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1. Introduction 

ERs are members of the nuclear receptor superfamily and have a broad range of biological 
roles, such as growth, differentiation and physiology of the reproductive system (Pearce & 
Jordan, 2004). These enzymes also have roles in non-reproductive tissues such as bone, 
cardiovascular system, brain and liver (Heldring et al., 2007). Until 1996, only one human 
estrogen receptor (ER) was known. That year Kuiper et al. discovered a novel nuclear 
estrogen receptor cloned from rat prostate. The known ER was renamed and called ER┙ to 
differentiate it from the novel ER, ER┚ (Kuiper et al., 1996). The complete human ER┚ cDNA 
sequence was published in 1998 by Ogawa et al (Ogawa et al., 1998a).  

1.1 Estrogen receptors and signalling function 

Estrogen receptors are products of distinct genes localized on different chromosomes; 
human ER┙ is encoded on chromosome 6q24-q27 (Gosden et al., 1986), while the gene 
encoding human ER┚ is localized on chromosome 14q22-q24 (Enmark et al., 1997). Despite 
their distinct localization, the gene organization of the two receptors is well conserved. ESR1 
(ER┙) and ESR2 (ER┚) genes contain eight exons, separated by seven long intronic 
sequences. As members of the nuclear receptor superfamily, ERs contain 6 regions in their 
protein structure common for all nuclear receptors, namely: A, B, C, D, E and F which form 
functionally different but interacting domains (figure 1). Exon 1 encodes the A/B region in 
ER┙ and ER┚, exons 2 and 3 encode part of the C region. Exon 4 encodes the remaining part 
of region C, the whole of region D and part of region E. Exons 5 to 8 contain the rest of 
region E and region F is encoded by part of exon 8 [reviewed in (Ascenzi et al., 2006)]. 
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Although ER┙ and ER┚ are encoded separately they share a high degree of homology. The 
most conserved domain among ERs is the DNA binding domain (DBD) corresponding to 
the C region, with 96% homology between ┙ and ┚ ER subtypes. The DBD is responsible for 
binding to specific DNA sequences (Estrogen Responsive Elements or EREs) in target gene 
promoter regions. High structure similarity in this region suggests similar target promoter 
sites for both receptors. The A/B region located in the N-terminus of the protein 
encompasses the AF-1 domain responsible for ligand independent transactivation. The AF-1 
domain is the least conserved part among the two ERs with only 30% homology and it is 
functional only in the ER┙ subtype (Hall & McDonnell, 1999). The C-terminus of the protein 
contains the ligand dependent transactivation domain AF-2, the ligand binding domain 
(LBD) and the homo-/heterodimerization site. Homology between the E/F regions of both 
proteins is only 53%, explaining differences in ligand binding affinities between the two 
receptors. The hinge region localized in the D domain contains the nuclear localization 
signal of the ERs as well as post translational modification sites (Sentis et al., 2005). 
Information on structure/function relationship of this region is very limited and it appears 
to be a variable and not well conserved part of the ERs (only 30% homology).  

 
Fig. 1. Proteomic format, domain structure of human ER┙ (A) and ER┚ (B). Based on  
Matthews  and Gustafsson (Matthews & Gustafsson, 2003). 

Estrogen (E2) binding to the receptor induces the LBD to undergo a conformational change, 
upon which the receptor dimerizes, binds to DNA, and stimulates gene expression (Cowley 
et al., 1997; Katzenellenbogen & Katzenellenbogen, 2000). 

1.2 Estrogen receptor distribution 

The distribution of ERs varies both between and within human tissues (see Table 1). The 
cardiovascular system, brain, and bones express both receptors. ER┚ is predominant in the 
male reproductive system. Expression of both ER┙ and ER┚ has been found in all major 
human uterine cell types at every menstrual stage. However, expression varies from cell-type 
to cell-type with expression of ER┙ mRNA generally being higher than that of ER┚ (Matsuzaki 
et al., 1999). Changes in expression of estrogen receptors has been found in certain tumour 
types. Normal mammary tissue in man predominantly expresses ER┚ mRNA, whereas most 
ER-positive breast tumours appear to exhibit increased ratios of ER┙/ER┚ (Leygue et al., 1998). 
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Likewise, an increased ratio of ER┙/ER┚ mRNA has been demonstrated in ovarian carcinoma 
compared with normal tissue or cysts (Bardin et al., 2004). High concentrations of ER┚ have 
also been found within the human gut (Enmark et al., 1997).  

Therefore, the ultimate estrogenic effect of a certain compound on cells or tissues will be 
dependent on the receptor phenotype of these cells or tissues. 

Organ/Tissue 
Human 

ER subtype 
Organ/Tissue 

Human 
ER subtype 

  ER┙ ER   ER┙ ER 

Heart   Adrenal  - 

Lung -  Kidney   

Vascular   Prostate -  

Bladder -  Testes -  

Epididymus -  Brain   

Pituitary -  Thymus -  

Liver  - Breast   

Muscle - - Uterus   

Fat - - Endometrium   

Gastrointestinal tract -  Vagina  - 

Colon -  Fallopian tube -  

Small intestine -  Ovary   

Bone       

Table 1. Tissue distribution of ER subtypes in humans. 

1.3 Mechanism of estrogen action 

Estrogens act on target tissues by binding to ERs. These proteins function as transcription 
factors when they are activated by a ligand. Biological action of ERs involves complex and 
broad mechanisms. For the ERs two main mechanisms of action have been described, 
including a genomic and a non-genomic pathway (Figure 2).  

The genomic action of ERs occurs in the nucleus of the cell, when the receptor binds specific 
DNA sequences directly (“direct activation” or classical pathway) or indirectly (“indirect 
activation” or non-classical pathway). In the absence of ligand, ERs are associated with heat-
shock proteins. The Hsp90 and Hsp70 associated chaperone machinery stabilizes the ligand 
binding domain (LBD) and makes it accessible to the ligand. Liganded ER dissociates from 
the heat-shock proteins, changes its conformation, dimerizes, and binds to specific DNA 
sequences called estrogen responsive elements (EREs) in order to regulate transcription 
(Nilsson et al., 2001). In the presence of the natural ligand E2, ER induces chromatin 
remodelling and increases transcription of estrogen regulated genes (Berno et al., 2008). 
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Fig. 2. Mechanisms of estrogen receptor (ER) action. In the direct activation, ERs dimerize 
after ligand binding and attach to the ERE in the promoter of target genes. In the indirect 
activation manner, ligand-bound ER dimers might activate transcription of non-ERE 
containing genes, by binding to other transcription factors (e.g. AP1 or SP1). In the non-
genomic pathway, ligand-bound ERs interact directly with and change the function of 
proteins some of which function as 'second messengers' (SM). ERs can also be activated by 
phosphorylation in the absence of ER ligands (ligand-independent activation). Based on 
Morani et al. 2008 (Morani et al., 2008).  

In the non-classical pathway, AP-1 (DeNardo et al., 2005) and SP-1 (Kim et al., 2003) are 
alternative regulatory DNA sequences used by both isoforms of the receptor, ER┙ and ER┚, 
to modulate gene expression. In this case, ER does not interact directly with DNA but 
interacts with other DNA-bound transcription factors such as c-Jun or c-Fos, or with other 
proteins (Kushner et al., 2003). Both AF-1 and AF-2 domains of ER are required for the 
interaction with Fos/Jun complex and both receptors differentially affect AP-1 dependent 
genes. In the presence of ER┙, E2 works as AP-1 agonist by enhancing activity of the 
proteins at AP-1 sites (Brzozowski et al., 1997), while in the presence of ER┚ it antagonizes 
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AP-1 activity (Nilsson et al., 2001). When both receptors are present, ER┚ inhibits the action 
of ER┙ on AP-1 promoters (Matthews et al., 2006). Interactions of ERs with other 
transcription factors might be also selectively modulated by different ligands, such as 
genistein and quercetin, which are not able to stimulate AP-1 dependent transcription 
(Figtree et al., 2003; Schreihofer, 2005). 

Even though ERs are considered transcription factors they can act through non-genomic 
mechanisms. Rapid ER effects were first observed in 1960s when administration of a 
physiological dose of E2 was reported to increase uterine cAMP levels in ovariectomized 
rats within 15 seconds (Szego and Davis, 1967), a time scale that is considered too fast for a 
genomic action. There is still no agreement if receptors responsible for rapid actions of 
estrogens are the same proteins as nuclear ERs or distinct G-protein coupled steroid 
receptors (Funakoshi et al., 2006; Maggiolini et al., 2004; Pedram & Levin, 2006; Warner & 
Gustafsson, 2006). However, a broad range of other rapid pathways induced by E2 has been 
identified so far. Some of these pathways include MAPK/ERK pathway, activation of 
endothelial nitric oxide synthase (eNOS), PLC stimulated IP3 production, calcium influx and 
PI3K/Akt pathway activation (Stirone et al., 2005; Virgili F, 2004; Ascenzi et al., 2006). 
Similarly to non-classic mechanisms of activation, phytoestrogens might affect rapid 
pathways in a different way than E2. Quercetin for example has been shown to fail to 
phosphorylate ERK-2 kinase (opposite to E2) nor did it stimulate transcription of Cyclin D1, 
the transcription of which sometimes depends on rapid ER pathways (Virgili F, 2004). The 
stimulation of eNOS, which plays a role in cardiovascular health effects induced by E2 also 
seems to be regulated differently by phytoestrogens. Rapid activation of eNOS in the 
presence of E2 is dependent on ER┙ (Simoncini et al., 2005), while both receptors are 
required for prolonged effects. However phytoestrogens do not activate eNOS in a rapid 
manner but seem to activate it through a prolonged, ER┚ dependent transcriptional 
mechanism (Simoncini et al., 2005). 

In addition to ligand dependent mechanisms, ER┙ has ligand independent activity mediated 
through AF-1, which has been shown to be associated with stimulation of MAPK through 
growth factors such as Insulin like Growth Factor – 1 (IGF-1) and Epidermal Growth Factor 
(EGF). Activity of AF-1 is dependent on phosphorylation of Ser 118. A good example of the 
cross-talk between ER and growth factor signalling is phosphorylation of Ser 118 by MAPK 
in response to growth factors, such as IGF-1 and EGF (Kato et al., 1995). The importance of 
growth factors in ER signalling is well illustrated by the fact that EGF can mimic effects of 
E2 in the mouse reproductive tract (Nilsson et al., 2001). 

1.4 Ligand dependent effects and cofactors 

The overall biological effects of E2 and other estrogenic compounds are the result of 
complex interplay between various mechanisms, which largely depend on cellular 
context, ratio between ER subtypes, expression of coactivators in the cell, sequences of 
target EREs but also cross-talk with growth factor pathways and activity of kinases and 
phosphatases. All these factors together enable a precise and targeted response to the 
natural hormone. However a broad range of pathways involved in ER signaling provides 
many points of possible signal modulation by estrogens and estrogen-like compounds 
and small structural changes between different ligands might result in significantly 
different responses.  

www.intechopen.com



 
Biochemistry 

 

146 

Structural differences in the LBD underlie differences in affinity and transcriptional activity 
of certain ER ligands and provide one of the mechanisms for selective modulation of ER 
responses. ER┚ has an impaired AF-1 domain compared with ER┙ and the necessary 
synergy with AF-2 is dramatically reduced (Cowley & Parker, 1999). These differences 
suggest that it is possible to develop ligands with different affinities, potencies, and agonist 
vs antagonist behavior for the two ER subtypes.  

It has been demonstrated that E2 has higher affinity towards ER┙ than to ER┚ (Bovee et al., 
2004; Veld et al., 2006), and certain selective estrogen receptor modulators (SERMs) might 
exhibit a preference towards one of the receptors (Escande et al., 2006). Plant derived 
phytoestrogens, which are structurally similar to E2 (Figure 3) provide a good example of 
ligand selectivity (Kuiper et al., 1998). Genistein is the major isoflavone present in soy and 
fava beans whereas quercetin is present in red onions, apples, cappers or red grapes among 
others (Kuiper et al., 1998). In vitro studies with reporter gene assays proved that 
phytoestrogens are able to stimulate ERE-dependent genes at high concentrations. Therefore 
they are considered weak ER agonists with the majority of them preferentially binding to 
ER┚ (Chrzan & Bradford, 2007; Harris et al., 2005). The main hypothesis on the positive role 
of phytoestrogens in modulation of ER signaling is their higher affinity towards the ER┚ 
subtype, which can silence ER┙ dependent signaling and decrease overall cell sensitivity to 
E2 (Hall & McDonnell, 1999), which is thought to be significant in cancer prevention. 

 
Fig. 3. Chemical structure of estradiol, genistein and quercetin. 

ERs can associate with distinct subsets of coactivators and corepressors depending on 
binding affinities and relative abundance of these factors (Chen & Evans, 1995; Halachmi et 

al., 1994). Several ER coactivators and corepressors have been described (Nilsson et al., 2001). 
Differences between ER┙ and ER┚ in coactivator and corepressor recruitment have also been 
reported (Cowley & Parker, 1999; Suen et al., 1998), and therefore this preferential binding of 
certain coactivators and corepressors to one of the ERs may have consequences for specific 
ligand signalling and the ultimate biological effect elicited by ligand binding.  

NCoR and SMRT corepressors and the p160 family coactivators are widely expressed 
(Horlein et al., 1995; Misiti et al., 1998; Oñate et al., 1995). Low levels of SRC-3 have been 
demonstrated for human proliferating endometrium with increased expression in the late 
secretory phase (Gregory et al., 2002) while overexpression of SRC-3 is frequently observed 
in breast, ovarian, and prostate cancers (Anzick et al., 1997; Gnanapragasam et al., 2001; 
McKenna et al., 1999). Similar expression levels of CBP, p300, AIB1, GRIP1, p300, NCoR, and 
SMRT have been measured for Ishikawa uterine and MCF-7 breast cancer cells (Shang and 
Brown, 2002). High levels of SRC-1 expression are found in Ishikawa cells, and this might 
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correlate with the agonist activity of tamoxifen in this cell line (Shang and Brown, 2002). We 
have seen in our studies (Sotoca et al., 2011), that the T47D breast cancer cells express the ER 
coactivator PRMT1. Recruitment of this coactivator is accompanied by histone methylation 
(Huang et al., 2005; Klinge et al., 2004). Recently, PRMT1 gene expression has been used as a 
marker of unfavourable prognosis for colon cancer patients (Mathioudaki et al., 2008).  

Thus, other signalling events within the cell may affect nuclear receptor transcriptional 
responses via alteration in the expression of certain coregulators, and therefore it is 
predicted that significant differences in coactivator and corepressor expression found in 
various cell and tissue types would be important determinants of specific receptor 
modulator activity.  

In addition, distribution of particular splicing variants of both ERs should be taken into 
account when considering tissue response to estrogens and cofactor recruitment as they 
have differential and sometimes antagonistic properties and their relative abundance might 
significantly influence biological responses to hormones. The main physiological role of ER 
splice variants in breast cancer development is however far from clear and might be a 
crucial determinant for clinical parameters. 

2. ER Isoforms: ERα and ERβ 

Full length ER┙ and ER┚ proteins are approximately 66 and 59 kDa respectively (Ascenzi 
et al., 2006; Fuqua et al., 1999), although as a result of alternative splicing both receptors 
can form different isoforms. ER┙ has been shown to form over 20 alternative splice 
variants in breast cancer and other tumors (Poola et al., 2000), three of them with proven 
functionality, while at least five ER┚ variants have been reported in human 
(Lewandowski et al., 2002).  

The function and physiological significance of all isoforms have not been described so far, 
but some of them are powerful modulators of ER signaling pathways in normal tissues.  

2.1 ERα splice variants 

The two most referenced ER┙ isoforms that seem to be of particular significance are ER┙46 
and ER┙36 as they were reported to oppose genomic actions of full length ER┙66 (figure 4).  

The ER┙46 isoform has been identified in the MCF7 breast cancer cell line (Penot et al., 2005) in 
which it is coexpressed with full length ER┙66. The presence of ER┙46 has also been confirmed 
in osteoblasts (Wang et al., 2005) and endothelial cells (Figtree et al., 2003). This isoform is 
formed by skipping exon 1 encoding the N-terminus (A/B) and it is devoid of AF-1 activity. In 
contrast with full length ER┙66, the truncated isoform ER┙46 does not mediate E2 dependent 
cell proliferation and high levels of this isoform have been shown to be associated with cell 
cycle arrest in the G0/G1 phase and a state of refraction to E2 stimulated growth, which is 
normally reached at hyperconfluency of the cells (Penot et al., 2005). Similarly to ER┚, ER┙46 is 
a potent ligand-dependent transcription factor containing AF-2 and a powerful inhibitor of 
ER┙ AF-1 dependent transcription (Figtree et al., 2003). By inhibition of ER┙66 dependent gene 
transcription, ER┙46 isoform inhibits estrogenic induction of c-Fos and Cyclin D1 promoters, 
which are involved in cell cycle control. Coexpression of ER┙46 with ER┙66 in an SaOs 
osteoblast cell line results in concentration dependent inhibition of E2 stimulated cell 
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proliferation (Ogawa et al., 1998b), an effect similar to the consequence observed with 
coexpression of ER┙ with ER┚ (Sotoca et al., 2008; Ström et al., 2004). 

The second truncated ER┙ isoform ER┙36 was first described recently (Wang et al., 2005), 
and it has been shown to lack both the AF-1 and AF-2 transactivation functions of full length 
ER┙. However it has functional DBD, partial dimerization and LBD domains. ER┙36 
contains an exon coding for myristoylation sites, hence predicting an interaction with the 
plasma membrane. Transcription of this ER┙36 isoform is initiated from a previously 
unidentified promoter in the first intron of the ER┙ gene and the unique 27 amino acid C-
terminal sequence is encoded by a novel ER┙ exon, localized downstream of exon 8 to 
replace the last 138 amino acids encoded by exon 7-8 (Wang et al., 2005).  

 
Fig. 4. Schematic comparison between full length ER┙ and its most referenced truncated 
isoforms.  

This novel isoform has been cloned from a human placenta cDNA library, which indicates 
that it is a naturally occurring isoform of ER┙. With no functional AF-1 and AF-2 ER┙36 
does not have any direct transcriptional activity. However, it is a robust inhibitor of full 
length ER┙ and ER┚ dependent transactivation (ZhaoYi Wang et al., 2006). It is mainly 
localized in the plasma membrane and works in a different way than full length protein. 
Even though it lacks transcriptional activity it can activate non genomic ER pathways such 
as MAPK/ERK signaling in response to E2 which is of particular significance in response to 
antiestrogens such as tamoxifen, 4OH-tamoxifen and ICI-182.780 (ZhaoYi Wang et al., 2006). 
As a result of MAPK/ERK pathway activation by E2 and these antiestrogens a signal is 
transduced to the nucleus and consequently Elk1 transcription factor is activated. The effect 
of MAPK/ERK activation mediated by ER┙36 is increased cell proliferation in response to 
E2 as well as antiestrogens in doses that shut down transcriptional activity of full length 
ER┙ and ER┚ proteins (ZhaoYi Wang et al., 2006). 

The ER┙80 isoform was detected in the MCF7:2A cell line, which is a subclone MCF7 cell 
line derived from long term growth in the absence of E2. This ER┙80 isoform was 
produced by duplication of exons 6 and 7 (Pink et al., 1996). No evident function has been 
described so far.  
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Several other multiple splice variants (ER┙ΔE2, ER┙ΔE3, ER┙ΔE4, ER┙ΔE5, ER┙ΔE6, 

ER┙EΔ5,7, ER┙EΔ7…) as a result of exon splicing deletions have been confirmed in human 
(Poola et al., 2000; Zhang et al., 1996) showing a dominant inhibitory effect in normal ER 
function. A list of selected ER┙ splice variants and their expression in various breast tissues 
(normal and tumor) and breast cancer cell lines is given in Table 2. 
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References 

ER┙36 +   +     (Shi et al., 2009; Lee et al., 2008;  
ZhaoYi Wang et al., 2006) 

ER┙46 (or 
ER┙Δ1) 

 +       (Penot et al., 2005) 

ER┙Δ2 + + +  +    

(Wang and Miksicek, 1991; Zhang et al., 
1996; Bollig and Miksicek, 2000; Poola 
and Speirs, 2001; Miksicek et al., 1993; 
Poola et al., 2000) 

ER┙Δ3 + + + +     

(Wang and Miksicek, 1991; Poola and 
Speirs, 2001; Bollig and Miksicek, 2000; 
Zhang et al., 1996; Koduri et al., 2006; 
Erenburg et al., 1997;  
Miksicek et al., 1993; Fuqua et al., 1993) 

ER┙Δ4  +   +   + 
(Pfeffer et al., 1993; Zhang et al., 1996; 
Bollig and Miksicek, 2000;  
Poola et al., 2000; Poola and Speirs, 2001) 

ER┙Δ5 + + + + + + + + 

(Zhang et al., 1993; Zhang et al., 1996; 
Bollig and Miksicek, 2000;  
Poola and Speirs, 2001; Zhang et al., 1996; 
Fuqua et al., 1991; Daffada et al., 1994) 

ER┙Δ6 +        (Poola and Speirs, 2001; Bollig and 
Miksicek, 2000) 

ER┙Δ7 + + + +     

(Wang and Miksicek, 1991; Fuqua et al., 
1992; Poola and Speirs, 2001; Bollig and 
Miksicek, 2000; Fuqua et al., 1992; 
Miksicek et al., 1993) 

ER┙Δ5,7 +        (Zhang et al., 1996) 

Table 2. List of selected ER┙ splice variants and their expression in various breast tissues 
(normal and tumour) and breast cancer cell lines. 
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2.2 ERβ splice variants 

The presence of ER┚ isoforms has been confirmed in various human cell lines as well as in a 
broad range of tissues at different levels (Leung et al., 2006; Moore et al., 1998), which 
provides another possible mechanism of tissue-dependent modulation of the ER response. 
Therefore distribution of particular isoforms of both ERs should be taken into account when 
considering tissue response to estrogens as they have differential and sometimes 
antagonistic properties and their differential distribution might significantly influence 
biological response to hormone. 

Different isoforms of ER┚ have been described (figure 5) with a variable C-terminus, and 
which were cloned from a testis cDNA library (Moore et al., 1998). At present their 
functional significance is poorly understood. The ER┚ isoform whose function has been 
described in most detail of all ER┚ isoforms studied is ER┚1, which is a full length protein 
with LBD and active AF-2 domain. ER┚2, 4 and 5 have a shortened Helix 11 and a full 
length Helix 12 is present only in ER┚1 and ┚2. In ER┚2, Helix 12 has a different orientation 
than in ER┚1 due to the shorter Helix 11. It has been reported that the displaced Helix 12 in 
ER┚2 limits ligand access to the binding pocket. As a consequence of their altered structure, 
ER┚2, 4 and 5 cannot form homodimers and have no transcriptional activity on their own, 
although they have been shown to heterodimerize with ER┚1 upon E2 treatment and 
enhance its AF-2 mediated transcriptional activity (Leung et al., 2006). Studies of interactions 
between different ER┚ isoforms with ER┙ are very limited. However ER┚2 (also named 
ER┚cx) was shown to limit DNA binding of ER┙66 and inhibit its transcriptional activity in 
similar manner to ER┚1 (Ogawa et al., 1998b). 

 
Fig. 5. Comparison between full length ER┚ and it is most referenced truncated isoforms.  

Two new exon-deleted variants were detected in the cancer cell line MDA-MB-231, 
ER┚Δ1,2,5  and ER┚Δ1,2,5,6 of approximately 35 and 28 kDa, respectively (Treeck et al., 
2008). Both proteins are predicted not to contain AF-1, and to have deletions in the DBD and 
LBD. Therefore, these two variants are expected to be devoid of or have significantly 
reduced ligand-dependent and ligand independent activities, and their expression did not 
affect growth of cancer cell lines tested. A list of selected ER┚ splice variants and their 
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expression in various breast tissues (normal and tumor) and breast cancer cell lines is given 
in Table 3. 

Various studies reveal that physiological levels of ER┙ and ER┚ may vary depending on the 
cell or tissue type (Enmmark et al., 1997; Bonkhoff et al., 1999; Makinen et al., 2001; Pearce et 

al., 2004) and as a consequence the biological response to endogenous or exogenous ligands 
can differ significantly. 
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ER┚2 + + + +  + 

(Davies et al., 2004; Zhao et al., 2007; 
Girault et al., 2004; Saji et al., 2005; 
Cappelletti et al., 2006; Leung et al., 
2006) 

ER┚3 +      (Girault et al., 2004) 

ER┚4 +  +  +  
(Moore et al., 1998; Girault et al., 
2004; Poola et al., 2005) 

ER┚5 + + + + + + 

(Davies et al., 2004; Girault et al., 
2004; Moore et al., 1998; Fuqua et al., 
1999; Leung et al., 2006; Cappelletti 
et al., 2006) 

ER┚Δ2 +   +   (Poola et al., 2002a) 

ER┚Δ3 +      (Poola et al., 2002a; Poola et al., 
2002b) 

ER┚Δ4 +      (Poola et al., 2002a; Poola et al., 
2002b) 

ER┚Δ5 + +  +   (Poola et al., 2002a; Speirs et al., 2000; 
Leygue et al., 1998) 

ER┚Δ6 +      (Poola et al., 2002a; Leygue et al., 
1998) 

ER┚Δ1,2,5  +  +   (Treeck et al., 2008) 

ER┚Δ1,2,5,6  +  +   (Treeck et al., 2008) 

Table 3. List of selected ER┚ splice variants and their expression in various breast tissues 
(normal and tumour) and breast cancer cell lines. 
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3. Conclusion 

Cell proliferation in normal developing breast tissue is stimulated by estrogens and 
estrogens may prevent osteoporosis by increasing bone mineral density (Douchi et al., 2007). 
However, as cells can have their own set of ER splice variants that varies in time and 
abundance the estrogen receptor proteins can be expected to have a role in developmental 
regulation depending on splice variant and ligand present. ER splice variants are widely 
expressed in normal, premalignant and cancerous tissues and cell lines [reviewed in (Taylor 

et al. 2010)]. Co-expression of splice variants remains under investigation to understand its 
biological implications. Here, we briefly summarize ER expression and its role in positive or 
negative transcriptional activation in breast cancer. 

Several studies have demonstrated that estrogens stimulate the growth of a large proportion 
of ER┙ positive breast cancers (Lazennec, 2006; Monroe et al., 2005; Pedram et al., 2006; 
Weitzmann & Pacifici, 2006). Furthermore, a decreased ER┚ expression in cancer tissues as 
compared to benign tumours or normal tissues has been reported, whereas ER┙ expression 
seems to persist (Lazennec et al., 2001, Bardin et al., 2004). Recent progress in cellular 
experiments confirmed that ER┚ opposes ER┙ actions in breast cancer cell lines (Sotoca et al., 
2011; Sotoca et al., 2008; Ström et al., 2004). 

The main roles of ER splice variants in breast cancer development are, however, far from 
clear (Davies et al., 2004; Saji et al., 2005). ER┙ positivity in breast cancer in vivo is strongly 
associated with more favourable clinicopathological parameters. ER┚ positive patients have 
been shown to have favourable prognosis and better survival due to better endocrine-
treatment response compared with ER┚ negative breast tumor patients (Davies et al., 2004; 
Saji et al., 2005). 

When bound to estrogens as homodimers, each receptor activates transcription of certain 
target genes bearing a classical ERE in their promoter region. However, estrogen binding to 
ER┚ can also inhibit gene transcription via AP-1 sites, while binding to ER┙ leads to 
activation. Furthermore, when heterodimers are formed, when the two receptors are co-
expressed, ER┚ can inhibit ER┙ function. Given that ER regulates cell proliferation by 
different mechanisms, we summarize (Table 4 and 5) by which molecular characteristics of 
ER this proliferation is driven. 

Full activation of AF-1 in ER┙ induces cell proliferation in breast cancer cells (Fujita et al., 
2003). AF-1 activity of estrogen-ER┚ is weaker compared with that of estrogen-ER┙ on ERE, 
whereas their AF-2 activities are similar (Cowley & Parker, 1999). In general ER┚ has 
antiproliferative effects in breast cancer cells. All ER┚ variants have negative effect on ER┙ 
by heterodimerization and reduce or abrogate both ligand-dependent and ligand-
independent activities. Especially the ER┚2 isoform inhibits ER┙-mediated estrogen action. 
In addition, several short ER┙ isoforms are able to oppose genomics actions of ER┚. 

The most important point is that ER┙ expression induces significant cell proliferation in the 
absence of ER┚ but not the other way around. Cell proliferation is triggered by classical 
genomic and non-genomic pathways. Only the wild type ER┙ isoform is able to induce 
hormone-dependent proliferation. It has been shown that most of the ER variants do not 
mediate ligand-dependent proliferation.  
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In conclusion, the overall biological effects of E2 and other estrogenic compounds in breast 
cancer cells are the result of complex interplay between various mechanisms, which depend 
on cellular context, balance between ER subtypes, coactivators and corepressors, sequences 
of target EREs but also cross-talk with growth factor pathways and activity of certain 
kinases and phosphatases. All these factors taken together enable response to estrogens or 
antiestrogens. 

Isoform Feature AF-1 DBD LBD AF-2 

ER┙66 
Wild type form  
Induces cell proliferation + + + + 

ER┙46 

Does not mediate E2-dependent proliferation 
Opposes genomic action of ER┙66 and ER┚ 
Inhibitor of AF-1 dependent transactivation  
Potent AF-2 ligand dependent transcription 
activity  

- + + + 

ER┙36 

Opposes genomic actions of ER┙66  
Can activate non-genomic ER pathways via 
MAPK/ERK 
No direct transcriptional activity 
Inhibitor of ER┙ and ┚ dependent 
transactivation  

- + + - 

ER┙80 Not described  + + +* +* 

ER┙Δ2 No transcriptional regulation - - - - 

ER┙Δ3 

Binds ligand  
Dominant negative at ERE 
Interacts with AP-1 sites 
Suppresses E2-stimulated gene expression  

+ - + + 

ER┙Δ4 Dominant negative transcriptional effect  + - - + 

ER┙Δ5 
Dominant positive transcriptional effect 
Dominant negative at ERE 
Coexpresses with ER┙ and enhances ERE-Luc 

+ + - - 

ER┙Δ7 
Dimerizes with ER┙ and hER┚   
Binds to ERE 
Dominant negative transcriptional effect 

+ + + - 

Table 4. Summary of ER┙ mechanism. 
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Isoform Features AF-1 DBD LBD AF-2 

ER┚1 Wild type form + + + + 

ER┚2 
Dimerizes with ER┚1 and  ER┙ 
Does not bind ligand + + + - 

ER┚3 
Dimerizes with ER┚1 
Does not bind ligand + + + - 

ER┚4 
Dimerizes with ER┚1 and  ER┙ 
Does not bind ligand + + + - 

ER┚5 
Dimerizes with ER┚1 and ER┙ 
Does not bind ligand 

+ + + - 

ER┚Δ5 Negative effect on ER┚1 and  ER┙ + +   

ER┚Δ1,2,5 
Reduced both ligand-dependent 
and ligand independent activities - + - + 

ER┚Δ1,2,5,6 
Reduced both ligand-dependent 
and ligand independent activities - + - + 

Table 5. Summary of ER┚ mechanism. 
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