days or weeks. 

Sakagami et al. (2009) emphasized that this trait is inappropriate when selecting and 

breeding cultivars of O. sativa or O. glaberrima in cultivated rice for resilience to longer term 

submergence. Under these circumstances, a vigorous ethylene-mediated underwater 

elongation response by leaves is necessary to return leaves to air contact and full 

photosynthetic activity for long-term complete submergence. 

2.1 Anaerobic metabolism in submerged rice plants 

The rate of gas exchange is very slow in water because of small diffusion coefficients for 

gases (oxygen, 0.201 cm-2 s-1 in air; 2.1×10-5 cm-2 s-1 in water) (Armstrong, 1979). When water 

becomes stagnant, the oxygen concentration becomes especially low at night because of the 

nighttime respiration of algae. Rice plants increase the rate of alcoholic fermentation under 

low oxygen environments. However, alcoholic fermentation produces only two molecules of 

ATP per glucose molecule, which is not efficient when compared with aerobic respiration, 

through which 32 molecules of ATP are produced per glucose molecule. Therefore, rice 

cannot survive in a low oxygen environment for a long period because of the shortage of 

carbohydrates in the rice plants for use in energy production. Furthermore, photosynthesis 

is limited by low irradiance when the plant is submerged. It is necessary to improve 

photosynthetic capacity and the effective use of photosynthetic products as well as to 

survive under water. 

 
Strategy Quiscence

Submergence

tolerance

Slowing of ethylen-

promoted leaf elongation

to conserve energy

Rapid leaf elongation

Rapid internodal or

stem elongation to

resume anaerobic

metabolism and

photosynthesis

Ecological adaptation
Flash floods less than two

weeks

Short-term

submergence (Shallow-

water)

Long-term

submergence (Deep-

water)

Gene expression(e.g) SUB1A SUB1B SNORKEL1, 2

Carbohydrate

consumption
Low (limited by Sub1A ) High High

Escape

 

Table 1. Strategy by submergence tolerance of rice 

Rice has adapted to submergence-prone environments through the use of two strategies 
(Table 1): submergence tolerance to flash floods where a rapid increase in water level causes 
partial to complete submergence for up to 2 weeks, and shoot elongation to short to long 
term submergence. Sub1A gene in O. sativa reportedly confers submergence tolerance to 
flash foods through a quiescence strategy in which cell elongation and carbohydrate 
metabolism in young seedlings is repressed during submergence (Fukao et al., 2006). This 
strategy is a predominant tolerance mechanism that is driven by adjustment of metabolism. 

SUB1C 
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A strategy with shoot elongation shows two different mechanisms: rapid shoot elongation 
in shallow floods in a short-term submergence and internodal or stem elongation in deep 
water in long-term submergence. Based on our analysis, most O. glaberrima varieties adapt 
well when floods are deeper and when they entail long-term submergence (Fig. 1). These 
mechanisms for plant survival under submergence are affected by the conservation of 
energy and carbohydrate accumulation (Perata et al., 2007).  
 

 

Fig. 1. Growing rice of O. glaberrima along the Niger River in Niger 

2.2 Submergence tolerance with elongation for deep water 

Rapid shoot elongation for young seedlings is usually disadvantageous in conditions of 
short-term submergence with deep water conditions because lodging usually occurs once 
floodwaters recede. This water regime adapts well, using submergence tolerance with a 
quiescence strategy. By tolerance, cell elongation and carbohydrate metabolism are 
repressed. Furthermore, fast shoot elongation can restore contact between the leaves and air, 
but it can also result in death if carbohydrate reserves are depleted before emergence in 
leaves above the water surface. Leaf elongation during submergence is controlled by the 
interaction of at least three plant hormones: ethylene, GA, and ABA (Kende et al., 1998). 
Accumulated ethylene is probably the primary signal which triggers the plant to start a 
cascade of reactions leading to enhanced cell elongation (Voesenek et al., 2006) because 
ethylene is accumulated in rice plants during submergence because of the fact that gas 
diffusion is 104-fold slower in solution than in air (Armstrong, 1979). The cascade model was 
proposed from the study of stem elongation in deepwater rice (Kende et al., 1998). 

2.2.1 Submergence escapes mechanism with shoot elongation 

Rapid elongation of the leaves and leaf sheath is advantageous for rainfed lowland varieties 
because it enables them to avoid submergence stress when moderate flooding occurs during 
the early vegetative stage. Deepwater rice is often characterized as floating rice. 
Nevertheless, the differences in characteristics of floating rice and deepwater rice remain 
unclear. In fact, the physiological mechanisms of growth differ between the two. Some rice 

www.intechopen.com



 
Applied Photosynthesis 

 

356 

plants can survive and stand without floating in water at 1 m water depth. In this chapter, 
such rice plants that stand without floating in water are designated as deepwater rice to 
distinguish them from floating rice. In general, the plant height of deepwater rice reaches 
140–180 cm in the absence of submergence (Catling, 1992), but the abilities of deepwater rice 
shoots to extend are varied. Deepwater rice can maintain an aerobic metabolism during 
submergence via development of its canopy above water because of the elongation of its 
internodes and because of its long leaves. Deepwater rice’s ability to elongate in a single day 
is less than that of floating rice. However, deepwater rice can adapt to submergence under 
conditions in which the water level increases 5 cm per day (Catling, 1992). However, this 
type of tall plant architecture often causes lodging after the water recedes. 

2.2.2 Internode elongation 

Setter et al. (1988) demonstrated that the adverse effects are caused mainly by reduced 

photosynthesis capacity because of CO2 starvation in the shoot organs during submergence. 

Furthermore, they suggested a relation between ethylene concentration, leaf chlorosis and 

leaf elongation. Partial submergence treatment to deep water rice never affects carbohydrate 

and sugar contents in newly developed leaves under the water compared to the control 

(Setter et al., 1987). Elongation with floating ability is the most important morphological 

feature of deepwater rice. In particular, internode elongation is a more important 

mechanism for increasing shoot length. Internode elongation is related closely to plant 

hormones. Submergence lowers the O2 level in rice internodes. Then low O2 levels simulate 

ethylene synthesis. Ethylene accumulation occurs in the submerged internodes. Then high 

internodal ethylene concentration increases the sensitivity of tissues to gibberelic acid or 

increases the concentration of physiologically active gibberellins, thereby leading to 

commonly observed growth responses (Rose-John & Kende, 1985). Deepwater rice differs in 

its ability to accumulate carbohydrate contents within the cultivar’s carbohydrate content, 

which does not correlate with the total internode length or plant length (Vergara et al., 

1975).  

3. Flooding response of O. glaberrima 

O. glaberrima, a monocarpic annual derived from O. barthii (Sakagami et al., 1999), is grown 
in traditional rice production in the wetlands of West Africa. It is highly adapted to 
deepwater inundation in countries such as Gambia, Guinea, Mali, Niger, Senegal, and Sierra 
Leone in West Africa (Inouye et al., 1989). The first gene pool of O. glaberrima was inferred as 
an inland delta of the Niger River because of the high gene diversity among species. In 
Guinea, for example, coastal or lowland areas are heavily affected by submergence during 
the rainy season. Rice plants are often partially or completely submerged for more than a 
month. Such prolonged submergence often triggers crop failures. Guinea’s farmers prefer to 
cultivate O. glaberrima fields with prolonged submergence because of such advantageous 
traits as those explained above. Cultivars of O. glaberrima are roughly divisible into two 
ecotypes: upland and lowland. However, it might be that O. glaberrima is a valuable rice 
species for flooding conditions in all cases. Tolerance of other abiotic and biotic stress such 
as drought (Maji et al., 2010), rice yellow mottle virus (Thiemele et al., 2010), African rice gall 
midge (Nwilene et al., 2009), and iron toxicity (Majerus et al., 2007) has been found in some 
cultivars of O. glaberrima. However, it is vulnerable to NaCl salinity (Awala et al., 2010), 
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grain shattering (Koffi, 1980), and lodging (Dingkuhn, 1998). It is reasonable to presume that 
the indigenous cultivated species of African rice can provide useful genes for improvement 
of tolerance to major stress in Africa. 

3.1 Responses to short-term submergence “flash flood” 

The flooding response of O. glaberrima should be discussed thoroughly, but it is not clear 
from Futakuchi’s report (2001) whether shoot elongation contributes to flooding tolerance in 
different water regimes or not. To elucidate the physiological responses of young rice plants 
to short-term submergence stress, so-called flash flooding, under rainfed conditions for O. 
glaberrima by comparison with several genotypes for lowland adapted, deepwater adapted 
shoot elongated escape and Sub1 of O. sativa, 30-day-old seedlings were submerged 
completely for 10 d at 45 cm water depth at 13 d after transplantation in a lowland field 
(Joho et al., 2008). In fact, O. glaberrima showed higher shoot elongation ability during 
submergence than any genotype of O. sativa that we tested. However, O. glaberrima lodged 
easily after the end of submergence because of longer and more rapid shoot elongation 
during submergence. Therefore, it triggered a decrease in its survival rate (Fig. 2).  
 

 

Fig. 2. Effect of shoot elongation during submergence on survival rate after desubmergence. 
Survival rate is observed at 14 d after desubmergence. 

The submergence-tolerant genotype (Sub1) of O. sativa maintained the dry matter weight of the 

leaf blade during submergence through the inhibition of shoot elongation using the quiescence 

strategy, thereby attaining a survival rate of 93%. The escape strategy for O. glaberrima is 

therefore the effective usage of stored carbohydrates for shoot elongation in a severely 

photosynthesis-limited environment. However, failure to regain contact with air and the 

oxygen, carbon dioxide, and light it supplies invariably gives rise to severe carbohydrate 

depletion. Therefore, this escape strategy carries a high risk for young rice plants (Kawano et 

al., 2009). We reported that O. glaberrima is susceptible to short-term submergence, although it 

might adapt to prolonged flooding because of improved restoration of aerial 
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Shoot elongation

(cm d
-1

)

Shoot biomass

increase (g d
-1

)

Shoot elongation

(cm d
-1

)

Shoot biomass

increase (g d
-1

)

O. sativa L.
BA8A 1.38 0.41 1.78 0.04
Balante 0.94 0.34 1.17 0.02
Banjoulou 0.95 0.32 1.23 0.02
Cinquant-deux 1.25 0.55 2.12 0.16
CK20 1.45 0.37 1.58 0.03
CK211 1.32 0.40 1.82 0.04
CK4 1.31 0.33 1.49 0.03
CK41 1.52 0.41 1.71 0.04
Danta rouge 1.54 0.48 2.43 0.07
EH-IA-CHIU 1.16 0.42 1.39 0.02
FR13A* 1.19 0.38 Death Death
Gallale Blanc 0.65 0.24 1.89 0.12
Haïra koreye 1.43 0.45 2.15 0.05
IR49830-7-1-2-2 0.97 0.40 1.40 0.02

IR62293-2B-18-2-2-1-3-2-3 1.59 0.47 1.61 0.04
IR67520-B-14-1-3-2-2* 1.01 0.35 Death Death
IR70027-8-2-2-3-2* 1.50 0.46 Death Death
IR71700-247-1-1-2 1.19 0.42 1.65 0.02
IR73018-21-2-B-2-B* 0.95 0.35 Death Death
IR73020-19-2-B-3-2B* 1.32 0.29 Death Death
Kaolac 1.23 0.36 1.60 0.03
Kaorin 0.99 0.42 1.55 0.02
Köticondre 1.03 0.49 1.42 0.03
Marsal 1.09 0.45 1.72 0.05
N 22 1.26 0.43 1.69 0.05
N'ckrome 0.97 0.46 1.70 0.04
NIK 1A 1.17 0.53 1.30 0.02
Nylon 1.18 0.32 1.58 0.02
Protocolo 1.47 0.41 2.10 0.04
Reymont 1.03 0.22 1.21 0.01
ROK21 1.22 0.20 1.60 0.03
SHAI-KUH 1.08 0.38 1.29 0.03
Vandana 1.46 0.41 1.65 0.03
WAR1(ROK22) 1.26 0.32 1.58 0.03
Wonsongg orgle 0.88 0.26 1.53 0.02

O. glaberrima Steud.
Aawba 1.14 0.32 1.84 0.08
Bakin Iri 1.06 0.51 1.87 0.12
CG14 0.97 0.40 1.67 0.07
Dam Iri 1.25 0.57 2.02 0.16
Dembou bourawana blanc 0.75 0.18 1.99 0.09
Djéifata noir 0.96 0.36 2.25 0.11
Djingua noir 0.76 0.35 1.91 0.14
Douboutou II 0.91 0.36 1.89 0.07
Gbagaye 1.10 0.34 1.95 0.06

Gbobaye 1.13 0.46 1.87 0.06
Kossa barkaneye 1.26 0.44 1.96 0.11
Mala Noir II 0.99 0.31 2.08 0.13
Mala Noir III 0.89 0.32 2.24 0.16
Mogo 1.28 0.47 2.24 0.14
Mokori 1.05 0.36 2.25 0.10
Pegnesso 0.71 0.23 2.06 0.07
RAM23 0.70 0.44 2.13 0.14
Salifore 1.39 0.49 1.80 0.08
Saligbeli 1.23 0.38 2.00 0.10
Salikutaforé 1.14 0.30 1.68 0.04
Samandényi 1.08 0.20 1.62 0.07
Sukéré 1.42 0.42 1.90 0.15
Tierka banc 0.91 0.31 2.06 0.13
Tombobökéri II 1.25 0.30 1.95 0.11
W0492 1.87 0.49 1.87 0.06
Wana thireye 1.25 0.42 2.06 0.13
Yélé 1A 0.63 0.32 1.96 0.17

Average(±SE)

O. sativa L.(n=30) 1.20±0.04 0.39±0.02 1.63±0.05 0.04±0.01

O. glaberrima Steud.(n=27) 1.08±0.05 0.37±0.02 1.97±0.03 0.10±0.01

O. sativa x O. glaberrima NS NS ** **

Genotype

Non-submergence Complete-submergence

 

*Genotypes are charactatised by Sub1 

Table 2. Effect of submergence to shoot elongation and biomass in the field experiment 
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photosynthesis and survival rate through shoot elongation ability. Enhancement of shoot 
elongation during submergence in water that is too deep to permit re-emergence by small 
seedlings represents a futile escape strategy that is used at the expense of existing dry matter 
in circumstances where underwater photosynthetic carbon fixation is negligible. 
Consequently, it compromises survival or recovery growth once floodwater levels recede 
and plants are exposed again to the aerial environment. Consequently, shoot elongation 
capability to revert to anaerobic growth condition is vital for long-term flood survival. 

3.2 Responses to long-term submergence “deep water” 
Various lines of 35 O. sativa and 27 O. glaberrima, including some classified as short-term 
submergence tolerant, were compared for submergence tolerance in field and pot 
experiments to long-term submergence tolerant varieties in other words, deepwater 
varieties (Sakagami et al., 2009). Plants were submerged completely for 31 d in a field 
experiment, and partially or completely for 37 d in a pot experiment in a growth chamber. 
Leaf elongation and growth in shoot biomass during complete submergence in the field 
were significantly greater in O. glaberrima than in O. sativa (Table 2).  
Submergence-tolerant cultivars of O. sativa were unable to survive prolonged complete 
submergence for 31–37 d, which indicates that the mechanism of suppressed leaf elongation 
that confers increased survival of short-term submergence is inadequate for surviving long 
periods underwater. The O. sativa deepwater-adapted cultivar ‘Nylon’ and the ‘Yele1A’ 
cultivar of O. glaberrima succeeded in emerging above the floodwater. The photosynthetic 
rate was higher in deeply submerged plants than in non-submerged plants. The 
photosynthetic rate at 37 d after submergence in partial and complete submergence was 
closely related to the net assimilation rate during submergence (Fig. 3), which caused greatly 
increased shoot length, shoot biomass and leaf area, in association with an increased net 
assimilation rate compared with the lowland-adapted O. sativa ‘Banjoulou’.  
 

 

Fig. 3. Relathinship between net assimilation rate durig submergence and photosynthetic 
rate after 37 d submergence in a pot experiment. The number next each symbol indicate the 
cultivars: 1, Banjoulou; 2, IR71700; 3, IR73020; 4, Nylon; 5, Yele1A. Net assumilation rate 
indicates the increase of dry weight per unit area during 37 d submergence. 
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The superior tolerance of deepwater O. sativa and O. glaberrima genotypes to prolonged 
complete submergence appears to be attributable to their greater photosynthetic capacity 
developed by leaves that had newly emerged above the floodwater. Vigorous upward leaf 
elongation during prolonged submergence is therefore critical for ensuring shoot emergence 
from water, as are leaf area extension above the water surface and a subsequent strong 
increase in shoot biomass. 
Actually, ‘Yele1A’ had an especially large capacity for shoot elongation when submerged. 
Watarai and Inoue (1998) noted that high internodal elongation contributes to shoot 
elongation using O. glaberrima under flooding regimes. Faster shoot elongation of O. 
glaberrima genotypes underwater is mainly caused by leaf elongation, but not internodal 
elongation. Consequently, internode and leaf elongation underwater share certain 
similarities in O. glaberrima, both presumably being stimulated by ethylene. 

3.3 Unique physiological mechanism to complete submergence of “Saligbeli” 

Lodging, plant height, and dry matter accumulation for 99 cultivars in O. sativa, O. 
glaberrima, and interspecific hybridization progenies (IHP) were measured when 12-day-old 
seedlings were submerged for 7 days in pots and in fields. Upland rice (O. sativa) showed 
greater shoot elongation, greater reduction in dry matter accumulation during submergence, 
and higher lodging, which indicate low flash flood tolerance. The physiological traits of 
most O. glaberrima and upland rice (O. sativa) for resistance against flash flooding were 
opposite those of submergence-tolerant cultivars, as evidenced from the results of a 
principal component analysis (Fig. 4). Axis I is the first principal component. 

 Y=-0.403942x1 + 0.434866x2 + 0.329416x3 – 0.271996x4  (1) 

Axis II is the second principal component. 

 Y=-0.068947x1 - 0.080874x2 + 0.618871x3 - 0.772613x4  (2) 

 
I

II

I

II

Cluster I

Cluster III

Cluster VIII

Cluster IV

Cluster I

Cluster III

Cluster VIII

Cluster IV

Saligbeli

I

II

I

II

Cluster I

Cluster III

Cluster 

Cluster IV

Cluster I

Cluster III

Cluster 

Cluster IV

Saligbeli

 

Fig. 4. Principal component analysis of physiological traits linked to submergence. 

(●)Upland sativa, (○)Lowland sativa, (▲)Upland glaberrima, (△)Lowland glaberrima, 
(■)Upland IHP, (□)Lowland IHP, (×) Submergence tolerance(Sub1) 
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x1, x2, x3 and x4 in (1), (2) represent in dry matter accumulation after desubmergence, 
lodging score, shoot elongation and increase in dry matter accumulation during 
submergence respectively. It is accounted for 74.0% of the total number of genotypes with 
the first and second principal components.  
In Cluster I, III, and VIII, the main genotypes belonging to each cluster group were classified 

on the principal component analysis. Cluster I, including submergence tolerance genotype, 

and Cluster VIII, including O. glaberrima, were positioned in opposite regions. 

The physiological response of Saligbeli cultivar differed from those of other O. glaberrima 

genotypes in terms of submergence tolerance. Saligbeli was found by the author in coastal 

regions in Guinea. Saligbeli exhibited enhanced shoot elongation with increased dry matter 

accumulation after the end of submergence, as was found also for the submergence-tolerant 

cultivar in a pot experiment (Table 3). The difference between pot and field experiments 

might be attributable to different characteristics of the submergence environment, such as 

turbidity. These features of Saligbeli were apparently a unique means to cope with 

submergence. These experiments revealed that enhancement of shoot-elongation during 

submergence are accomplished using dry matter of leaves that had developed before 

submergence. 

 

During

submergence

(7d)

After

desubmergence

(14d)

O. glaberroma Aawba 16.6 -6.4 -18.2 0.18 3

Saligbeli 12.1 13 59.2 0.99 2

Samandenyi 15.1 -3.2 -4.0 0.34 6

Sedou Bayebeli 13.2 -2.0 -19.9 0.12 6

CG14 19.5 2.6 0 0.30 6

DouboutouII 34.6 -8.6 -21.4 0.07 6

O. sativa (Sub1 ) IR70027-8-2-2-3-2 3.1 4.0 31.0 0.99 1

IR73020-19-2-B-3-2B 1.2 6.0 23.2 0.98 1

IR49830-7-1-2-2 4.6 2.4 26.8 0.84 1

Species
Lodging

score3)

Increase of DMW (mg plant-1)
Shoot

elongation

(cm)1)

Ratio of

DMA 2)Geniotype

 
1) Increase of plant height during submergence, 2) Ratio of dry matter accumulation (DMA) was 
determined by dividing the submergence in the control, and 3) Score 7 is the highest and 1 is the lowest 
in lodging degree after desubmergence. 

Table 3. Physiological traits linked to submergence tolerance in O. glaberrima and O. sativa of 
Sub1 

4. Conclusion  

Submerged rice is in an anaerobic environment because of the 104-fold slower gas diffusion 
underwater than in air. Furthermore, levels of oxygen, and carbon dioxide and light for 
photosynthesis drastically differ according to the floodwater period, depth, temperature, 
and turbidity. African rice, O. glaberrima can lodge readily under aerobic conditions after 
desubmergence because of weakening of the shoot base, which causes rapid leaf elongation 
and which increases plant mortality through photosynthetic products accumulated before 
submergence is exhausted under short-term submergence with the rapid increase of water 
level: so-called flash flooding. However, cultivars of O. glaberrima adapt to long-term 
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complete submergence apparently because of their greater photosynthetic capacity 
developed by leaves that have newly emerged above floodwaters through rapid shoot 
elongation. The Saligbeli cultivar of O. glaberrima, with its unique physiological mechanisms, 
is apparently well-adapted to both conditions for short and prolonged submergence. It 
therefore holds promise as a selecting and breeding rice genotype for use in different flood-
prone regions in Africa. 
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