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1. Introduction 

Flavonoids comprise a group of plant polyphenols with a broad spectrum of biological 
activities. They have been shown to exert beneficial effects on human health and play an 
important role in prevention and/or treatment of several serious diseases, such as cancer, 
inflammation and cardiovascular disease (Middleton et al., 2000; Rice-Evans, 2001). 
Flavonoids are important beneficial components of food, pharmaceuticals, cosmetics and 
various commodity preparations due to their antimutagenic, hepatoprotective (Stefani et al., 
1999), antiallergic (Berg & Daniel, 1988), antiviral (Middleton & Chithan, 1993) and 
antibacterial activity (Tarle & Dvorzak, 1990; Tereschuk et al., 1997; Singh & Nath, 1999; 
Quarenghi et al., 2000; Rauha et al., 2000). They are known to inhibit nucleic acid synthesis 
(Plaper et al., 2003; Cushnie & Lamb, 2006), cause disturbance in membranes (Stepanovic et 
al., 2003; Stapleton et al., 2004; Cushnie & Lamb, 2005) and affect energy metabolism 
(Haraguchi et al., 1998). But the most studied activity is their antioxidant action since they 
can readily eliminate reactive oxygen and nitrogen species or degradation products of lipid 
peroxidation and are thus effective inhibitors of oxidation (Ross & Kasum, 2002). 

However, their commercial applications are limited due to low solubility in lipophilic 
environment and low availability for a living organism. Although aglycons, prenylated and 
methoxylated flavonoid derivatives may be implemented into such systems, they are rarely 
found in nature and are often unstable. In some plant species, the last step in the flavonoid 
biosynthesis is terminated by acylation which is known to increase solubility and stability of 
glycosylated flavonoids in lipophilic systems. Selectively acylated flavonoids with different 
aliphatic or aromatic acids may not only improve physicochemical properties of these 
molecules (Ishihara & Nakajima, 2003) but also introduce various beneficial properqties to 
the maternal compound. These include penetration through the cell membrane (Suda et al., 
2002; Kodelia et al., 1994) enhanced antioxidant activity (Viskupicova et al., 2010; Katsoura 
et al., 2006; Mellou et al., 2005), antimicrobial (Mellou et al., 2005), anti-proliferative (Mellou 
et al., 2006) and cytogenic (Kodelia et al., 1994) effect and improvement of thermostability 
and light-resistivity of certain flavonoids.  
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In nature, flavonoid acylation is catalyzed by various acyltransferases which are responsible 
for the transfer of aromatic or aliphatic acyl groups from a CoA-donor molecule to hydroxyl 
residues of flavonoid sugar moieties (Davies & Schwinn, 2006). Acylation is widespread 
especially among anthocyanins; more than 65% are reported to be acylated (Andersen & 
Jordheim, 2006). While the exact role of plant acylation is not yet fully understood, it is 
known that these modifications modulate the physiological activity of the resulting 
flavonoid ester by altering solubility, stability, reactivity and interaction with cellular targets 
(Ferrer et al., 2008). Acylation might be a prerequisite molecular tag for efficient vacuolar 
uptake of flavonoids (Kitamura, 2006; Nakayama et al., 2003). Some acylated flavonoids 
have been found to be involved in plant-insect interactions; they act as phytoalexins, 
oviposition stimulants, pollinator attractants (Iwashina, 2003), and insect antifeedants 
(Harborne & Williams, 1998). With respect to novel biological activities, acylation of 
flavonoids can result in changes in pigmentation (Bloor, 2001), insect antifeedant activity 
(Harborne & Williams, 1998) and antioxidant properties (Alluis & Dangles, 1999). 

Over the past 15 years, there has been a substantial effort to take advantage of this naturally 
occurring phenomenon and to implement acylation methods into laboratories. However, the 
use of acyltransferases as modifying agents is rather inconvenient, as they require 
corresponding acylcoenzyme A, which must be either in stoichiometric amounts or 
regenerated in situ. Natural acyltransferases and cell extracts from Ipomoea batatas and Perilla 
frutescens containing acyltransferases were applied for selective flavonoid modification with 
aromatic acids (Tab.1) (Nakajima et al., 2000; Fujiwara et al., 1998).  

Acyltransferase Plant source References 

hydroxycinnamoyl-CoA:anthocyanin  
3-O-glucosid-6''-O-acyltransferase 

Perilla frutescens 
Yonekura-Sakakibara  

et al., 2000 
malonyl-CoA:anthocyanin 3-O-glucosid-
6′′-O-malonyltransferase 

Dahlia variabilis Wimmer et al., 1998 

hydroxycinnamoyl-CoA:anthocyanin  
5-O-glucosid-6''-O-acyltransferase 

Gentiana triflora Tanaka et al., 1996 

hydroxycinnamoyl-CoA:anthocyanidin 
3-rutinosid acyltransferase 

Petunia hybrida Brugliera & Koes, 2003 

malonyl-CoA:anthocyanidin  
5-O-glucosid-6''-O-malonyltransferase 

Salvia splendens Suzuki et al., 2001 

Table 1. Acyltransferase catalysis of flavonoid acylation and their nature sources. 

To solve this problem, the chemical approach was first investigated. It possessed a low 
degree of regioselectivity of esterification and drastic reaction conditions had to be applied 
(Patti et al., 2000). Later on, hydrolytic enzymes (lipases, esterases and proteases) have been 
recognized as useful agents due to their large availability, low cost, chemo-, regio- and 
enantioselectivity, mild condition processing and no need of cofactors (Collins & Kennedy, 
1999; Nagasawa & Yamada, 1995). 

Since the enzymatic preparation of flavonoid derivatives is a matter of several years, 
commercial applications have just been emerging. There are several patented inventions 
available to date, oriented on the flavonoid ester production and their use for the manufacture 
of pharmaceutical, dermopharmaceutical, cosmetic, nutritional or agri-foodstuff compositions 
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(Fukami et al., 2007; Moussou et al., 2004, 2007; Ghoul et al., 2006; Bok et al., 2001; Perrier et al., 
2001; Otto et al., 2001; Nicolosi et al., 1999; Sakai et al., 1994). 

This review presents available information on enzyme-mediated flavonoid acylation in 
vitro, emphasizing reaction parameters which influence performance and regioselectivity 
of the enzymatic reaction. In the second part, the paper focuses on biological effects of 
synthesized flavonoid esters as well as of those isolated from nature. Finally, the paper 
ends with application prospects of acylated flavonoids in the food, pharmaceutical and 
cosmetic industry. 

2. Flavonoid esterification 

Presently, the enzyme-catalyzed flavonoid esterification in organic media is a well-mastered 
technique for synthesis of selectively modified flavonoids. Results in this field suggest that a 
high degree of conversion to desired esters can be achieved when optimal reaction 
conditions are applied. The key factors, which influence regioselectivity and the 
performance of the enzymatic acylation of flavonoids, include type and concentration of 
enzyme, structure and concentration of the substrates (acyl donor, acyl acceptor and their 
ratio), nature of the reaction media, water content in the media, reaction temperature and 
nature of the reaction as reviewed in Chebil et al., 2006, 2007. 

2.1 Enzymes 

To date, the use of proteases, esterases, acyltransferases and lipases has been investigated in 
order to find the most potent biocatalyst for selective flavonoid acylation. These enzymes 
are often in the immobilized form which improves enzyme stability, facilitates product 
isolation, and enables enzyme reuse (Adamczak & Krishna, 2004). 

2.1.1 Proteases 

Proteases represent a class of enzymes which occupy a pivotal position with respect to 
their physiological roles as well as their commercial applications. They represent the first 
group of hydrolytic enzymes used for flavonoid modification. They perform both 
hydrolytic and synthetic functions. Since they are physiologically necessary for living 
organisms, proteases occur ubiquitously in diverse sources, such as plants, animals, and 
microorganisms. They are also classified as serine proteases, aspartic proteases, cysteine 
proteases, threonine proteases and metalloproteases, depending on the nature of the 
functional group at the active site.  

Proteases have a large variety of applications, mainly in the detergent and food industries. 
In view of the recent trend of developing environmentally friendly technologies, proteases 
are envisaged to have extensive applications in leather treatment and in several 
bioremediation processes. Proteases are also extensively used in the pharmaceutical 
industry (Rao et al., 1998). Protease subtilisin was the first enzyme used for flavonoid ester 
synthesis conducted by Danieli et al. (1989, 1990). Later on, subtilisin was used for selective 
rutin acylation in organic solvents (Xiao et al., 2005; Kodelia et al., 1994). However, it has 
been reported that reactions catalyzed by subtilisin led to low conversion yields and a low 
degree of regioselectivity was observed (Danieli et al., 1990). These authors reported that the 
structure of the sugar moiety affected the regioselectivity. For flavonoid acylation, especially 
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serine proteases (subtilisin) have been used in ester synthesis (Danieli et al., 1989, 1990; 
Kodelia et al., 1994). 

2.1.2 Esterases 

Esterases (carboxyl esterases, EC 3.1.1.1) represent a diverse group of hydrolases catalyzing 
the cleavage and formation of ester bonds with wide distribution in animals, plants and 
microorganisms. A classification scheme for esterases is based on the specificity of the 
enzymes for the acid moiety of the substrate, such as the carboxyl esterases, aryl esterases, 
acetyl esterases, cholin esterases, cholesterol esterases, etc. (Jeager et al., 1999). Esterases 
show high regio- and stereospecificity, which makes them attractive biocatalysts for the 
production of optically pure compounds in fine-chemicals synthesis (reviewed in 
Bornscheuer, 2002). 

They have the same reaction mechanism as lipases, but differ from them by their substrate 
specificity, since they prefer short-chain fatty acids, whereas lipases usually prefer long-
chain fatty acids. Another difference lies in the interfacial activation (Hidalgo & 
Bornscheuer, 2006). In contrast to lipases, only a few esterases have commercial applications 
in organic synthesis because lipases are generally more entantioselective and resistant to 
organic solvents. The most widely used esterase is the preparation isolated from pig liver 
(Hidalgo & Bornscheuer, 2006). The practical applications of esterases in enzymatic 
transformation of flavonoids are not very attractive as it enables the implementation only of 
the molecule of a short aliphatic chain length, such as acetate, propionate and butyrate 
(Sakai et al., 1994). 

2.1.3 Lipases 

Today lipases stand amongst the most important biocatalysts in industry. Among them, 
microbial lipases find the biggest application use. They can be classified according to 
sequence alignment into three major groups: mammalian lipases (e.g. porcine pancreatic 
lipase), fungal lipases (Candida rugosa and Rhizomucor family) and bacterial lipases 
(Staphylococcus and Pseudomonas family) (Hidalgo & Bornscheuer, 2006). More than 50% of 
the reported lipases are produced by yeast in the forms of various isozymes (Vakhlu & 
Kour, 2006).  

Lipases (triacylglycerol acylhydrolases, EC 3.1.1.3) belong to the class of serine 
hydrolases. They catalyze a wide range of reactions, including hydrolysis, inter-
esterification, alcoholysis, acidolysis, esterification and aminolysis (Vakhlu & Kour, 2006). 
Under natural conditions, they catalyze the hydrolysis of ester bonds at the hydrophilic-
hydrophobic interface. At this interface, lipases exhibit a phenomenon termed interfacial 
activation, which causes a remarkable increase in activity upon contact with a 
hydrophobic surface. The catalytic process involves a series of differentiated stages: 
contact with the interface, conformational change, penetration in the interface, and finally 
the catalysis itself (Hidalgo & Bornscheuer, 2006). Under certain experimental conditions, 
such as in the absence of water, they are capable of reversing the reaction. The reverse 
reaction leads to esterification and formation of glycerides from fatty acids and glycerol 
(Saxena et al., 1999). This synthetic activity of lipases is being successfully utilized also in 
flavonoid ester production. 
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Candida antarctica lipase B (CALB) is one of the most widely used biocatalysts in organic 
synthesis on both the laboratory and the commercial scale (Anderson et al., 1998; Uppenberg 
et al., 1995) due to its ability to accept a wide range of substrates, its non-aqueous medium 
tolerance and thermal deactivation resistance (Degn et al., 1999; Anderson et al., 1998; 
Cordova et al., 1998; Drouin et al., 1997). CALB belongs to the ǂ/ǃ hydrolase-fold 
superfamily with a conserved catalytic triad consisting of Ser105-His224-Asp187 
(Uppenberg et al., 1995). It comprises 317 amino acid residues. The active site contains an 
oxyanion hole which stabilizes the transition state and the oxyanion in the reaction 
intermediate (Haeffner et al., 1998). Reaction mechanism of CALB follows the bi-bi ping-
pong mechanism, illustrated in Fig.1 (Kwon et al., 2007). The substrate molecule reacts with 
serine of the active site forming a tetrahedral intermediate which is stabilized by catalytic 
residues of His and Asp. In the next step alcohol is released and the acyl-enzyme complex is 
created. A nucleophilic attack (water in hydrolysis, alcohol in transesterification) causes 
another tetrahydral intermediate formation. In the last step, the intermediate is split into 
product and enzyme and is recovered for the next catalytic cycle (Patel, 2006). 

 
Fig. 1. Reaction mechanism catalyzed by Candida antarctica lipase (Kwon et al., 2007). 

The active site of CALB consists of a substrate-nonspecific acyl-binding site and a substrate 
specific alcohol-binding site (Cygler & Schrag, 1997; Uppenberg et al., 1995). It is selective 
for secondary alcohols (Uppenberg et al., 1995), as reflected by the geometry of the alcohol-
binding site (Lutz, 2004). In contrast to most lipases, CALB has no lid covering the entrance 
to the active site and shows no interfacial activation (Martinelle et al., 1995). CALB is being 
frequently used in acylation of various natural compounds such as saccharides, steroids and 
natural glycosides, including flavonoids (Riva, 2002; Davis & Boyer, 2001). The proper 
enzyme selection plays multiple roles in flavonoid acylation. The biocatalyst significantly 
influences the regioselectivity of the reaction. Information is available mainly on the use of 
lipases for flavonoid ester synthesis; especially the use of lipase B from Candida antarctica, 
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which is preferred due to its acceptance of a wide range of substrates, good catalytic activity 
and a high degree of regioselectivity (Viskupicova et al., 2010; Katsoura et al., 2006, 2007; 
Ghoul et al., 2006; Mellou et al., 2005, 2006; Stevenson et al., 2006; Ardhaoui et al., 2004a, 
2004b, 2004c; Passicos et al., 2004; Moussou et al., 2004; Gayot et al., 2003; Ishihara & 
Nakajima, 2003; Ishihara et al., 2002; Kontogianni et al., 2001, 2003; Nakajima et al., 1999, 
2003; Gao et al., 2001; Otto et al., 2001; Danieli et al., 1997). 

As for flavonoid aglycons, only two enzymes have been reported to be capable of acylating 
this skeleton – lipase from Pseudomonas cepacia and carboxyl esterase. Lambusta et al. (1993) 
investigated the use of P. cepacia lipase for catechin modification. They discovered that the 
acylation took place on the C5 and C7 hydroxyls. Sakai et al. (1994) observed that carboxyl 
esterase showed regioselectivity towards C3-OH of catechin. Sakai et al. (1994) explored the 
use of carboxyl esterase from Streptomyces rochei and Aspergillus niger for the 3-O-acylated 
catechin production. 

2.2 Reaction conditions 

The performance and regioselectivity of the enzyme-catalyzed flavonoid transformation is 
affected by several factors, including the type of enzyme, the nature of medium, reaction 
conditions, water content in the media, structure and concentration of substrates and their 
molar ratio. By varying these factors, significant changes in ester production and 
regioselectivity can be achieved. 

2.2.1 Reaction media 

Reaction media play an important role in enzymatic transformations. Methodologies for 
enzymatic flavonoid acylation have focused on searching a reaction medium which allows 
appropriate solubility of polar acyl acceptor (flavonoid glycoside) and nonpolar acyl donor 
as well as the highest possible enzymatic activity. Moreover, the medium has often been 
required to be nontoxic and harmless to biocatalyst. In order to meet the above-mentioned 
requirements, several scientific teams have dealt with proper medium selection 
(Viskupicova et al., 2006; Mellou et al., 2005; Kontogianni et al., 2001, 2003; Gao et al., 2001; 
Nakajima et al., 1999; Danieli et al., 1997). 

Non-aqueous biocatalysis has several advantages over conventional aqueous catalysis: the 
suppression of hydrolytic activity of the biocatalyst which is carried out in water (Fossati & 
Riva, 2006), the enhanced solubility of hydrophobic substrates, the improvement of enzyme 
enantioselectivity, the exclusion of unwanted side reactions, the easy removal of some 
products, the enhanced enzyme thermostability and the elimination of microbial 
contamination (Rubin-Pitel & Zhao, 2006; Torres & Castro, 2004). Laane (1987) pointed out 
that log P, as a solvent parameter, correlated best with enzyme activity. Zaks & Klibanov 
(1988) reported that the activity of lipases was higher in hydrophobic solvents than in 
hydrophilic ones. Narayan & Klibanov (1993) claimed that it was hydrophobicity and not 
polarity or water miscibility which was important, whereas the log P parameter could be 
called a measure of solvent hydrophobicity. Trodler & Pleiss (2008), using multiple 
molecular dynamics simulations, showed that the structure of CALB possessed a high 
stability in solvents. In contrast to structure, flexibility is solvent-dependent; a lower 
dielectric constant led to decreased protein flexibility. This reduced flexibility of CALB in 
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non-polar solvents is not only a consequence of the interaction between organic solvent 
molecules and the protein, but it is also due to the interaction with the enzyme-bound water 
and its exchange on the surface (Trodler & Pleiss, 2008). In organic solvents, the surface area 
has been suggested to be reduced, leading to improved packing and increased stability of 
the enzyme (Toba & Merz, 1997). 

Polar aprotic solvents such as dimethyl sulfoxid (DMSO), dimethylformamide (DMF), 
tetrahydrofuran (THF) and pyridine were first investigated (Nakajima et al., 1999; Danieli et 
al., 1997). However, it was observed that enzyme activity was readily deactivated in these 
solvents. To date enzymatic acylation of flavonoids has been successfully carried out in 
various organic solvents (Tab.2), while the most frequently used are 2-methylbutan-2-ol and 
acetone because of their low toxicity, their polarity allowing proper solubilization of 
substrates and high conversion yields. 

Solvent Reference 

2-Methylbutan-2-ol Ghoul et al., 2006; Ardhaoui et al., 2004a, 2004b, 2004c; 
Passicos et al., 2004; Gayot et al., 2003 

Acetone 
Ghoul et al., 2006; Mellou et al., 2005, 2006; Kontogianni et al., 
2001, 2003; Ishihara et al., 2002, Ishihara & Nakajima, 2003; 
Nakajima et al., 1999, 2003; Danieli et al., 1997 

Acetonitrile Ghoul et al., 2006; Ishihara & Nakajima, 2003;  
Nakajima et al., 1997, 1999  

2-Methylpropan-2-ol 
Ghoul et al., 2006; Stevenson et al., 2006; Mellou et al., 2005; 
Moussou et al., 2004; Kontogianni et al., 2001, 2003;  
Otto et al., 2001 

Dioxane Ghoul et al., 2006; Danieli et al., 1997 
Pyridine Danieli et al., 1990, 1997 
THF, DMSO, DMF Kontogianni et al., 2001, 2003; Danieli et al., 1997 

Binaric mixtures of 
solvents 

Ghoul et al., 2006; Gao et al., 2001; Nakajima et al., 1999; 
Danieli et al., 1997 

Table 2. Organic solvents used in flavonoid acylation. 

The effect of the solvent on conversion yield depends on the nature of both the acyl donor 
and the flavonoid (Chebil et al., 2006). Although much has been done in this area, it is quite 
difficult to deduce any general conclusion on solvent choice because the available data are 
controversial and sometimes even contrary. 

Recently, ionic liquids have received growing attention as an alternative to organic solvents 
used for the enzymatic transformation of various compounds (Katsoura et al., 2006; Kragl et 
al., 2006; Jain et al., 2005; Lozano et al., 2004; Reetz et al., 2003; Van Rantwick et al., 2003). 
The potential of these “green solvents” lies in their unique physicochemical properties, such 
as non-volatility, nonflammability, thermal stability and good solubility for many polar and 
less polar organic compounds (Jain et al., 2005; Wilkes, 2004; Itoh et al., 2003; Van Rantwick 
et al., 2003). Probably the most promising advantage of the use of ionic liquids is their 
potential application in food, pharmaceutical and cosmetic preparations due to their 
reduced toxicity (Jarstoff et al., 2003). Due to the many above-mentioned advantages of ionic 
liquids for enzyme-mediated transformations, several flavonoid esters have been recently 
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prepared in such media (Katsoura et al., 2006, 2007; Kragl et al., 2006). The biocatalytic 
process showed significantly higher reaction rates, regioselectivity and yield conversions 
compared to those achieved in organic solvents. Thus ionic liquid use seems to be a 
challenging approach to conventional solvent catalysis. 

The solvent-free approach for elimination of the co-solvent of the reaction has been recently 
introduced as an alternative for conventional solvents (Enaud et al., 2004; Kontogianni et al., 
2001, 2003). It is based on the use of one reactant in the role of the solvent. The authors 
reported rapid reaction rates; however, the conversion yields were slightly decreased. In 
spite of the attractiveness, the use of solvent-free systems is characterized by a serious 
drawback due to the necessity to eliminate the excess of the acyl donor for the recovery of 
the synthesized products (Chebil et al., 2006). 

2.2.2 Water content 

Water content in reaction media is a crucial parameter in lipase-catalyzed synthesis as it 
alters the thermodynamic equilibrium of the reaction towards hydrolysis or synthesis. 
Moreover, it is involved in noncovalent interactions which keep the right conformation of 
an enzyme catalytic site (Foresti et al., 2007). The amount of water required for the 
catalytic process depends on the enzyme, its form (native or immobilized), the enzyme 
support, and on the solvent nature (Arroyo et al., 1999; Zaks & Klibanov, 1988). The 
influence of water content in the reaction system on enzyme activity is variable with 
various enzymes (lipase from Rhizomucor miehei, Rhizomucor niveus, Humicola lanuginosa, 
Candida rugosa, Pseudomonas cepacia). 

In general, the water amount which is considered to be optimal for esterifications in organic 
solvents is 0.2 – 3% (Rocha et al., 1999; Yadav & Piyush, 2003; Iso et al., 2001). The enzymatic 
esterification of flavonoids in non-aqueous media is greatly influenced by the water content 
of the reaction system (Ardhaoui et al., 2004b; Gayot et al., 2003; Kontogianni et al., 2003). 
Ardhaoui et al. (2004b) observed the best enzyme activity when water content was 
maintained at 200 ppm. Gayot et al. (2003) found that the optimal value of water in an 
organic reaction medium equaled 0.05% (v/v). Kontogianni et al. (2003) reported that 
highest flavonoid conversion was reached when initial water activity was 0.11 or less. 

2.2.3 Temperature 

Temperature represents a significant physical factor in enzyme-catalyzed reactions. It affects 
viscosity of the reaction medium, enzyme stability, and substrate and product solubility. 

Since lipase from C. antarctica belongs to thermostable enzymes, improved catalytic activity 
was observed at higher temperatures (Arroyo et al., 1999). To date, flavonoid transformation 
has been carried out in the temperature range 30 – 100°C (Ghoul et al., 2006; Katsoura et al., 
2006; Stevenson et al., 2006; Mellou et al., 2005; Ardhaoui et al., 2004a, 2004b, 2004c; 
Moussou et al., 2004; Passicos et al., 2004; Enaud et al., 2004; Gayot et al., 2003; Kontogianni 
et al., 2003; Ishihara et al., 2002; Gao et al., 2001; Otto et al., 2001; Nakajima et al., 1999; 
Danieli et al., 1990). The choice of temperature depends on the enzyme and solvent used. 
The majority of authors performed flavonoid acylation at 60°C due to the best enzyme 
activity, good solubility of substrates and highest yields of resulting esters reached 
(Viskupicova et al., 2006, 2010; Ghoul et al., 2006; Katsoura et al., 2006; Stevenson et al., 2006; 
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Ardhaoui et al., 2004a, 2004b, 2004c; Moussou et al., 2004; Passicos et al., 2004; Enaud et al., 
2004; Gayot et al., 2003; Otto et al., 2001). Our results on the effect of temperature on 
naringin conversion are presented in Fig.2 and are in accordance with other authors 
(Viskupicova et al., 2006). 
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Fig. 2. Effect of temperature on naringin conversion to naringinpalmitate in 2-methylbutan-
2-ol catalyzed by C. antarctica lipase after 24 h (Viskupicova et al., 2006). 

2.3 Acyl donors and acceptors 

2.3.1 Acyl donor 

Since lipase-catalyzed acylation takes place through the formation of an acyl-enzyme 
intermediate, the nature of the acyl donor has a notable effect on reactivity. The ideal acyl 
donor should be inexpensive, fast acylating, and completely non-reactive in the absence of 
the enzyme (Ballesteros et al., 2006). Many acylating agents have been tested in flavonoid 
esterification, such as aromatic or aliphatic organic acids, substituted or not (Tab.3). Special 
attention was attributed to fatty acid ester production (Katsoura et al., 2006; Mellou et al., 
2005, 2006; Ardhaoui et al., 2004a, 2004b, 2004c; Enaud et al., 2004; Gayot et al., 2003; 
Kontogianni et al., 2003). This approach enables to improve flavonoid solubility and stability 
in lipophilic systems. The proper acyl donor selection may significantly influence not only 
the physicochemical but also biological properties of the resulting esters. 

A simple way to increase the reaction rate and conversion yield in acylation is to use an 
excess of acyl donor (Patti et al., 2000). Many authors have tried to determine the optimal 
molar ratio of flavonoid/acyl donor in order to achieve the highest possible yields. The 
molar ratios 1:1 to 1:15 (acyl acceptor/acyl donor) have been investigated, whereas the 
majority agreed on the ratio 1:5 to be the most suitable for the best reaction performance 
(Mellou et al., 2006; Gayot et al., 2003; Ishihara & Nakajima, 2003; Ishihara et al., 2002; 
Kontogianni et al., 2001). A better solution is offered by the use of special acyl donors which 
ensure a more or less irreversible reaction. This can be achieved by the introduction of 
electron-withdrawing substituents (esters), resulting in higher conversion yields and 
reaction rates. The use of vinyl esters allows a several times faster reaction progress than do 
other activated esters (Ballesteros et al., 2006). Enzymatic synthesis of flavonoid esters can be 
realized by two basic approaches, i.e. esterification and transesterification (Fig.3). 
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Aliphatic acids Aromatic acids 

Acetic* Caffeic* 
Malic* p-Coumaric* 

Malonic* Ferulic* 
Succinic* Gallic* 
Tartaric* p-Hydroxybenzoic* 
Butyric Sinapic* 

Crotonic Benzoic 
n-Butanoic Cinnamic 
Isobutyric Isoferulic 
Isovaleric Methylsinapic 

Lactic  
3-methylbutyric  

Quinic  
Vinylpropionic  

Tiglic  

*acyl donors found in anthocyanins 

Table 3. Acyl donors found in flavonols, flavones (Williams, 2006) and anthocyanins 
(Andersen & Jordheim, 2006). 

 
Fig. 3. Mechanism of isoquercitrin esterification and transesterification (Chebil et al., 2006). 

Pleiss et al. (1998) studied the acyl binding site of CALB and found the enzyme to be 
selective for short and medium fatty acid chain length. This fact may be attributed to the 
structure of the lipase acyl binding pocket, which is an elliptical, narrow cleft of 9.5 × 4.5 Å. 
With increasing carbon number of a fatty acid or molecule size, the steric hindrance is 
involved resulting in low efficiency of the enzymatic reaction (Riva et al., 1988; Wang et al., 
1988; Carrea et al., 1989). This fact was experimentally confirmed by Katsoura et al. (2006) 
and by Viskupicova & Ondrejovic (2007) whose results showed higher performance of the 
naringin and rutin esterification when fatty acids up to C10 were introduced. On the other 
hand, Ardhaoui et al. (2004b) and Kontogianni et al. (2003) reported that the fatty acid chain 
length had no significant effect on conversion yield when fatty acids of a medium and high 
chain length were used. 

Thus, the effect of fatty acid chain length on flavonoid acylation still remains a matter of 
discussion. Our team conducted a series of experiments with both saturated and 
unsaturated fatty acids and found a correlation between log P of the acids tested and 
conversion yields (Viskupicova et al., 2010). It would be interesting to take this parameter 
into consideration when assessing the influence of an acyl donor on the reaction progress. 
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Only little progress has been achieved in flavonoid esterification with aromatic acids 
(Stevenson et al., 2006; Enaud et al., 2004; Gao et al., 2001; Nakajima et al., 2000). It has been 
observed that the performance of the process depends mainly on the nature of the 
substitutions, the position of the hydroxyls and the length of the spacers.  

2.3.2 Acyl acceptor 

The structure of acyl acceptor (flavonoid), especially stereochemistry of glycosidic bonds, 
plays an important role in flavonoid acylation. The structural differences, such as the 
number and position of hydroxyl groups, the nature of saccharidic moiety, as well as the 
position of glycosidic bonds, influence the flavonoid solubility, and thus affect the overall 
conversion yield. 

Available studies are concerned mainly with acylation on flavonoid glycosides. Among 
polyphenolic compounds, naringin and rutin are the most widely used substrates. For the 
naringin molecule, which possesses a primary hydroxyl group on glucose, the acylation 
takes place on the 6''-OH (Katsoura et al., 2006; Konntogianni et al., 2001, 2003; Ishihara et 
al., 2002; Gao et al., 2001; Otto et al., 2001; Danieli et al., 1990) since the primary hydroxyl is 
favored by CALB (Fig.4). However, in rutin, which has no primary hydroxyl available, 
either the 3''-OH of glucose (Ishihara et al., 2002; Danieli & Riva, 1994) or the 4'''-OH of 
rhamnose (Fig.4) (Viskupicova et al., 2010; Mellou et al., 2006; Ardhaoui et al., 2004a, 2004b, 
2004c) can be acylated. Danieli et al. (1997) observed the rutin-3'',4'''-O-diester formation. 
When subtilisin was used as biocatalyst, naringin-3''-O-ester and rutin-3''-O-ester were 
synthesized (Danieli et al., 1990). 

 
Fig. 4. Acylation sites of naringin (left) and rutin (right) molecule. 

The concentration of the flavonoid also affects the performance of the acylation reaction. The 
conversion yield and the initial rate rise with increasing flavonoid concentration. However, the 
amount of flavonoid is limited by its solubility in a reaction medium (Chebil et al., 2006, 2007). 

3. Influence of flavonoid derivatization on biological activities 

3.1 Esters with aromatic acids 

Aromatic acids, along with flavonoids, belong to the group of phenols of secondary 
metabolism of living organisms. The described secondary metabolites represent a store of 
biologically active compounds, displaying various biological activities. We can therefore 
assume that physicochemical and biological properties of the initial flavonoids may be 
improved by acylation of flavonoids with aromatic acids. However, by this reaction a new 
compound can also gain novel activities provided by the aromatic acids.  
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Flavonoid acylation with aromatic acids was reported to improve physiological activities, 
such as UV-absorbing capacity, radical scavenging ability (Delazar et al., 2005; Ishihara & 
Nakajima, 2003; Harborne & Williams, 2000; Alluis & Dangles 1999; Jungblut et al., 1995) 
pigment stabilization (especially anthocyanins) (Ishihara & Nakajima 2003), and interaction 
with cellular targets (Ferrer et al., 2008). 

Flavonoid esters acylated with p-coumaric acid were found to increase antioxidant (Pajero et 
al., 2005) and anti-inflammatory activities (Harborne & Williams, 2000), as well as 
antiproliferative and cytotoxic effects on various cancer cell lines (Mitrokotsa et al., 1993). 
Moreover, p-coumaroyl esters of quercetin and kaempferol were reported to have positive 
effects on cerebrovascular disorders (Calis et al., 1995). Similarly, flavonoid esters esterified 
with cinnamic acid were shown to exhibit antiproliferative activity against several human 
cancer cell lines (Duarte-Almeida et al., 2007). Flavonoid acylation with caffeic acid 
contributes to the enhancement of antioxidant properties (Pajero et al., 2005). 
Flavonolignans acylated with truxinic acid were shown to possess hepatoprotective as well 
as anticancer activity (Sharma et al., 2003). 

3.2 Esters with aliphatic acids 

Biological activities of aliphatic acids are not of a big importance in comparison with 
aromatic acids. These compounds are mainly accepted as energy storage and components of 
several compartments of cells, such as membranes, enzymes, surfactants, etc. In the 
literature, more studies can be found describing changes in biological activities of flavonoids 
after their acylation with aliphatic acids. 

The aliphatic acylation of anthocyanins with malonic acid is important for enhancing the 
pigment solubility in water, protecting glycosides from enzymatic degradation and 
stabilizing anthocyanin structures (Nakayama et al., 2003). Several in vitro observations 
suggest that acylation with malonic acid or sinapic acid is crucial for efficient flavonoid 
accumulation in plants. 

Fatty acid esters of catechins were reported to display antitumor, antibacterial and 5-ǂ 
reductase inhibiting activity (Fukami et al., 2007) as well as antioxidant properties (Sakai et 
al., 1994). Lee et al. (2003) reported anti-atherogenic activity of two naringenin derivatives, 
7-O-oleic ester and 7-O-cetyl ether. 

Acylation of the flavonoid molecule with polyunsaturated fatty acids introduces potential 
antitumor and antiangiogenic properties (Mellou et al., 2006). Anticarcinogenic effects were 
observed also in silybin esters acylated with butyric and lauric acid (Xanthakis et al., 2010). 
Recently, we found that acylation of rutin with unsaturated fatty acids, such as oleic, ǂ-
linoleic and linolenic, increased the antioxidant potential of the initial compound 
(Viskupicova et al., 2010). This observation is in accordance with the results of Mellou et al. 
(2006) and Katsoura et al. (2006).  

In the field of fatty acid ester synthesis, information on the photoprotective effectiveness of 
new quercetin derivatives acylated with acetic, propionic and palmitic acids, has been 
reported. The authors found that esterification with a short side-chain (such as acetate or 
propionate) may improve migration through the aqueous environment and interaction with 
or penetration into phospholipid membranes (Saija et al., 2003).  
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Recent experimental findings indicate that acylation of flavonoid may increase enzyme 
inhibitory activity. Lin et al. (2010) observed increased 5ǂ-reductase inhibition after 
acylation of (-)-epigallocatechins. Salem et al. (2011) showed that the acylation of 
isorhamnetin-3-O-glucoside with different aliphatic acids enhanced its capacity to inhibit 
xanthine oxidase. Our recent investigations showed that lipophilic rutin and naringin 
esters were strong inhibitors of transport enzymes such as sarcoplasmic reticulum Ca2+-
ATPase and plasma membrane Ca2+-ATPase (Augustyniak et al., 2010; Viskupicova et al., 
2009), and thus might be useful in calcium regulation. We presume that there might be a 
general mechanism involved in the enhanced inhibitory activity of the acylated flavonoids 
on structurally diverse classes of enzymes which seems to be donated by the medium to 
long fatty acid chains. 

4. Application perspectives 

The following section provides a summary of patented inventions available in the commercial 
sphere. These include practical applications in food, pharmaceuticals and cosmetics. 

4.1 Food 

The major contribution of acylated flavonoids in the food industry lies in the improvement 
of stability and solubility of initial molecules, e.g. by reducing lipid oxidation in oil/fat 
based food systems, desirable modification of unwanted sensory properties of certain 
flavonoids, taking advantage of pigment stabilization by the means of flavonoid acylation, 
or other food characteristics. Furthermore, selectively acylated flavonoids may cause 
significant changes in their bioavailability and bioactivity, and when consumed, may thus 
play a role in preventing diseases. 

Flavonoid acylation is a useful tool for modification of sensory properties of food. While 
flavonoids provide a variety of health benefits, flavonoid-containing food often suffers from 
bitter and astringent taste. Degenhardt et al. (2007) found that certain glycosylation and 
acylation patterns can effectively modulate these negative taste factors in edible 
preparations, pharmaceutical preparations and cosmetics with mouth contact (i.e. tooth 
paste, mouth wash). Both the taste intensity and the taste profile perception are improved 
by the novel compounds. Ghoul et al. (2006) introduced a process for the selective 
preparation of acylated flavonoid glycosides with improved stability and solubility in 
various preparations with their antioxidant effect remaining intact or being improved.  

Another particular advantage obtained by these modified flavonoids is the bifunctional 
character of their molecule with higher biological activity. Free unsaturated fatty acids 
represent a potential risk because they are highly reactive and by creating free radicals they 
cause undesirable damage in food. Enzymatic synthesis of flavonoids with unsaturated fatty 
acids was found to be a useful solution for the stabilization of these highly oxidizable acids 
(Viskupicova et al., 2010; Mellou et al., 2006).  

Another important benefit of acylated anthocyanins lies in the use as food colorants which 
can serve as a useful alternative to synthetic additives (Giusti & Wrolstad, 2003; Fox, 2000; 
Asen et al., 1979). The discovery of acylated anthocyanins with increased stability has shown 
that these pigments may provide food products with the desirable color and stability at a 
wide pH range. Examples of suitable acylated anthocyanin sources may be radishes, red 
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potatoes, red cabbage, black carrots, and purple sweet potatoes (reviewed in Giusti & 
Wrolstad, 2003). The invention of Asen et al. (1979) refers to a stable food colorant from a 
natural source. It relates to an anthocyanin isolated from the Heavenly Blue Morning Glory 
(Ipomoea tricolor Cav cv), peonidin 3-(dicaffeylsophoroside)-5-glucoside, which is 
characterized by the stability of colors ranging from purplish-red to blue produced in food 
and beverage products at pH values from about 2.0 to about 8.0. Fox (2000) reported the 
invention referring to a stable, ruby red natural colorant (anthocyanins acylated with 
chlorogenic acid) derived from purple sunflower hulls, useful as a coloring agent in food 
products, cosmetics, pharmaceuticals and other materials. 

4.2 Pharmaceuticals 

In recent years, coronary artery diseases, such as atherosclerosis and hypercholesterolemia, 
represent a major cause of death, exceeding even oncological causes or infectious diseases. 
Novel acylated flavanone derivatives are effective in the treatment or prevention of elevated 
blood lipid level-related diseases, e.g. hyperlipidemia, arteriosclerosis, angina pectoris, stroke 
and hepatic diseases since they exert inhibitory effects on acylcolicholesterol acyl transferase 
activity and HMG-CoA reductase activity. In spite of their potent efficacies, the flavanone 
derivatives exhibited no toxicity or mitogenicity in tests using mice (Bok et al., 2001).  

Mellou et al. (2005) carried out enzymatic acylation on Greek endemic plants and reported 
that this modification increased both their antioxidant activity towards isolated low-density 
lipoproteins (LDL) and serum model and antimicrobial activity against two Gram-positive 
bacteria, Staphylococcus aureus and Bacillus cereus. Katsoura et al. (2006) also found that 
biocatalytic acylation of rutin with various acyl donors affected its antioxidant potential 
towards both isolated LDL and total serum model in vitro. A significant increase in 
antioxidant activity was observed for rutin-4'''-oleate. 

The 6''-O-esterification of kaempferol-3-O-glucoside (astragalin) with p-coumaric acid was 
found to increase its anti-inflammatory activity eight times compared to the initial 
flavonoid, while addition of another p-coumaroyl group at 2'' position gave an activity 30 
times greater than that of astragalin (Harborne & Williams, 2000). Another kaempferol 
derivative, kaempferol 3-(2'',3''-di-E-p-coumaroylrhamnoside), was found to possess a 
cytotoxic effect. It significantly modulated the proliferation of promyelocytic cell line 
HL60 and MOLT3 (a T-ALL with phenotypic characteristics of cortical thymocytes) 
(Mitrokotsa et al., 1993). Also Demetzos et al. (1997) synthesized novel flavonoid esters 
with cytotoxic activity. These acetylated esters of tiliroside exhibited a strong cytotoxic effect 
against four leukemic cell lines (HL60, DAUDI, HUT78 and MOLT3), whilst the maternal 
compound had no effect (Demetzos et al., 1997). Tricin-7-O-ǃ-(6''-methoxycinnamic)-
glucoside, a flavone from sugarcane, was found to exhibit antiproliferative activity against 
several human cancer cell lines, with higher selectivity toward cells of the breast resistant 
NIC/ADR line (Duarte-Almeida et al., 2007). Mellou et al. (2006) provided evidence that 
flavonoid derivatives esterified with polyunsaturated fatty acids were able to decrease the 
production of vascular endothelial growth factor by K562 human leukemia cells unlike 
the initial flavonoids, indicating that these novel compounds might possess improved 
anti-angiogenic and anti-tumor properties. Anticancer acitivity was established also in 
two O-acylated flavonoids, daglesiosides I and II, which were isolated from the leaves of 
Pseudotsuga menziesii (Sharma et al., 2003). 
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Parejo et al. (2005) examined quercetagetin glycosides acylated with caffeic and p-
coumaric acid for antioxidant activity. They found that these compounds exhibited a high 
radical scavenging activity in comparison with reference compounds. Fatty acid 
derivatives of catechins are described as having antitumorigenesis promoting activity or 
5-ǂ reductase inhibiting activity, as well as antibacterial activity (Fukami et al., 2007). 
Since these acylated catechin compounds have a greatly superior solubility in fats and oils 
than any catechins previously known, they may be used as a highly effective antioxidative 
agents (Sakai et al., 1994).  

A different catechin derivative, 3-O-octanoyl-(+)-catechin, was synthesized by Aoshima et 
al. (2005) by incorporation of an octanoyl chain into (+)-catechin. This ester was found to be 
more efficient than catechin in inhibiting the response of ionotropic gamma-aminobutyric 
acid receptors and Na+/glucose cotransporters expressed in Xenopus oocytes in a 
noncompetitive manner. Moreover, it induced a nonspecific membrane current and 
decreased the membrane potential of the oocyte. This newly synthesized catechin derivative 
possibly binds to the lipid membrane more strongly than do catechin, (-)-epicatechin gallate, 
or (-)-epigallocatechin-3-gallate, and as a result it perturbs the membrane structure 
(Aoshima et al., 2005). 

4.3 Cosmetics 

The majority of cosmetic or dermopharmaceutical compositions consist of a fatty phase, the 
oily products of which have a certain tendency to oxidize, even at room temperature. The 
consequence of this oxidation is to profoundly modify the properties, which makes them 
unusable after a variable time period. In order to protect the compositions with respect to 
these oxidation phenomena, it is common practice to incorporate protective agents which 
act as antioxidizing agents (N’guyen, 1995). By virtue of the skin-protecting and skin-
cleansing properties of flavonoids and their effects against aging, against skin discoloration 
and on the appearance of the skin, they have been used as constituents of cosmetic or 
dermopharmaceutical compositions. They also act on the mechanical properties of hair 
(Ghoul et al., 2006).  

Moussou et al. (2007) found that the esters of flavonoids with omega-substituted C6 to C22 
fatty acids have the property to protect the skin cells against damage caused by UV radiation. 
According to the invention, these esters of flavonoids protect skin cells against UVA and UVB 
radiation in a more effective manner than flavonoids alone. Moreover, these esters 
demonstrated their property to stimulate glutathione metabolism of human skin cells after 
UVA irradiation, i.e. to stimulate their cellular defenses. They have also anti-inflammatory and 
soothing properties, as demonstrated by the inhibition of released protein kinase PGE2 after 
UVB irradiation. Thus these flavonoid esters may be used to protect the skin and scalp and/or 
to fight against UV and sun damage, erythema, sunburn, mitochondrial or nuclear DNA 
damage, to prevent or fight photo-aging, providing improvement for signs of aging as skin 
wrinkles, elasticity lost and decrease in skin thickness (Moussou et al., 2007).  

Perrier et al. (2001) discovered that specific flavonoid esters can be stabilized while preserving 
their initial properties, particularly free radical inhibition and enzyme inhibition, and for 
applications associated with these properties: venous tonics, agents for increasing the strength 
of blood capillaries, inhibitors of blotchiness, inhibitors of chemical, physical or actinic 
erythema, agents for treating sensitive skin, decongestants, draining agents, slimming agents, 
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anti-wrinkle agents, stimulators of the synthesis of the components of the extracellular matrix, 
toners for making the skin more elastic and anti-ageing agents (Perrier et al., 2001). 

5. Conclusions 

Flavonoids, having a wide spectrum of health-beneficial activities, seem to be applicable in 
various areas of national management from food additivization to pharmaceutical 
preparations with the purpose of prevention and/or treatment of important civilization 
diseases. Their chemical structure determines not only biological effects on human health but 
also their solubility, stability and bioavailability. Recently, selective enzyme-mediated 
acylation of flavonoids has been introduced to confer improved biological properties to the 
novel compounds including both biological activity of initial flavonoid and other parameters 
determined by the chemical structure of an acyl donor. In the past, proteases, esterases and 
acyltransferases were used for the preparation of acylated flavonoids. In light of our review, 
immobilized lipases, especially Candida antarctica B lipase, are suitable for this purpose. Not 
only the given enzyme but also the reaction conditions have a distinct influence on the 
performance of acylation. This aspect must be considered when producing acylated flavonoids 
in technology scale for potential uses in the food, pharmaceutical and cosmetic industry. 
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