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1. Introduction  

Bone morphogenetic proteins (BMPs) were discovered and named in 1965 by Marshall 
Urist, who initially identified the ability of an unknown factor in bone to induce ectopic 
bones in muscle 1. In the last 45 years, the osteogenic function of BMPs has been extensively 
examined, mainly using osteoblasts in culture with exogenous treatments of BMPs 2. Based 
on their potent osteogenic abilities, clinical trials have been initiated to use BMP2 and BMP7 
to improve fracture repair 2. The FDA (Food and Drug Administration) has approved BMP2 
and BMP7 for clinical use in long bone open-fractures, non-union fractures and spinal 
fusion. However, recent clinical/pre-clinical studies have shown a negative impact of BMPs 
on bone formation under certain physiological conditions 3-7, challenging the current dogma. 
This book chapter will focus on the recent findings of roles of BMP signaling in bone 
including its relationship with Wnt signaling through Wnt (Wngless, Int-1) receptor SOST 
(Sclerostin) and DKK1 (Dickkopf1). This new molecular interaction would explain the 
negative outcomes of BMP’s therapy in orthopaedics. 

2. Signaling by BMPs  

Marshall Urist made the key discovery that demineralized bone matrix induced bone 
formation in 1965 1. It took another 24 years for BMPs to be discovered. The combined works 
of several researchers led to the isolation of BMPs and later the cloning 8-11. BMPs belong to 

the transforming growth factor- (TGF-) gene superfamily 12. Like other members of the 

TGF- family, BMPs signal through transmembrane serine/threonine kinase receptors such 
as BMP type I and type II receptors. Upon ligand binding, type I and II receptors form 
hetero-multimers 13, and the type II receptor phosphorylates and activates a highly 
conserved glycine- and serine-rich domain (TTSGSGSG) called a GS box between the 
transmembrane and kinase domains in the type I receptor. The activated BMP type I 
receptors relay the signal to the cytoplasm through the Smad (Sma and Mad related protein) 
pathway by phosphorylating their immediate downstream targets, receptor-regulated 
Smads (R-Smads; Smad1, Smad5, and Smad8) proteins, which then interact with co-Smad 
(Smad4) protein and translocate into the nucleus 14. It is also known that non-Smad 
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pathways through p38 MAPK (mitogen-actiated protein kinase) and TAK1 (Transforming 
growth factor β–activated kinase 1) are also involved in the BMP signaling 15. There are 
three type I receptors [BMPRIA (BMP receptor type IA, ALK3), BMPRIB (BMP receptor type 
IB, ALK6) and ACVRI (Activin receptor type I, ALK2) and three type II receptors [BMPRII 
(BMP receptor type II), ACVRIIA (Activin receptor type IIA) and ACVRIIB (Activin receptor 
type IIB)], and approximately 30 ligands are identified 16. Type I receptor ACVRI was 
originally described as an activin receptor, but it is now believed to be a receptor for BMPs. 
In osteoblasts, BMP2, BMP4, BMP6 and BMP7 and their receptors BMPRIA and ACVRI are 
abundantly expressed 17. BMPRIA is a potent receptor of BMP2 and BMP4 18, 19, as is ACVRI 
for BMP7 20. In addition, BMP antagonists Noggin, Chordin, and Gremlin were identified in 
osteoblasts 21. These antagonists fine-tune BMP signaling in osteoblasts, as BMPs upregulate 
expression levels of antagonists while inducing BMP signaling 22 (Table 1, Figure 1). 

 

 

 

Fig. 1. Potential molecular interaction of BMP signaling in osteoblasts. BMP2, BMP4, BMP6, 
and BMP7 are osteoinductive and are expressed by osteoblasts. BMP2 and BMP4 are potent 
ligands for BMPRIA as are BMP6 and BMP7 for ACVRI. Canonical BMP signaling is 
through the Smad pathway via Smad1, Smad5, and Smad8 (i.e. Smad1/5/8-Smad4 
complex), while non-canonical BMP signaling is through non-Smad pathways including 
TAK1 and p38 MAPK. Target genes are activated by these two pathways in osteoblasts. 
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Antagonists Noggin, Chordin, Gremlin 

Ligands BMP2, BMP4, BMP6, BMP7 

Type I Receptors BMPRIA/ALK3, ACVRI/ALK2, (BMPRIB/ALK6) 

Type II Receptors BMPRII, ActRIIA, ActRIIB 

R-Smad Smad1, Smad5, Smad8 

Co-Smad Smad4 

Non-Smad Pathways p38 MAPK, TAK1 

Table 1. Osteogenic BMPs and their signaling cascades in osteoblasts  

3. Molecular interaction of BMP and Wnt  

In addition to BMP signaling, Wnt signaling has been examined for a decade because of its 
role in bone formation and bone mass 23-27. The physiological impact of Wnt signaling on 
bone mass was first reported in 2001, by showing that loss-of-function mutations in the co-
receptor LRP5 (Low-density lipoprotein receptor-related protein 5) cause the autosomal 
recessive disorder osteoporosis-pseudoglioma syndrome (OPPG), a low bone mass 
phenotype in humans 28. The importance of other Wnt ligands and receptors as bone mass 
effectors has been documented using genetic approaches for DKK1 29, DKK2 30, sFRPs 
(secreted frizzled-related proteins) 31, Sost/sclerostin 32, Lrp5 33, 34 and Lrp6, all of which are 
expressed in osteoblasts. However, changes in BMP signaling in bone had not been reported 
in Wnt-related mutations in mice. 

3.1 In vitro relationship 

In vitro experiments using pluripotent mesenchymal cell lines or primary osteoblasts to test 
the interaction between BMP and Wnt signaling in osteoblasts have yielded both synergistic 
and antagonistic results: the treatment of C2C12 cells and primary osteoblasts with BMP2 
induced Wnt3a expression and stabilized Wnt/β-catenin signaling 35-37. The treatment of 
C3H10T1/2 cells with Wnt3a induced the BMP4 expression levels 38. These suggest a 
positive autocrine loop 37, 39. In contrast, inhibition of BMP signaling by treatment of primary 
osteoblasts with dorsomorphin, an inhibitor of BMP type I receptors, increased canonical 
Wnt signaling 40. Treatment of C2C12 cells with Wnt3a repressed BMP2-dependent Id1 
(Inhibitor of DNA binding 1) expression 41. Similarly, treatment of cultured skull bone with 
BMP antagonist Noggin increased canonical Wnt signaling 42. Moreover, one study 
investigated intracellular cross-talk between BMP and Wnt pathways using uncommitted 
bone marrow stromal cells and provided a potential mechanism whereby BMP-2 
antagonizes Wnt3a-induced proliferation in osteoblast progenitors by promoting an 
interaction between Smad1 and Dvl-1 [i.e. the human homolog of the Drosophila 
dishevelled gene (dsh) 1] that restricts Wnt/β-catenin activation43. Another interaction via 
Pten (phosphatase and tensin homolog)-Akt pathway has been reported in hair follicle 
stem/progenitor cells 44; however, it is less likely in osteoblasts 45. Taken together, there 
seems to be both positive and negative feedback loops between the two signaling pathways 
(Figure 2). 

www.intechopen.com



 
Molecular Interactions 

 

286 
 

 

Fig. 2. A potential relationship between the two major signaling BMP and Wnt in osteoblasts 
based on in vitro studies. 1) Both signaling pathways function in a positive loop. 2) Both 
signaling pathways function in a negative loop. It is expected that these two signaling 
pathways may regulate each other in an age-dependent and context-dependent manner. 
Further studies are desired to investigate the details of each condition. 

3.2 In vivo relationship 

In vivo, only a few studies have revealed a link between the two signaling pathways. We 

recently found that loss-of-function of BMP signaling in osteoblasts via BMPRIA 

upregulates canonical Wnt signaling during embryonic and postnatal bone development, 

suggesting a negative regulation of Wnt signaling by BMP 40, 42. In these studies, we found 

that upregulation of Wnt signaling is at least in part mediated by suppression of Wnt 

inhibitors Sost/sclerostin and Dkk1, and both Sost/sclerostin and Dkk1 are direct targets of 

BMP signaling. In addition, Sost expression was severely downregulated in Bmpr1a-deficient 

bones as assessed by microarray analysis 42. Interestingly, both Smad-dependent and Smad-

independent pathways appear to contribute to the Dkk1 expression, whereas Sost/sclerostin 

requires only Smad-dependent signaling, suggesting differential regulation of these genes 

by the BMP signaling via BMPRIA 40. BMP and Wnt signaling regulate the development and 

remodeling of many tissues and interact synergistically or antagonistically in a context- and 

age-dependent manner in vivo 46, 47. It is possible that in bone, BMP signaling inhibits Wnt 

signaling by upregulating the Sost/sclerostin expression in osteoblasts (Figure 3).  

3.3 SOST/Sclerostin and DKK1  

Both SOST and DKK1 are inhibitors for canonical Wnt signaling and have been highlighted 

because neutralizing antibodies for SOST (AMG785) and DKK1 (BHQ880) have been 

developed as bone anabolic agents and these potential drugs are under clinical trial 48. It is 

known that both Dkk1 and Sost/sclerostin inhibit Wnt/β-catenin signaling by binding to co-

receptors. As both Dkk1 and Sost/sclerostin are secreted proteins expressed by osteoblasts, 

their role in regulating bone mass has been investigated using human and mouse genetic 

approaches. 
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Fig. 3. Possible regulation between BMP and Wnt in Osteoblasts. A proposed model of the 

relationship between the BMP signaling via BMPRIA and the canonical Wnt signaling in 

osteoblasts. Both Dkk1 and sclerostin/Sost are downstream targets of the BMP signaling. 

The BMP signaling upregulates the Sost expression primarily through the Smad-dependent 

signaling while it upregulates the Dkk1 expression through both the Smad and non-Smad 

signaling (p38 MAPK). As Dkk1 and sclerostin/Sost act as Wnt signaling inhibitors, BMP 

signaling in osteoblasts, in turn, leads to a decrease in osteogenesis and bone mass. Dkk1 

and sclerostin/Sost play an important role in regulating bone mass as downstream effectors 

of BMPRIA signaling in bone taking balances between BMP signaling and Wnt signaling. 

3.3.1 SOST/Sclerostin  

Sost/sclerostin was originally reported as a member of the BMP antagonist DAN family (i.e. 
the Dan gene family of BMP antagonists) 49, 50. Although DAN family members modulate 
both BMP and Wnt signaling in Xenopus 51-53, recent studies suggest a primary role of 
Sost/sclerostin in Wnt signaling in mouse and humans: Sost/sclerostin is not a BMP 
antagonist 54 but rather a Wnt inhibitor 55 that binds the Wnt co-receptor low density 

lipoprotein receptor-related protein 5 and 6 (LRP5 and LRP6) 32, 56. Conventional knockouts 
of Sost (i.e. Sost KO) are viable and exhibit increased bone mass 57. In humans, loss-of-
function and hypomorphic mutations in SOST cause sclerosteosis 58, 59 and Van Buchem 
disease 60, 61, respectively, with a high bone mass (HBM) phenotype. These mutants share the 
HBM phenotype with other gain-of-function of LRP5 mutation, due to the defect in DKK1-
mediated regulation of LRP5 in humans 62-64 and overexpression of Lrp5 in mice 65. In 
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contrast, loss-of-function of LRP5 leads to OPPG with low bone mass 28, which is similar to 
the bone phenotype of mice overexpressing Sost 50. In addition, recent genome-wide SNP-
based analyses identified a significant association between bone mineral density and the 
SOST gene locus 66-68.  

3.3.2 DKK1  

Conventional knockouts of Dkk1 die in utero from defective head induction and limb 

formation 29. Similar to Sost KO mice, mice heterozygous for Dkk1 (Dkk1+/– mice), however, 

exhibit a high bone mass (HBM) phenotype 69, while overexpression of Dkk1 in osteoblasts 

causes osteopenia 70. In addition, increased DKK1 expression in bone marrow has also been 

associated with lytic bone lesions in patients with multiple myeloma 71. Collectively, these 

results support the hypothesis that Dkk1 functions as a potent negative regulator of bone 

mass. 

3.3.3 Sost/DKK1 expression in the Bmpr1a cKO mice 

Conditional knockouts of Bmpr1a, which are deficient in the Dkk1 and Sost expression, 
show a HBM phenotype 40, 42, 72. In particular, Sost expression levels were the most 
dramatically reduced in the cKO mice during embryonic stages 42. Furthermore, both Sost 
and Dkk1 expression levels were increased by the addition of BMP2, a potent ligand for 
BMPRIA, using primary osteoblasts 40. Similarly, both Sost and Dkk1 expression levels 
were significantly reduced in the Acvr1 cKO mice 73. In addition, both Sost and Dkk1 
expression levels were increased by the addition of BMP7, a potent ligand for ACVRI, 
using primary osteoblasts 73. These facts support the new concept of molecular 
interactions between BMP signaling and Wnt signaling that Dkk1 and Sost/sclerostin act 
physiologically as inhibitors of canonical Wnt signaling as downstream targets of BMP 
receptors BMPRIA and ACVRI and that BMP signaling can negatively controls Wnt 
signaling in osteoblasts (Figure 3).  

3.4 Effects of Wnt signaling on osteoclasts  

There is accumulating evidence that Wnt signaling also plays a critical role in 

osteoclastogenesis regulated by osteoblasts through the RANKL (Receptor activator of 

nuclear factor kappa-B ligand)-OPG (Osteoprotegerin) pathway. Recently, two in vivo 

studies have suggested that the canonical Wnt signaling is important in the regulation of 

osteoclastogenesis by osteoblasts. One study provided evidence that the Wnt pathway 

positively regulates the expression of Opg in osteoblasts 74. Overexpression of stabilized -

catenin in osteoblasts, which results in an increase of canonical Wnt signaling level, 

decreases osteoclast differentiation leading to increased bone volume in mice 74. Another 

study showed that an osteoblast-specific deletion of -catenin leads to an impaired 

maturation and mineralization of bones in mice due to the elevated expression of Rankl and 

diminished Opg 75. These facts suggest that the canonical Wnt pathway negatively regulates 

osteoblasts in their supporting function in osteoclastogenesis, and thus upregulation of Wnt 

signaling in osteoblasts can suppress osteoclast-mediated bone resorption 75. Taken together, 

it is possible that the treatment of bones with BMPs can reduce Wnt activity in osteoblasts 

and in turn enhance osteoclast activity. 
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4. BMP signaling and mouse genetics  

Along with the huge advancement in technologies involving mouse genetics over the last 

decade, many of the BMP signaling related genes have been knocked out in mice. BMP2, 

BMP4, BMP6 and BMP7 and their receptor BMPRIA and ACVRI are abundantly expressed 

in bone. However, conventional knockout mice for these genes result in an early embryonic 

lethality and thus, it is not possible to investigate bone development and remodeling using 

these models 76-82. To avoid the embryonic lethality, a strategy of conditional knockout mice 

using a Cre-loxP system has been employed. A bone-specific conditional deletion of Bmpr1a 

using an Og2-Cre mouse, in which a Cre recombination is restricted in differentiated 

osteoblasts under the osteocalcin promoter, was first reported in 2004 83. Interestingly, this 

study demonstrated that the response of osteoblasts to BMP signaling is age-dependent; in 

the mutant mice, bone volume decreased in young mice but increased in aged mice. In 

addition, the activity of osteoclasts was reduced in the aged osteoblast-specific Bmpr1a-

deficient mice, which may have lead to the complex skeletal phenotype. These facts suggest 

that the BMP signaling in differentiated osteoblasts can control the balance between bone 

formation by osteoblasts and resorption by osteoclasts, thereby affecting the final outcome 

of the amount of bone mass in an age-dependent manner. The increased bone mass in the 

Bmpr1a-deficient mice appeared to be in opposition to the general concept of BMPs as 

osteogenic inducers; however, the concept is reasonable if the target cell for BMPs as 

osteogenic inducers is mesenchymal cells or chondrocytes,. It is expected that BMPs have 

multifaceted functions in vivo because different cell types exhibit differing responses to 

BMPs. In addition, the opposite outcome in the Bmpr1a-deficient mice was discussed from 

the point of molecular interaction in the sections 3. 

4.1 BMP signaling in chondrocytes, mesenchymal cells, and osteoblasts  

During skeletogenesis, bones are formed via two distinct processes: intramembranous and 

endochondral bone formation 84. Intramembranous bone formation occurs primarily in flat 

bones (e.g., calvarial bones) where mesenchymal cells differentiate directly into osteoblasts 
85. Endochondral bone formation occurs primarily in long bones where condensed 

mesenchymal cells differentiate into chondrocytes to form cartilage templates, and then 

chondrocytes are replaced by osteoblasts 86. Recently many studies have been designed to 

investigate the difference in the molecular mechanism by which BMP signaling regulates 

these cell types. Several Cre mouse lines have been used to target different cell types 

including osteoblast, chondrocyte, and mesenchymal cells (Table 2). BMP signaling in 

chondrocytes and mesenchymal cells both positively control bone size and mass while BMP 

signaling in osteoblasts can reduce them. 

4.1.1 Chondrocytes  

There are several lines of evidence that show that BMP signaling in chondrocytes is required 

for bone size and the amount of bone mass. BMP signaling through BMPRIA is essential for 

postnatal maintenance of articular cartilage, using a Gdf5-Cre mouse line specific for 

chondrocytes in joints 87. Similarly, the critical role of Bmpr1a together with Bmpr1b in 

chondrocytes during endochondral bone formation using a Col2-Cre mouse line was 

reported.88. Moreover, in chondrocytes a simultaneous deficiency in Smad 1 and Smad 5,  
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Promoter

Cre-
mouse 

BMP signal Stage Bone mass Ref. 

Chondrocyte 

Bmpr1a cKO Gdf5-Cre down 
E12.5-E16.5, 

7W, 9 
Reduced 87 

Double knockout of 
Bmpr1a and Bmpr1b 

Col2-Cre down E12.5-E16.5 Reduced 88 

Bmp4 overexpression Col11a2 up E18.5 Increased 89 

Noggin overexpression Col11a2 down E18.5 Reduced 89 

Double knockout of 
Smad1 and Smad5 

Col2-Cre down 
E12.5-

newborn 
Reduced 90 

Mesenchymal cell

Double knockout of  
BMP2 and BMP4 

Prx1-Cre down 
E10.5-

newborn, 3W
Reduced 91 

Bmp2 cKO Prx1-Cre down 5M Reduced 92 

Osteoblast 

Bmpr1a cKO Ogl2-Cre down 
3M 
10M 

Reduced 
Increased 

83 

Bmp4 overexpression 
2.3 kb 
Col1 

up E18.5 Reduced 93 

Noggin overexpression 
2.3 kb 
Col1 

down E17.5, 3W Increased 93 

Bmpr1a cKO 
3.2 kb 
Col1-
CreER 

down 
E18.5, 3W, 

5M 
Increased 

40, 42, 

72 

Acvr1 cKO 
3.2 kb 
Col1-
CreER 

down 
E18.5, 3W, 

5M 
Increased 73 

Osteoclast 

Bmpr1a cKO Ctsk-Cre down 8W Increased 94 

Table 2. Bone mass observed in genetically engineered mutant mice of BMP signaling 

which are BMPs’ downstream target molecules, reduces bone mass 90. In parallel, studies 

focusing on BMP ligands and their antagonists provide further evidence that BMPs are 

critical for normal development of cartilage. A transgenic mouse line to overexpress Bmp4 in 

mesenchymal cells/chondrocytes using a type XI collagen promoter (Col11a2) was 

generated, and bone mass was increased in the mutant mice 89. Another transgenic mouse 

line in which Noggin was overexpressed in the same cells (Col11a2-Noggin) demonstrated a 

decreased bone mass. As Noggin is an antagonist for BMPs (BMP2, BMP4, BMP5, BMP6, 

and BMP7) with various degrees of affinity 95, these results suggest that BMP signaling 

positively controls proliferation and differentiation of chondrocytes.  
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4.1.2 Mesenchymal cells  

Similar to chondrocytes, a few studies demonstrated a requirement of BMP signaling in 
mesenchymal cells for proper bone development and remodeling using a mesenchymal cell-
specific Cre mouse line, Prx1-Cre, in which Cre is active in mesenchymal cells as early as 
embryonic day 9.5 96. Using the Prx1-Cre mouse, the simultaneously conditional deletions of 
Bmp2 and Bmp4 in mesenchymal cells resulted in an impairment of osteogenesis during late 
embryogenesis 91, 92. In contrast, the conditional deletion of Bmp2 in mesenchymal cells does 
not show overt developmental abnormalities; however, the resulted mice lack an initiation 
of fracture healing 91, 92. Interestingly, Bmp7-deficiency in mesenchymal cells did not affect 
bone mass probably due to the compensation by Bmp4 97. Taken together, it is possible that 
the defects in the BMP signaling in chondrocytes largely contribute to the phenotypes 
described above because chondrocytes are derived from mesenchymal cells and play an 
important role in the process of fracture repair. 

4.1.3 Osteoblasts  

As aforementioned, a differentiated osteoblast-specific deletion of Bmpr1a caused an 
increase in bone mass in aged mice 83. Similar to this finding, an overexpression of a BMP 
antagonist, Noggin, in osteoblasts increases bone volume with a reduced osteoclast number 
and osteoclastogenesis both at embryonic day 17.5 (E17.5) and at 3 weeks 93. In parallel, the 
overexpression of Bmp4 in osteoblasts reduced bone mass presumably due to the increase in 
the osteoclast number at E18.5 93. Recently, Bmpr1a was conditionally disrupted in immature 
osteoblasts using a tamoxifen inducible Cre driven by a 3.2-kb alpha1(I) collagen chain gene 
(Col1a1) promoter. In the mutant mice, bone mass was dramatically increased during the  

Control Acvr1 cKOControl Bmpr1A cKOA B Control Acvr1 cKOControl Bmpr1A cKOA B

 

Fig. 4. Increased bone mass in the osteoblast-specific conditional knockout (cKO) mice for 
BMP receptors BMPRIA or ACVRI at the adult stage. Bmpr1a or Acvr1 cKO mice were 
generated by crossing a floxed mouse line for Bmpr1a(Bmpr1afx/fx) or Acvr1(Acvr1fx/fx) 
with a transgenic mouse line harboring a tamoxifen–inducible Cre driven by a 3.2 kb mouse 

procollagen 1(I) promoter. The Cre recombination was induced specifically in the 
osteoblasts by 10 weeks of tamoxifen administration from 10 weeks after birth, and bones 
were removed at 22 weeks. Radiodensity of rib bones was assessed by X-ray. (A) The 
radiodensity was dramatically increased in the Bmpr1a cKO mice (Cre+, Bmpr1afx/fx) 
compared with controls (Cre–, Bmpr1afx/fx). (B) The radiodensity was dramatically 
increased in the Acvr1 cKO mice (Cre+, Acvr1fx/fx) compared with controls (Cre–, 
Bmpr1afx/fx). 
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bone remodeling stage at 22 weeks as well as the bone developmental stages at E18.5 and 3 
weeks 42, 72 (Figure 4A). This result is an interesting contrast to previous work that 
disruption of Bmpr1a in differentiated osteoblasts results in decrease of bone mass in young 
adult stages (3-4 weeks). The increased bone mass in the Bmpr1a-deficient mice resulted 
from severely suppressed bone resorption due to reduced osteoclastogenesis, despite a 
simultaneous small reduction in the rate of bone formation 72. Levels of RANKL and OPG 
are changed in the Bmpr1a-deficient osteoblasts and fail to support osteoclastogenesis 42, 72. 
In addition, the conditional disruption of Acvr1 in osteoblasts also demonstrated a dramatic 
increase in bone mass, similar to the bone phenotype of Bmpr1a-deficient mice (Figure 4B), 
although osteoclastic activity is still under investigation 73. These findings suggest that BMP 
signaling may have dual roles in osteoblasts; to stimulate both bone formation by 
osteoblasts and bone resorption supporting osteoclastogenesis. Disruption of BMP signaling 
in immature osteoblasts alters the balance of bone turn over to increase the bone mass, 
which is opposite to what people have expected for the past 4 decades. 

4.1.4 Other cell type 

Angiogenesis is another necessary step in new bone formation in skeletal development as 
well as in bone remodeling after fracture 98, 99. Both BMP2 and BMP7 are known to induce 
angiogenesis by associating with other growth factors such as VEGF (vascular endothelial 

growth factor), bFGF (basic fibroblast growth factor), and TGF-1 100. A study using an 
adenovirus vector in muscle demonstrated that BMP9 induces ectopic bone formation 
similar to BMP2 101, 102. As BMP9 is abundantly expressed in endothelial cells that are 
primarily cell types for angiogenesis 103, it is possible that BMP signaling in endothelial cells 
synergizes anabolic bone formation. The mechanism and origin of precursor cells for ectopic 
bone formation, which is physiologically observed in the patients with FOP (fibrodysplasia 
ossificans progressiva), is under investigation 104-106 but could be endothelial cells 107.  

4.1.5 Possible interpretation  

Mesenchymal cells, chondrocytes, and endothelial cells respond to BMPs by inducing bone 
mass and size (Table 3). Recent histological findings suggest that the process of 
endochondral bone formation, which first forms cartilage template prior to the final bone 
following vessel formation (i.e. angiogenesis), plays a critical role in the process of ectopic 
bone formation 108. The origin of precursor cells for the ectopic bone is under investigation 
105, 106; however, it is possible that formation of ectopic bones by BMPs 1 is largely due to the 
stimulation of chondrocytes, mesenchymal cells, and/or endothelial cells in soft tissue, 
which results in an expansion of ectopic cartilage subsequently replaced by osteoblasts. 
There is another possibility that the BMP signaling directly affects osteoblasts to form 
ectopic bone. However, this possibility is less likely based on recent evidence that reduced  

Cell types that can increase bone mass Cell types that can reduce bone mass 

Mesenchymal cells Osteoclasts 
Chondrocytes Osteoblasts 

Osteoblasts  
Endothelial cells  

Table 3. A variety of cell types in bone that mediate bone mass in response to BMPs 
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BMP signaling in osteoblasts results in an increase in bone mass. As current methods of 
systemic and local treatment affect multiple cell types simultaneously in bone, it is 
important to evaluate the effects of BMPs on more than just osteoblasts.  

4.2 Effect of BMP signaling on osteoclasts 

Bone mass is determined by the balance between bone formation and bone resorption. 
Osteoclasts are multinuclear cells derived from hematopoietic stem cells to secrete enzymes 
for bone resorption 109. Recent mouse genetic studies revealed the importance of BMP 
signaling for osteoclastic activity and bone resorption. 

4.2.1 Regulation of osteoclast by osteoblast-dependent BMP signaling  

It is expected that BMPs play roles in osteoclastogenesis and their functions, because receptors 
for BMPs are expressed in these cells 110. Additionally, osteoblasts also play critical roles in 
bone resorption by regulating osteoclastogenesis because they produce RANK ligand 
(RANKL), essential to promote osteoclastogenesis, and its decoy receptor, osteoprotegerin 
(OPG) 111, 112. A balance between RANKL and OPG is important to determine the degree of 
osteoclastogenesis, i.e. more RANKL production by osteoblasts leads to more osteoclasts; thus 
more bone resorption is expected. As RANKL is an osteoblastic product and BMPs induce 
osteoblast maturation, BMPs indirectly stimulate osteoclastogenesis and thus, 
osteoclastogenesis is impaired when osteoblastogenesis is blocked with BMP antagonists in 
culture 113. The physiological effects of BMP signaling in osteoblasts on osteoclastogenesis were 
determined later using an osteoblast-specific gain-of-function or loss-of-function mouse 
model. For the cases of the osteoblast-specific deletion of Bmpr1a and osteoblast-specific over 
expression of Noggin, osteoclastogenesis is highly compromised leading to an increase of bone 
mass 83, 93. In contrast, osteoblast-specific overexpression of Bmp4 increased osteoclastogenesis 
93. The regulation of RANKL by BMPs was suggested based on an in vitro study 114. This 
concept was recently proven in mouse studies, as Bmpr1a-deficient osteoblasts were not able to 
support osteoclastogenesis due to an imbalance between RANKL and OPG 42, 72. It is therefore 
concluded that osteoblasts can respond to BMPs by inducing osteogenic (i.e. bone anabolic) 
action as well as osteoclastogenic (i.e. bone catabolic) action simultaneously presumably 
dependening on context and timing (Table 3).  

4.2.2 Regulation of osteoclast by osteoclast-dependent BMP signaling  

BMP receptors are expressed in osteoclasts 110. When BMP signaling through BMPRIA was 
deficient in osteoclasts using a Catepsin K promoter (CtsK), bone mass was increased as 
expected 94(Table 2). Interestingly, both bone formation rate and osteoblast number assessed 
by bone histomorphometry analysis were increased while osteoclast number was reduced in 
the mutant mice compared to their controls. It is possible that some coupling factors can 
control osteoblast function in an osteoclast-dependent manner in the mutant mice (i.e. 
osteoclast-derived coupling factors). Further studies are needed to determine whether such 
factors mediate BMPRIA-induced coupling from osteoclasts to osteoblasts. 

5. Future direction of BMPs and Wnt  

As is discussed in the former part of this review, it is important to understand that BMPs 
have variable and context-sensitive effects on diverse cell types in bone including 
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chondrocytes, osteoblasts, and osteoclasts. Studies focusing on BMP receptors in 
chondrocytes including mesenchymal cells suggest that these cells can respond to BMP 
signaling by increasing bone mass during the endochondral formation process. As discussed 
in the latter part, BMP signals can consistently inhibit Wnt signaling and bone mass while 
exerting concordant effects on Dkk1 and Sost. This revision of traditional understanding of 
the BMP signaling pathway in clinical therapeutics might suggest that in some 
circumstances, BMP inhibition would be desirable for promoting bone mass. More 
importantly, if BMP signaling reduces bone mass by inhibiting Wnt signaling through 
SOST/DKK1 in osteoblasts, small molecule antagonists for BMPs or BMP receptors can 
conversely increase bone mass and size. Therefore, development of these molecules would 
be a next step towards disease conditions in which bone mass is reduced such as 
osteoporosis and bone fracture. Although antibodies for SOST and DKk1 have been 
developed in order to increase bone mass, the small molecule antagonists which can be an 
upstream of SOST and DKK1 would be used as more potent therapeutic agents for 
osteoporosis. Last, the function of the BMP signaling in osteoclasts remains largely 
unknown in terms of coupling factors and merits future study, although the BMP signaling 
regulates osteoblast-dependent osteoclastogenesis via the RANKL-OPG pathway. 

6. Conclusion  

Understanding the complex roles of the BMP signaling pathway and its molecular 
interaction with other signaling pathway (i.e. Wnt) in a variety of cell-types in bone 
including chondrocytes, osteoblasts and osteoclasts, which contribute to normal 
physiological conditions (i.e. bone development, homeostasis, and remodeling) will not only 
help to improve current knowledge of the pathological conditions (i.e. bone fracture, 
osteoporosis, and other congenital and aging-related bone diseases) but may provide novel 
therapeutically useful strategies. 
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