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1. Introduction  

Carbonic anhydrase (CA; EC 4.2.1.1) is a zinc metalloenzyme catalysing the reversible 
hydration of CO2 to produce H+ and HCO3−. Its activity is virtually ubiquitous in nature. 
The fundamental role of this biochemical reaction in diverse biological systems has driven 
the evolution of several distinct and unrelated families of CAs. Five CA families, referred as 
ǂ-, ǃ-, Ǆ-CA, ǅ, and ζ-CAs have been identified in animals, plants and bacteria (Hewett-
Emmett and Tashian, 1996; Supuran, 2010). These are the ǂ-CAs, present in vertebrates, 
bacteria, algae and plants; the ǃ-CAs, predominantly in bacteria, algae and plants; the Ǆ-
CAs, mainly present in archaea and some bacteria; the ǅ-CAs and ζ-CAs only found in some 
marine diatoms (Supuran, 2010). 

The monomeric ǂ-carbonic anhydrases are by far the best studied, being found in animals. In 
mammals at least 16 different CA isoforms were isolated and several novel isozymes have also 
been identified in non-mammalian vertebrates. The ǂ-CA isoenzymes differ in their kinetic 
properties, their tissue distribution and subcellular localization, and their susceptibility to 
various inhibitors. In general, there are three distinct groups of CA isozymes within the ǂ-CA 
gene family. One of these groups contains the cytoplasmic CAs, which includes mammalian 
CA I, II, III, V, VII and XIII. These isozymes are found in the cytoplasm of various tissues, with 
the exception of the mitochondrial confined CA V. Another group of isozymes, termed the 
membrane-bound CAs, consists of mammalian CA IV, IX, XII, XIV and XV (Esbaugh and 
Tufts, 2006). These isozymes are associated with the plasma membranes of many different 
tissue types. The final group contains several very intriguing isozymes, CA VIII, X and XI, 
which are termed the CA-related proteins (CA-RP; Tashian et al., 2000). These isozymes have 
lost classical CA activity – the hydration/dehydration of CO2 – and have no known 
physiological function; however, their highly conserved nature does suggest a very important 
role in vertebrates (Tashian et al., 2000).  

The ǃ-carbonic anhydrases are dimers, tetramers, or octamers and include the majority of 
the higher plant CA isoforms (Kimber and Pai, 2000). The Ǆ-carbonic anhydrase is a 
homotrimer that has been reported for the bacterium Methanosarcina thermophila (Alber 
and Ferry, 1994). The ǅ class has its prototype in the monomeric CA TWCA1 from the 
marine diatom Thalassiosira weissflogii (Roberts et al., 1997; Tripp et al., 2001). The ζ-CAs 
are probably monomer with three slightly different active sites on the same protein 
backbone (Xu et al 2008). 
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All CAs are metalloenzymes but whereas ǂ-, ǃ-, and ǅ-CAs use Zn(II) ions at the active site, 
the Ǆ-CAs are probably Fe(II) enzymes (Ferry et al., 2010), but they are active also with 
bound Zn(II) or Co(II) ions, and the ζ-class uses also Cd(II) to perform the physiologic 
reaction catalysis (Lane et al., 2000; Lane et al., 2005). 

CA plays key roles in a wide variety of physiological processes involving CO2 and HCO3-. In 
animals the various CA isozymes are found in many different tissues and are involved in a 
number of different physiological processes, including bone resorption, calcification, ion 
transport, acid–base transport, and a number of different metabolic processes such as 
biosynthetic reactions (gluconeogenesis, lipogenesis, and ureagenesis). In algae and plants 
they play an important role in photosynthesis (Ivanov et al, 2007; Zhang et al., 2010; Cannon 
Gordon et al., 2010).  

Considerable advances towards a detailed understanding of the catalytic mechanism of the 
zinc enzyme carbonic anhydrase have been made during the past years as a result of the 
application of crystallographic and kinetic methods to wild-type and mutant enzymes. 
Moreover, a great amount of work has been performed on CA inhibitors, first of all 
sulfonamides, RSO2NH2, which represent the classical CA inhibitors (CAIs) and are in 
clinical use for more than 50 years as diuretics and systemically acting antiglaucoma drugs 
(Supuran, 2010).  

The review focuses on one interesting but less investigated aspect of the biochemistry of 
this metalloenzyme, encompassing several areas of interest from human health to 
environmental science: the relationships between carbonic anhydrase and heavy metals. 
Heavy metals are chemical elements with a density higher than 5.0 g/cm3, characterized 
by high reactivity, redox behaviour, and complex formation based on the characteristic of 
the outer d electron shell. In the scientific literature the following elements are normally 
ascribed to the heavy metal groups: aluminium, iron, silver, barium, beryllium, 
manganese, mercury, molybdenum, nickel, lead, copper, tin, titanium, tallium, vanadium, 
zinc. Some metalloids, such as arsenic, bismuthum, and selenium, are also included in the 
heavy metals groups. 

Heavy metals generally regarded as essential for animals in trace amounts include zinc, the 
known cofactor of CAs, iron, copper, manganese, chromium, molybdenum and selenium. 
They are essential because they form an integral part of one or more enzymes involved in a 
metabolic or biochemical process. Besides essential metals, a number of other heavy metals, 
such as arsenic, lead, cadmium, mercury, have no known function in the body and are 
referred as toxic metals. However, also essential metals become toxic when their levels in 
the body exceed the homeostatic capacity of the organism. The intracellular levels of 
essential metals are regulated by transporters (which translocate metal across the plasma 
membrane) as well as by metallothionein and other metal binding proteins (Maret and 
Wolfgang, 2011). The toxicity of heavy metals is generally ascribed to their high affinity for 
nucleophilic groups like sulfhydryls. In fact they are soft donors and will therefore readily 
bind to soft acceptors such as sulphydryl groups. 

Recently, a number body of evidence has emerged regarding the effect of several heavy 
metals on carbonic anhydrase catalytic activity and protein expression. These studies 
encompass a wide area of interest from human health to environmental sciences. 
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2. Heavy metals as carbonic anhydrase cofactors 

CAs catalyze the reversible hydration of carbon dioxide to bicarbonate and protons by 
means of a metal-hydroxide (Lig3M2+(OH)_) mechanism, although the ǂ-CAs possess other 
catalytic activities such as esterase, phosphatase, cyanate/cyanamide hydrase, etc. (Supuran 
et al., 2003; Supuran and Scozzafava 2007; Innocenti et al., 2008). In the ǂ-, Ǆ, and ǅ-CA 
classes, Lig3 is always constituted by three His residues. The metal (M) is ZnII for all classes. 
The zinc atom is in the +2 state and is located in a cleft near the center of the enzyme. The 
role of zinc in carbonic anhydrase is to facilitate the deprotonization of water with the 
formation of the nucleophilic hydroxide ion, which can attack carbonyl group of carbon 
dioxide to convert it into bicarbonate. This is obtained through the +2 charge of the zinc ion 
which attracts the oxygen of water, deprotonates water, thus converting it into a better 
nucleophile able to attack the carbon dioxide. 

Water naturally deprotonates itself, but it is a rather slow process. Zinc deprotonates water 
by providing a positive charge for the hydroxide ion. The proton is donated temporarily to 
the surrounding amino acid residues, and then it is given to the environment, while 
allowing the reaction to continue. Zinc is able to help the deprotonation of water by 
lowering the pKa of water. Therefore, more water molecules are now able to deprotonate at 
a lower pH than normal, increasing the number of hydroxide ions available for the 
nucleophilic attack to carbon dioxide (Berg, 2007). 

The affinity of carbonic anhydrase for zinc is in subpicomolar range, as assessed for studies 
on the ǂ-class (Tripp et al., 2001). Cox et al. (2000) and Hunt et al. (1999) ascribed a role for 
hydrophobic core residues in human CA-II that are important for preorienting the histidine 
ligands in a geometry that favours zinc binding and destabilizes geometries that favour 
other metals. In particular, mutagenesis experiments demonstrated that substitutions of 
these amino acids at position 93, 95, and 97 decrease the affinity of zinc, thereby altering the 
metal binding specificity up to 104-fold. Furthermore, the free energy of the stability of 
native CAII, determined by solvent-induced denaturation, correlates positively with 
increased hydrophobicity of the amino acids at positions 93, 95, and 97 as well as with zinc 
affinity (Hunt et al., 1999). 

ǃ-CAs, present in green plants and cyanobacteria, contain also Zn2+ in the active site but are 
differentiated from ǂ-CAs by virtue of the fact that the active site is coordinated by a pair of 
cysteine residues and a single histidine residue, whereas the fourth ligand may be either a 
water molecule/hydroxide ion, or a carboxylate from a conserved aspartate residue in some 
ǃ-CAs (Type II ǃ-CAs) [Trip et al., 2001; Xu et al., 2008]. The metal hydroxide catalytic 
mechanism seems to be also valid for these enzymes [Supuran, 2008]. 

Besides zinc, other metals have demonstrated to be physiologically relevant cofactor for 
some CAs. In fact, in the Ǆ-CAs metal may also be FeII (Ferry et al., 2010). Cam, the 
prototypic Ǆ-class carbonic anhydrase, from the anaerobic methane producing Archaea 
species Methanosarcina thermophila, contains zinc in the active site when overproduced in 
Escherichia coli and purified aerobically [Alber et al., 1996], while it has 3-fold greater 
carbonic anhydrase activity and contains Fe2+ in the active site (Fe-Cam) when purified 
anaerobically from E. coli or overproduced in the closely related species M. acetivorans and 
purified anaerobically. Soluble Fe2+ is abundant in oxygen free environments and available 
to anaerobic microbes. The different results obtained in aerobic and anaerobic conditions is 

www.intechopen.com



 
Biochemistry 

 

208 

explained by the fact that in aerobic conditions Fe3+ is oxidized and rapidly loss from CAM 
enzyme, substituted by Zn2+ contaminating buffers not treated with chelating agents. These 
results indicate Fe2+ as the physiologically relevant metal [MacAuley et al., 2009; Tripp et al., 
2004] in the active site for CAM enzyme. Interestingly, evidence for the role of ferrous ion in 
CA has been obtained also for the ǂ class. In fact carbonic anhydrase activity from duck 
erythrocytes is increased in the presence of iron in the incubation medium suggesting a role 
for iron in the active site (Wu et al., 2007). 

The ζ-CA naturally uses Cd2+ as its catalytic metal in marine diatoms (Lane and Morel, 2000; 
Lane et al., 2005; Park et al., 2008). This cdmium-CA (CDCA1) consists of three tandem CA 
repeats (R1–R3), which share 85% identity in their primary sequences (Lane et al., 2005). 
Although CDCA1 was initially isolated as a Cd enzyme, it is actually a “cambialistic” 
enzyme since it can use either Zn or Cd for catalysis—and spontaneously exchanges the two 
metals (Xu et al., 2008). Kinetic data show that the replacement of Zn by Cd results 
nonetheless in a decrease in catalytic efficiency (Xu et al., 2008). In the active site, Cd is 
coordinated by three invariant residues in CDCA of all diatom species (Park et al., 2007): 
Cys 263, His 315 and Cys 325. The tetrahedral coordination of Cd is completed by a water 
molecule. The use of Cd in CDCA is thought to explain the nutrient-like concentration 
profile of Cd in the oceans, where the metal is impoverished at the surface by 
phytoplankton uptake and regenerated at depth by remineralization of sinking organic 
matter (Lane and Morel 2000). It is cycled in the water column like an algal nutrient. It is 
thought that the expression of a CDCA in diatoms, which are responsible for about 40% of 
net marine primary production, represents an adaptation to life in a medium containing 
vanishingly small concentrations of essential metals (Xu et al., 2008). As suggested by Xu et 
al. (2008) the remarkable ability to make use of cadmium, an element known for its toxicity, 
gave presumably a significant competitive advantage to diatoms in the oceans, poor in 
metals, with respect to other species, and could have contributed to the global ratiation of 
diatoms during the Cenozoic Era and to the parallel decrease in atmospheric CO2. 

Moreover, Co(II) has been shown to replace Zn(II) in ǂ-, ǃ and Ǆ-CA (Hoffmann et al., 2011). 
Cobalt ionic radius and polarizability are very similar to those of Zn(II). In contrast to Zn(II) 
(d10), the d7electron configuration of Co(II) is accessible to electronic spectroscopic methods 
(, yielding information about the interactions protein-metal. As a result, spectroscopy of 
Co(II) substituted CA isozymes has been used to probe the environment of the metal ions in 
the active sites and get information on the nature of the first coordination sphere of the 
metal (Hoffmann et al., 2011). The Co-containing form of the enzyme generally shows a 
marked decrease in activity compared with the native Zn form (Tu and Silverman, 1985). 
The demonstration that Zn can be extracted from a protein and replaced with Co in vitro 
does not demonstrate that such metal substitution takes place in vivo. The evidence for in 
vivo Co substitution in a CA was for the first time provided by Morel et al (1994) and Yee 
and Morel (1996) in the diatoms T. weissflogii, who demonstrated 65Zn and 57Co bands to co-
migrate with a single band of CA activity on a native gel of diatom proteins. 

3. Heavy metals as inhibitors of carbonic anhydrase activity 
Several heavy metals were demonstrated to in vitro inhibit CA activity in a variety of 
organisms, including fishes, crabs, bovines, and humans.  
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The early work of Christensen and Tucker (1976) demonstrated carbonic anhydrase 
inhibition by heavy metals for the first time in fish. The study was carried out on red blood 
cells CA of the teleost Oncorhynchus mykiss. Erythrocyte CA, which represents the most 
abundant pool of the enzyme in fish, appeared significantly in vitro inhibited by several 
heavy metals cations, such as Cd2+, Cu2+, Ag+, and Zn2+ (Tab1). 

In the intestine and gills of the European eel, Anguilla anguilla, Lionetto et al. (1998; 2000) 
found cadmium to significantly inhibit carbonic anhydrase activity. The inhibition appeared 
tissue specific (Lionetto et al., 1998; Lionetto et al., 2000). The gill CA was much more 
sensitive to the heavy metal as compared to the enzyme activity in the intestine, as observed 
by comparing the IC50 values (Tab1). In particular in the intestine the inhibitory effect of 
cadmium was more pronounced on the cytosolic than the membrane-bound CA, which 
revealed only a partial inhibition at high concentrations. Moreover CA activity inhibition 
showed a certain time-dependence, with a delay of at least 10 min and 30 min for the 
cytosolic isoform and the membrane bound isoform respectively. The authors attributed this 
behaviour to the time required by cadmium for displacing the metal (zinc) associated with 
the enzyme, giving an inactive Cd-substituted carbonic anhydrase. Cadmium is a bivalent 
metal, similar in many respects to zinc: both are in the same group of the periodic table, 
contain the same common oxidation state (+2), and when ionized have almost the same size. 
Due to these similarities, cadmium can replace zinc in many biological systems. Moreover, 
the delayed inhibition of membrane-bound CA with respect to the cytosolic isoform was 
explained by a more difficult access of cadmium to the active site of the enzyme bound to 
the membrane. In fact, it has to be considered that the membrane-bound CA is stabilised by 
disulfide bonds (Whitney and Briggle, 1982) which could contribute to a less sensitivity of 
the membrane bound CA to cadmium. 

As suggested by Lionetto et al (2000), the observed in vitro inhibition of cadmium on CA 
activity could be useful in the understanding of the toxic effects that the heavy metal can 
elicits on fish physiology in vivo. The inhibitory effect on gill CA activity suggests that the 
heavy metal might interfere with a number of physiological functions in which gill CA is 
involved as gas exchanges (Randall and Daxbaeck, 1984), acid–base balance (Heisler, 1984), 
osmoregulation (Henry, 1984) and clearance of the waste products from nitrogenous 
metabolism (Evans and Cameron, 1986). Morgan et al (2004) directly demonstrated in in vivo 

expoxure experiments on rainbow trout that inhibition of branchial CA was able to induce 
an early decline in the gill Na+ and Cl- uptake. With regards to the intestine, the 
physiological role of the cytosolic CA is that of generating HCO3 _ from metabolic CO2 while 
the role of the CA enzyme associated to the brush-border membrane should be that of 
mediating the environmental HCO3_ uptake (Maffia et al., 1996). Therefore, the inhibitory 
effect of cadmium on intestinal CA isoforms should interfere with bicarbonate balance and 
in turn with systemic acid–base balance and osmoregulation in fish. In fact, as previously 
shown (Schettino et al., 1992), the HCO3- entry via the membrane-bound CA in the cell 
across the luminal membrane of the enterocytes seems to be essential for maintaining a 
steady intracellular HCO3- concentration and/or pHi; as a consequence the salt transport in 
eel intestine occurs at a highest rate and the passive water loss is recovered, so solving in 
part the osmoregulatory problem in marine fish. Therefore, inhibition of CA enzymes by 
cadmium could alter [HCO3_]i and/or pHi leading to a reduction of salt absorption and 
consequently impairing the osmoregulation of marine fish.  
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More recently, Soyut et al (2008) demonstrated Co2+, Cu2+, Zn2+, Ag+, and Cd2+ to be potent 
inhibitor for brain CA enzyme activity in Rainbow trout (Oncorhynchus mykiss), with the 
following sequence Co2+ >Zn2+ >Cu2+>Cd2+>Ag+. They also demonstrated that Co2+, Ag+, 
and Cd2+ inhibit the enzyme with competitive manner, Cu2+ inhibits with noncompetitive 
manner, and Zn2+ with uncompetitive manner.  

Ceyhun et al., 2011 in vitro demonstrated Al+3, Cu+2, Pb+2, Co+3, Ag+1, Zn+2 and Hg+2 to exert 
inhibitory effects on fish liver CA. Metal ions inhibited the enzyme activity at low 
concentrations. Al+3 and Cu2+ resulted the most potent inhibitors of the CA enzyme. All the 
metals inhibited CA in competitive manner and aluminium showed to be the best inhibitor 
for fish liver CA. Concerning the mechanism of inhibition, the authors argued a possible 
interaction of the metal with the histidines exposed on the surface of the molecule and/or 
other aminoacids around the active site.  

In invertebrates Vitale et al (1999)demonstrated cadmium, copper and zinc to in vitro inhibit 
CA activity in the gills of the estuarine crabs Chasmagnathus granulate (Tab.1). The inhibitory 
potentials of the three metals on CA was in the following sequence: Cu2+ > Zn2+ > Cd2+. The 
observed inhibitory effect in vitro was confirmed by a corresponding inhibitory effect in vivo. 

In the euryhaline crabs Callinectes sapidus and Carcinus maenas Skaggs et al (2002) also 
documented a significant in vitro inhibition of gill CA by Ag+, Cd2+, Cu2+ and Zn2+. The 
binding affinities of the metals were one thousand times weaker for cytoplasmic CA from 
the gills of C. maenas than that from C. sapidus. The large differences in Ki values (Tab.1) 
suggests the presence of two different CA isoforms in the gills of these species, with 
Callinectes sapidus possessing a highly metal-sensitive CA isoform and Carcinus maenas 
having a metal-resistant isoform. Interestingly, heavy metal inhibition of CA from the gills 
of another euryhaline crab, Chasmagnathus granulata, (as reported by Vitale et al., 1999, see 
above) appears to be intermediate between that found in the other two species. Moreover, in 
Callinectes sapidus CA isolated from the cytoplasmic pool of gill homogenates was much 
more sensitive to heavy metal inhibition than was CA from the microsomal fraction, which 
is believed to be anchored to the basolateral membrane, and as such, it exists within a lipid-
rich environment. The authors argued that metal could be sequestered in the lipid 
component of the microsomal fraction and, therefore, higher amounts of metals are required 
to achieve an effective concentration of free metals available for CA inhibition. However, the 
authors did not considered the time-dependence of the inhibition, which can be an 
important aspect to be taken into account (see Lionetto et al., 2000) in the analysis of 
membrane bound vs cytosolic isoform CA inhibition.  

In humans Ekinci et al (2007) demonstrated the inhibition of two human carbonic anhydrase 
isozymes in vitro, the cytosolic HCA I and II by lead, cobalt and mercury. Lead was a 
noncompetitive inhibitor for HCA-I and competitive for HCA-II, cobalt was competitive for 
HCA-I and noncompetitive for HCA-II and mercury was uncompetitive for both HCA-I and 
HCA-II. Lead was the best inhibitor for both HCA-I and HCA-II. 

In tab.1 the Ki, IC50 values and the type of inhibition for several heavy metals on CA from 
different vertebrate and invertebrate species is summarized. A great variability among 
species, tissues and metals can be observed. This suggests that the inhibitory mechanisms 
through which heavy metals exert their effect on carbonic anhydrase activity could be 
different for different isoenzymes and that also small structural differences between CA 
isoforms could result in different metal binding affinities.  
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Metal 
Average 
value of  
Ki (M) 

IC50 (M)
Type of 

inhibition 
Tissue Species Ref 

Cd2+ n.d. 9.979 10-6 n.d. gills 
Anguilla 
anguilla 

Lionetto et al 
2000 

 n.d. 3.64 10-5 n.d. 
Intestine 
(cytosolic 
isoform) 

Anguilla 
anguilla 

Lionetto et al 
2000 

 n.d. 2.15 10-5 n.d. gills 
Chasmagnathus 
granulata 

Vitale et al., 
1999 

 n.d. 9.00 10-4 n.d. 
Red blood 
cells 

Ictalurus 
punctatus 

Christensen 
and Tucker, 
1976 

 94.16 10-3M 8.25 ± 10-2 Competitive brain 
Oncorhynchus 
mykiss 

Soyut et al., 
2008 

 5.0 10-7 n.d. n.d. 
Gills 
(cytoplasmic 
isofom) 

Callinectes 
sapidus 

Skaggs and 
Hery, 2002 

 6.0 -25.0 10-4 n.d. n.d. 
Gills 
(cytoplasmic 
isofom) 

Carcinus 
maenas 

Skaggs and 
Hery, 2002 

Ag+ 193.8 10-3M 1.59 10-1 Competitive brain 
Oncorhynchus 
mykiss 

Soyut et al., 
2008 

 6.40 10-4  3.79 10-4  Competitive liver 
Dicentrarchus 
labrax 

Ceyhun  
et al., 2011 

 n.d. 3.50 10-5 n.d. 
Red blood 
cells 

Ictalurus 
punctatus 

Christensen 
and Tucker, 
1976 

 5.0–0.10 10-8 n.d. n.d. 
Gills 
(cytoplasmic 
isofom) 

Callinectes 
sapidus 

Skaggs and 
Hery, 2002 

 6.0 -25.0 10-4 n.d. n.d. 
Gills 
(cytoplasmic 
isofom) 

Carcinus 
maenas 

Skaggs and 
Hery, 2002 

Zn2+ 2.15 10-3M 3.10 10-4 Uncompetitive brain 
Oncorhynchus 
mykiss 

Soyut et al., 
2008 

 7.21 10-4  3.90 10-4 Competitive liver 
Dicentrarchus 
labrax 

Ceyhun  
et al., 2011 

 n.d. 7.00 10-4 n.d. 
Red blood 
cells 

Ictalurus 
punctatus 

Christensen 
and Tucker, 
1976 

 n.d. 1.62 10-5 n.d. gills 
Chasmagnathus 
granulata 

Vitale et al., 
1999 

 6.0 -25.0 10-4 n.d. n.d. 
Gills 
(cytoplasmic 
isofom) 

Carcinus 
maenas 

Skaggs and 
Hery, 2002 
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Metal 
Average 
value of  
Ki (M) 

IC50 (M)
Type of 

inhibition 
Tissue Species Ref 

Cu2+ 27.6 10-3M 3.00 10-2 
Non 
competitive 

brain 
Oncorhynchus 
mykiss 

Soyut et al., 
2008 

 1.75 10-5  7.15 10-5 Competitive liver 
Dicentrarchus 
labrax 

Ceyhun  
et al., 2011 

 n.d. 6.50 10-5 n.d. 
Red blood 
cells 

Ictalurus 
punctatus 

Christensen 
and Tucker, 
1976 

 n.d. 3.75 10-6 n.d. gills 
Chasmagnathus 
granulata 

Vitale et al., 
1999 

 3.60 10-7 n.d. n.d. 
Gills 
(cytoplasmic 
isofom) 

Callinectes 
sapidus 

Skaggs and 
Hery, 2002 

 6.0 -25.0 10-4 n.d. n.d. 
Gills 
(cytoplasmic 
isofom) 

Carcinus 
maenas 

Skaggs and 
Hery, 2002 

Co2+ 5 10-5M 1.40 10-5 competitive brain 
Oncorhynchus 
mykiss 

Soyut et al., 
2008 

 5.32 10-4 3.16 10-4 competitive liver 
Dicentrarchus 
labrax 

Ceyhun  
et al., 2011 

 3.91 10-3 n.d. competititve 
Erytrocytes 
(CAI) 

Homo sapiens 
Ekinci et al., 
2007 

 1.7 10-3 n.d. 
non 
competitive 

Erytrocytes 
(CAII) 

Homo sapiens 
Ekinci et al., 
2007 

Al3+ 1.48 10-4 6.92 10-5 competitive liver 
Dicentrarchus 
labrax 

Ceyhun  
et al., 2011 

Pb2+ 2.42 10-4 1.13 10-4 competitive liver 
Dicentrarchus 
labrax 

Ceyhun  
et al., 2011 

 9.90 10-4 n.d. 
Non 
competitive 

Erytrocytes 
(CAI) 

Homo sapiens 
Ekinci et al., 
2007 

 5.6 10-5 n.d. uncompetitive
Erytrocytes 
(CAII) 

Homo sapiens 
Ekinci et al., 
2007 

Hg2+ 7.68 10-4 4.48 10-4 competitive liver 
Dicentrarchus 
labrax 

Ceyhun  
et al., 2011 

 1.42 10-3 n.d. uncompetitive
Erytrocytes 
(CAI) 

Homo sapiens 
Ekinci et al., 
2007 

 3.12 10-4 n.d. uncompetitive
Erytrocytes 
(CAII) 

Homo sapiens 
Ekinci et al., 
2007 

Table 1. Ki, IC50 and type of inhibition for several heavy metals in different species and 
tissues as assessed in in vitro studies.  

Concerning the mechanisms of inhibition some heavy metals are believed to bind to CA not 
at the specific catalytic site of CO2 hydration but nearby in a pocket, the so called ‘proton 
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shuttle’ as demonstrated for human CAII (Tu et al., 1981). His-64 is a proton shuttle in 
catalysis, where it accepts the proton product (via the bridging solvent molecules) from 
zinc-bound water as zinc-bound hydroxide is regenerated; subsequently, the proton product 
is passed along to buffer (Liang et al, 1988; Tu et al., 1989; Vedani et al., 1989). The 
mechanism of inhibition of heavy metals on proton shuttle has been elucidated for copper 
on human CA II. Cu2+ is believed to competitively inhibit CAII by binding to the imidazole 
side chain of His-64, blocking its role in proton transfer from the zinc-bound water molecule 
to buffer molecules located outside of the active site region [Tu et al., 1981]. However, the 
knowledge of the mechanism of action of other metals on different CA isoforms is lacking. It 
cannot be excluded the CA binding to other different parts of the protein, possibly cysteine 
residues, as demonstrated in studies with other enzymes for silver and mercury.  

4. Heavy metals as modulators of carbonic anhydrase activity and 
expression 

If it has been widely demonstrated in vitro that heavy metals are able to inhibit CA activity 
in a variety of organisms, on the contrary little is known about the in vivo effects of trace 
metals on the activity and the expression of this metalloenzyme. The major information 
regards Zn2+, while very few is known about other metals. 

In humans early studies demonstrated that dietary zinc deficiency significantly reduces zinc 
concentrations of serum and in turn CA activity in erythrocytes (Hove,1940; Rahman et al., 
1961; Kirchgessner et al., 1975) suggesting a possible influence of Zn2+ on CA protein 
expression. These early data have been more recently confirmed by Lukaski (2005) who 
demonstrated zinc concentration of serum and erythrocyte to be positively correlated to CA 
activity in vivo. Low dietary zinc decreases erythrocyte carbonic anhydrase activity and, in 
turn, impairs cardiorespiratory function in men during exercise (Lukaski et al., 2005). In 
ducks Zn2+ at a low level (up to 1.25 μM Zn) induced the rise of CA activity in erythrocytes 
(Wu et al., 2007). In parotid saliva of patients with CAVI deficiency Zn2+ treatment was able 
to stimulate synthesis/secretion of CAVI (Henkin et al., 1999), probably through stimulation 
of CAIV gene. In rats Zn2+ deficiency significantly reduced CAII protein expression in the 
submandibular gland (Goto et al., 2008).  

As regards other metals Grimes et al (1997) reported the depression of CAIII mRNA and, in 
turn, CAIII protein in the mouse mutant ‘toxic milk’ (tx) liver following copper 
accumulation, Kuhara et al (2011) found CAIII suppression by copper accumulation during 
carcinogenesis, while Wu et al (2007) found iron at low levels to induce a rise in CA activity 
in duck erythrocytes. 

Recently, Caricato et al (2010) demonstrated for the first time CA activity and protein 
expression to be enhanced by the exposure to the trace element cadmium in animals, opening 
new perspective in the comprehension of the functioning and regulation of this enzyme. 
Digestive gland CA activity showed a weak sensitivity to in vitro cadmium exposure since 
only high concentrations of CdCl2 (from 10-5 to 10-3 M) were able to exert a significant 
inhibition. On the contrary digestive gland CA activity showed a significant increment in 
cadmium exposed animals (about 40% after two week of exposure). This was the first time that 
CA activity appears to be increased by cadmium in animals. Carbonic anhydrases from the 
microalgae Chlamydomonas reinhardtii (Wang at al., 2005) and Thalassiosira weissflogii (Morel et 
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al., 1994; Lee et al., 1995) are the only other examples reported in nature of CA activity increase 
induced by cadmium exposure. Evidence of in vivo utilization of Cd in CA has been found in 
microalgae (Price and Morel, 1990; Morel et al., 1994; Lee et al. 1995, Xu et al., 2008). In these 
organisms the ability of Cd to substitute for Zn at the active site of the enzyme is reflected in 
the regulation of the enzyme expression. In Thalassiosira weissflogii a cadmium-containing CA 
was found to be expressed during zinc limitation (Lane and Morel, 2000; Lane et al., 2005). 
This cadmium CA (CDCA1) which naturally uses Cd as its catalytic metal (Trip et al., 2001; 
Lane et al., 2005) has been ascribed to a novel ζ-CA class (see above). Genes coding for similar 
proteins have been identified in other cultured diatoms (Park et al., 2007). In mussel digestive 
gland western blotting analysis clearly demonstrated the enhancement of CA protein 
expression following cadmium exposure, according to the enzymatic activity data (Caricato et 
al., 2010). Laboratory experimental results were confirmed by a field experiment. Mussels 
exposed for 30 days to an anthropogenic impacted site showed a significant increase in CA 
activity and protein expression with respect to animals exposed for 30 days in a control site. If 
the new synthesized enzyme is a Cd-CA is not possible to say at the moment. If it was the case, 
then the increase in CA would not be a direct adaptive response to Cd pollution; rather, Cd 
could remove any limitations placed on CA synthesis by the availability of Zn. However, 
future studies will be needed to clarify this intriguing aspect of the research.  

5. Carbonic anhydrase and heavy metals interactions: Potential applications  

In the last years the interactions between carbonic anhydrase and heavy metals have found 
a number of applications in environmental and health fields, including the development of 
biomarkers of pollution exposure, in vitro bioassays, and biosensors. 

5.1 Carbonic anhydrase sensitivity to heavy metals and development of biomarkers of 
pollution exposure  

Pollution by trace metals is a world-wide problem due to the persistency and continuing 
accumulation of metals in the environment (de Mora et al. 2004; Hwang et al 2006). Heavy 
metals may enter the organisms through food, water, air, or absorption through the skin. As 
a result of mining, waste disposal and fuel combustion the environment is becoming 
increasingly contaminated with heavy metals.  

In recent years the increasing sensibility to pollution problems has promoted the 
development of environmental “diagnostic” tools for early warning detection of pollution. 
Pollution monitoring has been increasingly concerned with the use of biological responses 
to pollutants at molecular and cellular level for evaluating biological hazard of toxic 
chemicals. Methods based on biological effects and their underlying mechanisms can 
complement the use of analytical chemistry in environmental monitoring. The major 
advantages of such biological, mechanism-based methods are their toxicological specificity, 
rapidity, and low cost. Toxicological specificity refers to the relationship between the assay 
response and the toxic potential rather than simply the contaminant concentrations 
(provided by chemical analysis) of the sample being analyzed. Moreover, biological assays 
provide rapid, sensitive, easily learnt and readily interpretable new useful tools for 
environmental biomonitoring and risk assessment. They include biomarkers, and in vivo and 
in vitro bioassays. It is known that the harmful effects of pollutants are typically first 
manifested at lower levels of biological organization before disturbances are realized at 
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population, community and ecosystem levels (Adams, 1990). This is the reason why in 
recent years the study of molecular and cellular effects of pollutants has given important 
advancement in the developing of biologically-based methodologies useful for 
environmental biomonitoring and risk assessment. Enzymatic inhibition studies have been a 
very fruitful field for environmental monitoring application as biomarker of 
exposure/effect. Biomarkers are defined as pollutant induced variation in cellular or 
biochemical components occurring in organisms as a result of natural exposure to 
contaminants in their environment (Depledge, 1994). As reported by several authors, the 
evaluation of biomarkers in bioindicator organisms sampled in one or more areas suspected 
of chemical contamination and their comparison with organisms sampled in a control area 
can allow the evaluation of the potential risk of toxicological exposure of the studied 
community (Lionetto et al., 2003; Lionetto et al., 2004).  

Carbonic anhydrase sensitivity to heavy metal exposure has been recently explored for its 
possible applications as biomarker of exposure to heavy metal pollution (Lionetto et al. 2006; 
Caricato et al, 2010b.) in “sentinel” organisms. Lionetto et al., (2006) investigated CA activity 
inhibition by heavy metals in the filter feeding Mytilus galloprovincialis, widely used in 
pollution monitoring programs as sentinel organism (Jernelov et al., 1996). Following in vitro 
and in vivo exposure to cadmium, mantle CA activity was significant inhibited. The 
inhibitory effect of cadmium on mantle CA activity can explain results previously obtained 
by Soto et al. (2000), who observed a significant decreased in shell growth in M. 
galloprovincialis exposed to heavy metals. The sensitivity of CA to heavy metals in mussels 
appears to be tissue-specific. In fact, as reported above, in mussel’s digestive gland CA 
activity and expression was found to increase following Cd exposure (Caricato et al., 2010). 
Because of the widely application of M. galloprovincialis in environmental quality monitoring 
and assessment, data on tissue specific sensitivity of carbonic anhydrase to heavy metals 
represent a starting point for future potential application of CA activity changes as 
biomarker of exposure to heavy metals in the sentinel organism M. galloprovincialis.  

Other studies carried out on corals have suggested alteration in CA activity as potential 
biomarker of exposure to environmental chemical stress. CA activity has been demonstrated 
to be inhibited by heavy metal exposure in anemones and corals (Gilbert and Guzman, 
2001), where the enzyme plays a key role in the calcification process. Coral growth has been 
shown to be an effective indicator of the overall health of a coral reef ecosystem and reduced 
growth can reflect impaired photosynthetic output of the zooxanthellae and/or changes in 
enzyme activity (Moya et al., 2008). In an era of climate change and ocean acidification, 
where factors impacting growth and resilience factors are becoming important, 
understanding the biological effects of metal exposure to these keystone tropical organisms 
may be critical (Bielmyer et al., 2010). 

5.2 Carbonic anhydrase based bioassay 

Bioassays use biological systems to detect the presence of toxic chemicals in the 
environmental matrices (water, sediment, sewage, soil, etc.). In recent years, in vitro 
bioassays, employing cultured cells or cellular extracts, are increasingly being developed 
and used to detect the presence of contaminants. Examples include assays that measure 
enzyme inhibition, receptor-binding, or changes in gene expression in in vitro systems. 
Although in vitro assay is not a substitute for biomarker approach, it can be used as an 
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adjunct model to whole-animal in vivo exposure and to ecotoxicological evaluation of the 
potential risk of trace pollutants in aquatic environments. They are rapid, low cost and 
simple tools to be utilized in combination with chemical analysis, for the pre-screening of 
the environmental samples that should be analyzed. Lionetto et al (2005; 2006) explored the 
possible application of heavy metal CA inhibition for the development of an in vitro 
bioassay applicable to the determination of the toxicity of environmental aqueous samples. 
They developed rapid and sensitive chemical hazard detection system for standardizing 
rapid, sensitive, and low cost CA based in vitro bioassay (Schettino et al., 2008). 

6. Carbonic anhydrase-based biosensing of metal ions 

In the last years the affinity of carbonic anhydrase for metal ions has been applied for the 
development of fluorescence based biosensors for determination of free metal ions in solution 
using variants of human carbonic anhydrase (apoCA). In particular, Cu2+, Co2+, Zn2+, Cd2+, 
and Ni2+ have been determined at concentration down the picomolar range (Fierke and 
Thompson, 2001; Thompson and Jones, 1993; Mey et al., 2011) by changes in fluorescence 
emission (Thompson et al., 2000) and excitation wavelength ratios (Thompson et al., 2002), 
lifetimes (Thompson and Patchan, 1995), and anisotropy (polarization) (Elbaum et al., 1996; 
Thompson et al., 2000). The sensitivity, selectivity, analyte binding, kinetics and stability of the 
biosensors have been improved by subtle modification of the protein structure by directed 
mutagenesis (Kiefer et al., 1995; Hunt et al., 1999; DiTusa et al., 2001; McCall et al., 2004; Burton 
et al, 2000). These studies have hallowed the development of highly selective and sensitive 
fluorescence-based biosensors for Zn2+ e Cu2+, which have been shown to be viable approach 
in some important applications. In fact, the CA-based Cu2+ biosensor has been used to obtain 
real-time measurement of free Cu(II) at picomolar concentrations in seawater (Zeng et al., 
2003), while the CA-base Zn2+ biosensor has been used for measurement of free Zn ion at 
picomolar levels in cultured cells (Bozym et al, 2004). 

7. Conclusions  

Although carbonic anhydrase represents one of the most investigated metalloenzyme in 
nature, its interaction with heavy metals has been only partially elucidated to date and some 
issues still remains to be explored. An intriguing aspect that needs more investigation is the 
in vivo effect of heavy metals on CA expression. From the few studies available in literature 
some metals appear to be important modulator of the expression of this protein. The 
understanding of the underlying mechanisms could open new perspective in the 
comprehension of the functioning and regulation of this enzyme. Another intriguing aspect 
of the biochemistry of CA is the inhibition by heavy metals. It has been documented for 
some species and some metals, but the mechanisms behind the inhibition, its metal 
specificity and isoform specificity remains still unknown. These aspects merits in depth 
examination and open new perspective for drug design and biomarkers development. 
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