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1. Introduction  

Hepatocellular carcinoma (HCC) is a major public health problem, accounting for about 

600,000 deaths in the world in 2004 (WHO, 2008). HCC is the sixth most common cancer 

worldwide with about 500,000 new cases annually, representing the third largest cause of 

cancer-related death (Parkin, 2005; Ferlay et al., 2010). A slight decrease in the HCC 

incidence has been reported in high-rate areas, such as China and Japan (McGlynn et al., 

2001). However, a steadily increasing trend has been reported in historically low-rate 

countries, particularly the United States and some European countries, such as Italy, 

France, UK and Germany (IARC, 2008a; El-Seragh et al., 2007). In particular, HCC 

incidence rates doubled in the United States in the period 1985-2002, an earlier age of 

onset has been observed (with a shift towards 45-60 years old), and HCC has become the 

fastest growing cause of cancer-related death in men (El-Seragh et al., 2004). Interestingly, 

it has been reported that in the United States 15-50% of HCC patients had no established 

risk factors, such as viral hepatitis infections, heavy alcohol consumption or aflatoxin B1 

exposure (El-Seragh et al., 2007). Moreover, approximately 10% of all HCC cases in the 

USA occur in patients with non-cirrhotic livers (Shaw & Shah, 2011). In Europe an 

analysis of mortality rates from HCC trends in the last 20 years has shown increasing 

rates for men in 11 countries and for women in 6 countries out of 17 whose data were 

considered (Bosetti et al., 2008). 

The observed increase in the incidence rates of HCC has been concomitant with the obesity 
epidemic observed in the last 30 years in western countries. Obesity is one of the clinical 
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manifestations of metabolic syndrome and, in the last decade, epidemiological and 
experimental studies have shown that metabolic syndrome and high fat diets are associated 
with an increased risk of HCC incidence/mortality (Bugianesi 2007; Starley et al., 2010; 
Welzel et al., 2011). However, other causes may be involved in the increased incidence of 
HCC and chemical-induced liver carcinogenesis appears to be a less considered etiology. In 
this chapter, we will review recent acquisitions in epidemiology and experimental studies 
on HCC and will focus on chemical risk factors and possible new mechanisms of liver 
carcinogenesis, in particular those concerning metabolic disruption. 

2. Chemical risk agents of hepatocellular carcinoma 

Most human HCC occurs following viral hepatitis (mainly HBV or HCV) infections or 

aflatoxin B1 exposure caused by ingestion of contaminated food (IARC 2008a). However, 

the epidemiological evidence shows that the human liver is susceptible to chemical-

induced carcinogenesis (Blonski et al., 2010; Degli Esposti et al., 2009) and the increased 

incidence of HCC in patients not having established risk factors (El-Seragh et al., 2007) 

suggests that some underestimated or new but still not recognized risk factors exist 

(Blonski et al., 2010). In particular, many natural and artificial agents have been shown by 

experimental or epidemiological studies to induce HCC (Table 1). In this section we will 

review the chemical risk factors of HCC as emerging from the epidemiological and 

experimental data. 

2.1 Human hepatocarcinogens 

Various classes of chemicals are reported to induce HCC in humans: drugs or hormonal 

therapies (azathioprine, tamoxifen and estrogen-progesteron oral contraceptives) (IARC, 

2011); radioisotopes or heavy metals (Plutonium-239, Radium-224, Thorium-232; arsenic in 

drinking water) (IARC, 2001; IARC, 2004b); complex mixtures of polyaromatic 

hydrocarbons (PAH) and combustion products (soots and tobacco smoking)(IARC, 1987; 

IARC, 2004a); organochlorines such as vinyl chloride monomer (VCM) or 2,3,7,8 

tetrachloride-dibenzo-para-dioxin (TCDD) (IARC, 2008b, IARC, 1997); and plant derivatives 

(betel or Areca catechu) (IARC, 2004c). Recently, some psychoactive substances, like 

cannabinoids, have been reported to worsen liver steatosis and fibrosis, in particular in the 

presence of HCV infections (Hézode et al., 2008, Parfieniuk & Flisiak, 2008). However, no 

evidence of carcinogenicity has been shown for delta 9-tetrahydrocannabinol (the principal 

psychoactive ingredient in marihuana) in rats and mice (Chan et al., 1996). More research is 

warranted to assess the long-term carcinogenic or co-carcinogenic effects of cannabinoids, 

particularly in the liver, as assumption of them during cannabis smoking may result in 

cannabinoid exposure for a large population. Finally, recent reviews have focused on a 

possible underestimation of non-viral causes of HCC (Blonski et al., 2010; Degli Esposti et 

al., 2009). In particular, metabolic disorders (Non-Alcoholic Fatty Liver Disease (NAFLD), 

obesity and diabetes), hormonal drugs (oral contraception, tamoxifen), organochlorine 

compounds, polycyclic aromatic hydrocarbons, tobacco smoking, betel quid chewing and 

dietary exposures (in particular arsenic in drinking water and aflatoxin B1, a well known 

hepatocarcinogen) are indicated as important contributing factors for HCC (Blonski et al., 

2010; Degli Esposti et al., 2009).  
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Agents Human exposure Evidence of 
carcinogenicity 

References 

    

Category Type Humans Experimental   
 animals   

Natural 1. Aflatoxins food contaminant + +

  
(rice, peanuts, etc.)

  
Wogan and 
Newbern 1967; 

     

Wogan et al. 
1974; Yeh et al. 
1985;  

  

 

   

Olsen et al. 
1988; IARC 
1993; 

     
Soffritti et al. 
1988 

      
 2. Alcohol lifestyle dependent +

 
Hakulinen et 
al. 1974;  

      
Adelstein and 
White 1976;  

      

Hirayama 
1981; IARC 
1988 

 

3. Hepatitis B virus blood transfusion + + Snyder et al. 
1982; Buendia 
1992 

           
 4. Sterigmatocystin food contaminant

(grain, legumes) 
+ Purchase and 

van der Watt 
1970 

  
 5. Luteoschirina food contaminant rice

 
+ Uraguchi et al. 

1972 
 

 6. Cycloclorotina food contaminant rice + IARC 1976 
  

 
7. Pyrazolidinic   
Alkaloids 

plants  contaminant
 

+ Swoboda and 
Reddy 1972 

  

 
8. Cycasin alimentary exposure + Laquer et al. 

1963 
  

 

9. Safrole flavouring substance

 

+ Long et al. 
1963; Hagan et 
al. 1965 

+  =  strong evidence; (+) = limited evidence 

Table 1. Agents inducing Hepatocellular Carcinoma based on experimental/epidemiological 
evidence (Part I) 
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Agents Human exposure Evidence of 
carcinogenicity 

References 

  
Category Type Humans Experimental

animals 
 

Artificial 1. Thorotrast iatrogenic (+) + Guimares et al. 
1955;  
Commission of 

 

 

  
  

European 
Communities 
(CEC) 1984 

 2. Radioactive iatrogenic + Upton et al. 1956 
     colloidal gold
  
 3. Gamma radiation occupational or + Upton et al. 1968 
  accidental

 4. Vinyl Chloride occupational (+) + 

Gokel et al. 1976; 
Koischwitz et al. 
1981; 

 

 

  
  

Evans et al. 1983; 
Maltoni et al. 
1984;  

 
 

  
  

Dietz et al. 1985, 
Pirastu et al. 1990 

 5. Benzidine occupational + IARC 1982 

 

6. 2-Acetylamino-
fluorene 

occupational 
 

+ Wilson et al. 1941; 
Teebor and 
Becker 1971 

  

 
7. 4-Diethylamino-
azobenzene 

occupational 
 

+ Kinosita 1936 
Terayama 1967  

  

 
8. Dimethyl-
nitrosamina 

occupational 
 

+ Magee and 
Barnes 1956 

  
 9. Diethylnitrosamina occupational + Schmal et al. 1960 
  

 

10. Steroidal oral 
contraceptives 

iatrogenic (+) (+) Klatskin 1977; Jick 
and Hermann 
1978; 

   IARC 1979 

 
11. Androgen steroids iatrogenic (+)

 
Johnson et al. 
1972 

+  =  strong evidence; (+) = limited evidence 

Table 1. Agents inducing Hepatocellular Carcinoma based on experimental/epidemiological 
evidence (Part II) 

The diversity of chemical agents that induce liver tumors in humans may be at least 
partially explained by the multiplicity of molecular pathways that have been found altered 
both in human and animal hepatic tumors (Degli Esposti et al., 2009; Saffroy et al., 2007). 

www.intechopen.com



 
Hepatocellular Carcinoma: Epidemiology and Etiology  

 

7 

Hormonal-induced liver tumors, such those observed after estrogen-progesteron oral 
contraceptives and tamoxifen administration, have been in part explained by promotion of 
the epithelium proliferation and the generation of reactive oxygen species (ROS) caused by 
estrogen reactive metabolites (Russo & Russo, 2006) and ER-dependent liver responses, such 
as hepatocyte mitogenesis (Vickers et al., 1991). Liver carcinogenicity of alpha-particle 
emitters, in particular Plutonium-239, Radium-224, Thorium-232, and heavy metals such as 
arsenic may be explained by their ability to induce direct or indirect genotoxic damage 
(Lehnert et al., 1997; IARC, 2004b). The carcinogenicity of VCM has been linked to the 
capacity of its two active metabolites (chloroethylene oxide and chloroacetaldehyde) to react 
with nucleic acid bases to form adducts (IARC, 2008b) and to induce p53 mutations both in 
humans and in rats (Barbin et al., 1997). It is worth noting that 10-40% of HCC are 
characterized by global genomic instability as shown by microsatellite analyses and that the 
exact mechanisms behind this instability still need to be assessed (Salvucci et al., 1999, 
Chiappini et al., 2004). 

Gene polymorphisms and gene-environment interactions may also be risk factors for HCC, 
particularly concerning gene coding for metabolizing enzymes (glutathione-S-transferase, 
epoxide hydrolase, cytochrome p4502E1) or DNA repairing enzymes (XRCC1, UDP-
glucuronosyltransferase1A7)(Wong et al., 2000, Borentain, 2007). However, until now, these 
studies have reported contrasting results. Meta-analysis and additional studies with larger 
samples should be performed in order clarify the role of genetic polymorphisms in the onset 
of HCC (El-Seragh, 2007; White et al., 2008). 

Overall, these data clearly indicate that the human liver is sensitive to chemical-induced 
carcinogenesis and that xenobiotic exposure could play an underestimated role in inducing 
hepatocellular carcinomas, alone or associated with already known etiologies.  

2.2 Long-term carcinogenicity bioassays as a tool to identify potential 
hepatocarcinogens 

Long-term carcinogenicity bioassays, mainly using rats and mice, have become a 
consolidated tool for identifying potentially carcinogenic chemical or physical agents (Huff, 
2002; Maronpot et al., 2004; Soffritti et al., 2002). The two most extensive bioassay programs 
in the world are those of the American National Toxicology Program (NTP) and of the 
Italian Ramazzini Institute (Bucher, 2002; Huff, 2002; Soffritti et al., 2002). Although 
differences in the etiology exist between rodent and human HCC, there are also significant 
similarities in the genetic alterations leading to liver cancer in mice, rats and humans 
(Hoenerhoff et al., 2011; Feo et al., 2009). A recent study performed a global gene profiling of 
spontaneous (naturally occurring) HCC in B6C3F1 mice used in the NTP two-year bioassay 
(Hoenerhoff et al., 2011). The authors identified the dysregulation of genes similarly altered 
in human HCC, namely re-expression of fetal oncogenes, upregulation of protooncogenes, 
downregulation of tumor suppressor genes, and abnormal expression of cell cycle 
mediators, growth factors, apoptosis regulators, angiogenesis and extracellular matrix 
remodeling factors (Hoenerhoff et al., 2011). The use of a pathway-centered approach has 
lead to the identification of important targets that may be relevant to human HCC and, 
despite differences in etiology and pathogenesis from human HCC, the molecular readout 
has proved very similar, thus providing further support for applying this animal model to 
the study of HCC (Hoenerhoff et al., 2011). Importantly, the results from the two-year 
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carcinogenicity bioassays conducted by the NTP show that 188 out of 577 tested agents 
induced liver tumors in Fischer 344 rats or B6C3F1 mice (Table 2). Interestingly, 76% of these 
agents (145 out of 188) induced cancer in other sites than the liver (NTP, 2011). In particular, 
concerning the use of B6C3F1 mice, it has been suggested that this model might be a very 
sensitive system to detect chemicals that are likely to cause molecular events leading to 
cancer (Hoenerhoff et al., 2011). Results from the long term carcinogenicity bioassay 
program performed by the Cesare Maltoni Cancer Research Center of the Ramazzini Institute 
reveal that, among the studies already concluded and published, 52 agents showed clear 
evidence of carcinogenicity and 5 of them induced liver tumors in Sprague-Dawley rats or 
Swiss mice (Table 3). Interestingly, all these agents also induced cancer in other sites than 
the liver. These results confirm the finding that different strains of rats and mice present a 
different susceptibility to the development of HCC (Feo et al., 2009; Maronpot 2009). It 
should be noted that recent studies on genetic susceptibility and epigenetic regulation of the 
signaling pathways involved in hepatocarcinogenesis in rats have shown that most 
alterations responsible for a resistant or susceptible phenotype in rats also have a similar 
contribution to the prognosis of human HCC (Feo et al., 2009). In conclusion, the results of 
both long-term carcinogenicity studies and of genetic investigation of HCC from rodent 
models may provide important insights into the mechanisms of hepatocarcinogenesis, 
helping to identify some critical initiating events that lead to carcinogenesis, as well as 
progression markers and therapeutic targets (Feo et al., 2009; Hoenerhoff et al., 2011).  

 

Agents Route of 
exposure 

Evidence of  
carcinogenicityb 

Carcino-
genicity in 
other site 

Human exposure 

N. Type Rats Mice  
  M F M F  
1 Acetonitrile Inhalation E NE NE NE No chemical industry 
   
2 Aldrin Dosed-feed E E CE NE Yes pesticide 
   

3 
2-Aminoanthra-

quinone Dosed-feed CE IS CE CE Yes dye industry 
   
4 1-Amino- Dosed-feed CE CE CE CE Yes dye industry 

 
2,4-dibromoanthra-

quinone        
   
5 3-Amino- Dosed-feed CE CE CE CE Yes dye industry 
 9-ethylcarbazole HCl  
   

6 
11-Aminoundecanoic 

acid Dosed-feed CE NE E NE Yes car industry; 
  food packaging 
   
7 Androstenedione Gavage E E CE CE Yes hormonal treatment 
   
8 Anthraquinone Dosed-feed SE CE CE CE Yes dye industry 
   
9 Aroclor 1254 Dosed-feed E E Yes insulator for current 
  transformers 
   

10 Benzofuran Gavage NE SE CE CE Yes painting industry; 
  food packaging 
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Agents Route of 
exposure 

Evidence of  
carcinogenicityb 

Carcino-
genicity in 
other site 

Human exposure 

N. Type Rats Mice  

11 Benzophenone Dosed-feed SE E SE SE Yes printing industry 
   

12 Benzyl acetate Gavage E NE SE SE Yes cosmetic industry 
  

13 

2-Chloro-1-
methylethyl Gavage   CE CE Yes dye industry; 

 ether       pharmaceutics 

         

14 

Bromodi-
chloromethane Gavage CE CE CE CE Yes water contaminant 

         
15 1,3 Butadiene Inhalation   CE CE Yes chemical industry: 

        plastic and rubber 
        

16 2-Butoxyethanol Inhalation NE E SE SE Yes painting industry 
         

17 Chloral hydrate Gavage   SE  No drugs treatment 
         

18 Chloramben Dosed-feed NE NE E CE No herbicide 
         

19 Chlordane Dosed-feed NE NE CE CE No pesticide 
         

20 Chlordecone Dosed-feed CE CE CE CE No insecticide, fungicide 
         

21 Chlorendic acid Dosed-feed CE CE CE NE Yes plastic industry 

22 
Chlorinated paraffins: 

C12 Gavage CE CE CE CE Yes combustion products; 
 60% chlorine       oils 
         

23 
Chlorinated paraffins: 

C23 Gavage NE E CE E Yes combustion products; 
 43% chlorine       oils 
         

24 p-Chloroaniline Gavage CE E SE NE Yes dye industry 
 hydrochloride        

         

25 Chlorobenzene Gavage E NE NE NE No chemical industry; 

        solvents 

         

26 Chlorobenzilate Dosed-feed E E CE CE Yes insecticide 

         

27 

Chlorodi-
bromomethane Gavage NE NE E SE No water contaminant 

         

28 Chloroethane Inhalation E E IS CE Yes chemical industry; 

        anaesthetic 

        

29 Chloroform Gavage CE NE CE CE Yes chemical industry; 

        anaesthetic 

         
30 4-Chloro-m Dosed-feed CE NE NE CE Yes dye industry 

 phenylenediamide        
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Agents Route of 
exposure 

Evidence of  
carcinogenicityb 

Carcino-
genicity in 
other site 

Human exposure 

N. Type Rats Mice  

31 4-Chloro-o Dosed-feed CE CE CE CE Yes dye industry 

 phenylenediamide        

        

32 Chloroprene Inhalation CE CE CE CE Yes chemical industry 

         

33 5-Chloro-o-toluidine Dosed-feed NE NE CE CE Yes dye industry 

      

34 C.I. Acid red 114 

Dosed-

water CE CE 

  Yes 

dye industry 

         

35 C.I. Direct blue 15 

Dosed-

water CE CE 

  Yes 

dye industry 

         

36 C.I. Direct blue 218 Dosed-feed SE NE CE CE Yes dye industry 

         

37 C.I. Disperse blue 1 Dosed-feed CE CE E NE Yes hair colouring 

         

38 C.I. Disperse yellow 3 Dosed-feed CE NE NE CE Yes dye for clothes 

         

39 C.I. Pigment red 3 Dosed-feed SE SE SE NE Yes dye industry 

         

40 C.I. Basic red 9  Dosed-feed CE CE CE CE Yes dye industry; 

 monohydrochloride       clothes, paper,leather 

         

41 

Cinnamyl 

anthranilate Dosed-feed CE NE CE CE Yes synthetic flavour 

42 C.I. solvent yellow 14 Dosed-feed CE CE NE NE Yes dye industry 

         

43 Coconut oil acid 

Topical 

application NE E CE CE Yes cosmetic industry 

 diethanolamine        

        

44 Coumarin Gavage SE E SE CE Yes pharmaceutical use 

         

45 p-Cresidine Dosed-feed CE CE CE CE Yes dye industry 

         

46 Cumene Inhalation CE SE CE CE Yes chemical industry 

         

47 Cupferron  Dosed-feed CE CE CE CE Yes chemical industry 

         

48 Daminozide Dosed-feed NE CE E NE Yes plants growing 

regulator 

         

49 D & C red 9 Dosed-feed CE E NE NE Yes cosmetic industry 

         

50 D & C yellow 11 Dosed-feed SE SE   Yes cosmetic industry 

         

51 Decabromodiphenyl Dosed-feed Se SE E NE Yes plastic industry 

 oxide        

         

52 Decalin Inhalation CE NE NE E Yes industrial solvent 
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Agents Route of 
exposure 

Evidence of  
carcinogenicityb 

Carcino-
genicity in 
other site 

Human exposure 

N. Type Rats Mice  

         
53 2,4 Diaminotoluene Dosed-feed CE CE NE CE Yes dye industry 

   
54 1,2 Dibromoethane Gavage CE CE CE CE Yes gasoline additive; 

pesticide 
   

55 2,3 Dibromo-1-
propanol 

Topical 
application

CE CE CE CE Yes pesticide 

   
56 1,4 Dichlorobenzene Gavage CE NE CE CE Yes moth killer; deodorant 

   
57 2,7 Dichlorodibenzo

dioxin- 
Dosed-feed NE NE E NE Yes pesticides 

contaminant 
   

58 p,p'-Dichlorodiphenyl Dosed-feed NE NE CE CE No insecticide 
 dichloroethylene  
   
   

59 2,6- Dichloro-p- Dosed-feed NE NE CE CE No chemical industry 
 phenylenediamine  
   

60 1,2- Dichloropropane Gavage NE E SE SE Yes chemical industry 
   

61 1,3-Dichloropropene Gavage CE SE IS CE Yes pesticide 
   

62 Dicofol Dosed-feed NE NE CE NE No mitecide 
   

63 Dieldrin Dosed-feed NE NE E NE No insecticide 
  

64 Diethanolamine Topical 
application

NE NE CE CE Yes chemical industry 

   
65 Di(2-ethylhexyl) Dosed-feed NE NE CE CE No polivynil plastic 

 adipate  
   

66 Di(2-ethylhexiyl) Dosed-feed CE CE CE CE No polivynil plastic 
 phthalate  
   

67 Di(p-ethylphenyl) Dosed-feed NE NE NE E No insecticide 
 dichloroethane  
   

68 Diethyl phthalate 
Topical 

application NE NE E E No plastic industry 
   

69 3,4-Dihydrocoumarin Gavage SE NE NE SE Yes pharmaceutical use 
   

70 
3,3'-

Dimetoxybenzidine 
Dosed-
water CE CE   Yes dye industry 

 dihydrochloride  
   

71 1,4 Dioxane
Dosed-
water CE CE CE CE Yes dye, cosmetic 

        
and plastic 

industry 
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Agents Route of 
exposure 

Evidence of  
carcinogenicityb 

Carcino-
genicity in 
other site 

Human exposure 

N. Type Rats Mice  

         
72 5,5-

Diphenylhidantoin 
Dosed-feed E NE NE CE No pharmaceutical use 

         
73 2,5-Dithiobiurea Dosed-feed NE NE NE E No film material 

         
74 Elmiron Gavage NE NE SE SE Yes pharmaceutical use 

         
75 Ethylbenzene Inhalation CE SE SE SE Yes chemical industry 

         

76 Ethylene thiourea Dosed-feed CE CE CE CE Yes rubber industry 

         

77 Eugenol Dosed-feed NE NE E E No flavouring 

compound 

      

78 Fluometuron Dosed-feed NE NE E NE No herbicide 

         

79 Formamide Gavage NE NE CE E No pharmaceutical use 

         

80 Fumonisin B1 Dosed-feed CE NE NE CE Yes toxin 

        

81 Furan Gavage CE CE CE CE Yes polymers industry 

         
82 Furfural Gavage SE NE CE SE Yes food additive 

   

83 Glycidol Gavage CE CE CE CE Yes plastic industry 

   

84 Goldenseal root Dosed-feed CE CE SE NE No homeopathic use 

 powder  

85 HC blue 1 Dosed-feed E SE CE CE Yes hair colouring 

  

86 HC red 3 Gavage NE NE E IS No hair colouring 

   

87 Heptachlor Dosed-feed NE E CE CE Yes insecticide 

   

88 1,2,3,6,7,8-

Hexachloro 

Gavage E CE CE CE No pesticides 

contaminant 

 dibenzo-p-dioxin  

  

89 Hexachloroethane Gavage NE NE CE CE No chemical industry; 

  veterinary use 

   

90 Hydrazobenzene Dosed-feed CE CE NE CE Yes dye industry 

  

91 Hydrochlorothiazide Dosed-feed NE NE E NE No pharmaceutical use 

   

92 Hydroquinone Gavage SE SE NE SE Yes rubber and film 

  industry 

   

93 5-(Hydroxymethyl)-2 Gavage NE NE NE SE No food additive 

   -furfural  
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Agents Route of 
exposure 

Evidence of  
carcinogenicityb 

Carcino-
genicity in 
other site 

Human exposure 

N. Type Rats Mice  

         
94 Indium phosphide Inhalation CE CE CE CE Yes electronic industry 

         
95 Isoeugenol Gavage E NE CE E Yes flavouring 

compound 
         

96 Isophorone Gavage SE NE E NE Yes solvent 
         

97 Lauric acid 
Topical 

application NE NE NE SE No pharmaceutical use 

 
diethanolamine 

condensate        
         

98 Leucomalachite green Dosed-feed E E  SE Yes dye industry 
         

99 Malachite green Dosed-feed  E  NE Yes dye industry 
         

100 2-Mercaptobenzo Gavage SE SE NE E Yes rubber industry 
 thiazole        
       

101 Methyl carbamate Gavage CE CE NE NE No texil industry 
         

102 4,4'-Methylenebis Dosed-feed CE CE E CE Yes dye industry 
 (N,N-dimethyl)        
 benzenamine        
         

103 Methylene chloride Inhalation SE CE CE CE Yes chemical industry 
         

104 
4,4' - 

Methylenedianiline 
Dosed-
water CE CE CE CE Yes chemical industry 

 dihydrochloride        
         

105 Methyleugenol Gavage CE CE CE CE Yes flavouring 
industry 

         
106 2-Methylimidazole Dosed-feed SE CE SE SE Yes chemical industry 

         
107 Methyl isobutyl Inhalation SE E SE SE Yes solvent 

 ketone        
         

108 2-Methyl-1-nitro Dosed-feed CE CE CE CE Yes dye industry 
 anthraquinone        
         

109 N-
Methylolacrylamide 

Gavage NE NE CE CE Yes adhesive industry 

         
110 Methylphenidate Dosed-feed NE NE SE SE No pharmaceutical use 

 hydrochloride        
         

111 alpha-Methylstyrene Inhalation SE NE E CE Yes plastic industry 
         

112 Michler's Ketone Dosed-feed CE CE CE CE Yes dye industry 
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Agents Route of 
exposure 

Evidence of  
carcinogenicityb 

Carcino-
genicity in 
other site 

Human exposure 

N. Type Rats Mice  

         
113 Mirex Dosed-feed CE CE   Yes insecticide 

   
114 Monuron Dosed-feed CE NE NE NE Yes herbicide 

   
115 beta-Myrcene Gavage CE E CE E Yes cosmetic industry 

   
116 1,5-Naphthalene Dosed-feed NE CE CE CE Yes chemical industry 

 diamine  
   

117 Nithiazide Dosed-feed NE CE CE E Yes veterinary use 
   

118 5-Nitroacenaphthene Dosed-feed CE CE NE CE Yes dye industry 
   

119 3-nitro-p-
acetophenetide 

Dosed-feed NE NE CE NE No pharmaceutical use 

   
120 5-nitro-o-aniside Dosed-feed CE CE E CE Yes dye industry 

         
121 o-Nitroanisole Dosed-feed CE CE CE SE Yes chemical industry 

        
122 6-Nitrobenzimidazole Dosed-feed NE NE CE CE No film industry 

   

123 Nitrofen Dosed-feed IS/NE CE/NE CE CE 
Yes/N

o pesticide 
   

124 Nitromethane Inhalation NE CE CE CE Yes engine fuel 
  

125 2-Nitro-p-phenyl Dosed-feed NE NE NE CE No hair colouring 
 enediamine  

126 3 Nitropropionic acid Gavage E NE NE NE Yes chemical industry 
   

127 p-Nitrosodiphenyl-
amine

Dosed-feed CE NE CE NE No rubber industry 

   
128 o-Nitrotoluene Dosed-feed CE CE CE CE Yes dye industry 

   
129 5-Nitro-o-toluidine Dosed-feed NE NE CE CE Yes dye industry 

   
130 Oxazepam Dosed-feed CE CE Yes pharmaceutical use 

   
131 4,4' Oxydianiline Dosed-feed CE CE CE CE Yes metallurgic 

industry 
   

132 Oxymetholone Gavage E CE Yes pharmaceutical use 
   

133 Petachloroethane Gavage E NE CE CE Yes chemical industry 
  

134 Pentachlorophenol Dosed-feed CE CE Yes insecticide 
 Dowicide EC-7  
   

135 Pentachlorophenol Dosed-feed CE SE Yes insecticide 
 technical  
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Agents Route of 
exposure 

Evidence of  
carcinogenicityb 

Carcino-
genicity in 
other site 

Human exposure 

N. Type Rats Mice  

   
136 Phenazopyridine Dosed-feed CE CE NE CE Yes pharmaceutical use 

 hydrochloride  
   

137 Phenylbutazone Gavage E SE SE NE Yes pharmaceutical use 

         

138 Picloram Dosed-feed NE E NE NE No herbicide 

         

139 Piperonyl  Dosed-feed NE NE CE NE No insecticide 

 sulfoxide        

         

140 Polibrominated 

biphenyl mixture  

Dosed-feed 

and 

CE CE CE CE No engine fuel 

 (Firemaster FF-1) Gavage       

         

         

141 Primidone Dosed-feed E NE CE CE Yes pharmaceutical use 

         

142 Probenecid Gavage NE NE NE SE No pharmaceutical use 

         

143 Proflavin 

hydrochloride 

Dosed-feed E NE E E Yes pharmaceutical use 

         

144 Propylene glycol Inhalation E NE CE CE Yes solvent 

 mono-t-butyl ether        

         

145 Pulegone Gavage NE SE CE CE Yes cosmetic use 

         

146 Pyridine 

Dosed-

water SE E CE CE Yes chemical industry 

         

147 Riddelliine Gavage CE CE CE CE Yes food contaminant 

         

148 Salicylazosulfa-

pyridine 

Gavage SE SE CE CE Yes pharmaceutical use 

         

149 Selenium sulfide Gavage CE CE NE CE Yes cosmetic use 

         

150 Stoddard solvent Inhalation SE NE NE E Yes solvent 

 (type 1IC)        

         

151 Binary mixture PCB 

126/153 

Gavage  CE   Yes chemical industry 

 (TEF evaluation)        

         

152 PECDF Gavage  SE   Yes chemical industry 

 (TEF evaluation)        

         

153 PCB 118 Gavage  CE   Yes chemical industry 

 (TEF evaluation)        
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Agents Route of 
exposure 

Evidence of  
carcinogenicityb 

Carcino-
genicity in 
other site 

Human exposure 

N. Type Rats Mice  

        

154 PCB mixture PCB 

126/118 

Gavage  CE   Yes chemical industry 

 (TEF evaluation)        

         

155 TCDD Gavage  CE   Yes chemical industry 

 (TEF evaluation)        

156 3,3',4,4' Tetrachloro Gavage CE CE CE CE Yes 

pesticide 

contaminant 

 azobenzene        

         

157 2,3,7,8 Tetrachloro 

Dibenzo-p-dioxin 

Gavage CE CE CE CE Yes herbicide 

contaminant 

         

158 1,1,1,2 

Tetrachloroethane 

Gavage E NE CE CE No solvent 

       

         

159 1,1,2,2 

Tetrachloroethane 

Gavage E NE CE CE No solvent 

         

160 Tetrachloroethylene Gavage IS IS CE CE No stain remover 

         

  Inhalation CE SE CE CE Yes  

         

161 Tetrachlorvinphos Dosed-feed NE CE CE CE Yes insecticide 

         
162 Tetrafluoroethylene Inhalation CE CE CE CE Yes chemical industry 

         

163 Tetrahydrofuran Inhalation SE NE NE CE Yes chemical industry 

         

164 Tetralin Inhalation SE SE NE E Yes chemical industry 

         

165 4,4'-Thiodianiline Dosed-feed CE CE CE CE Yes dye industry 

         

166 2,4-& 2,6- Toluene Gavage CE CE NE CE Yes chemical industry 

 diisocyanate        

         

167 o-Toluidine Dosed-feed CE CE CE CE Yes dye industry 

 hydrochloride        

         

168 Toxaphene Dosed-feed E E CE CE Yes insecticide 

         

169 Dioxin mixture Gavage  CE   Yes chemical industry 

 (TEF evaluation)        

         

170 PCB 153 Gavage  E   No chemical industry 

 (TEF evaluation)        

         

171 PCB 126 Gavage  CE   Yes chemical industry 

 (TEF evaluation)        
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Agents Route of 
exposure 

Evidence of  
carcinogenicityb 

Carcino-
genicity in 
other site 

Human exposure 

N. Type Rats Mice  

   
172 Triamterene Dosed-feed E NE SE SE No pharmaceutical use 

   
173 1,1,2-Trichloroethane Gavage NE NE CE CE Yes chemical industry 

   
174 Trichloroethylene Gavage NE/IS NE CE CE No solvent 

   
175 2,4,6-Trichlorophenol Dosed-feed CE NE CE CE Yes insecticide 

176 
1,2,3-

Trichloropropane Gavage CE CE CE CE Yes solvent 
   

177 Triethanolamine Topical 
application

E SE No chemical industry 

   
178 Trifluralin Dosed-feed NE NE NE CE Yes pesticide 

   
179 2,4,5-Trimethylaniline Dosed-feed CE CE E CE Yes dye industry 

   
180 tris(2,3-

Dibromopropyl)
Dosed-feed CE CE CE CE Yes engine fuel 

 phosphate  
   

181 tris(2-Ethylhexyl) 
phosphate 

Gavage E NE NE SE Yes engine fuel 

   
182 Turmeric, oleoresin Dosed-feed NE E E E Yes pharmaceutical use 

 (curcumin)  
   

183 Urethane
Dosed-
water CE CE Yes chemical industry 

   

184 Bromochloracetic 
Dosed-
water CE CE CE CE Yes water disinfection 

 acid byproducts 
   

185 Dibromoacetic acid
Dosed-
water SE SE CE CE Yes water disinfection 

  byproducts 
   

186 Dibromoacetonitrile 
Dosed-
water CE SE CE CE Yes water disinfection 

  byproducts 
   

187 2,6 -Xylidine Dosed-feed CE CE Yes dye industry 
   

188 Zearalenone Dosed-feed NE NE CE CE Yes micotoxin 

a Data from: http://ntp.niehs.nih.gov/ 
b CE= clear evidence; SE= some evidence; E= equivocal evidence; NE= no evidence; IS= inadequate 
experiment 

Table 2. Chemicals industrial agents associated with tumor induction in liver based on long 
term carcinogenicity bioassays performed in Fischer 344 rats and B6C3F1 mice males and  
females by the National Toxicology Program (NTP) USAa   
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Agents Route of exposure Evidence of carcinogenicity References 
           

           
N. Type   Rats Mice    

    M F M F    
            

1 Vynil Chloride Inhalation + + - - Maltoni et al. 
1984 

        
2 Trichloroethylene Ingestion - - NS NS Maltoni et al. 
  Inhalation - - + + 1986 
        

3 Benzene Inhalation E (+) NS NS Maltoni et al. 
1989 

        
4 Tamoxifen Ingestion E E - - Minardi et al. 
  Ingestion + + NS NS 1994 
        

5 Aspartame Ingestion - - + - Soffritti et al. 
2010 

Table 3. Agents inducing Hepatocellular Carcinoma identified in the framework of the  long 
term carcinogenicity bioassays program performed by the Cesare Maltoni Cancer Research 
Center of the Ramazzini Institute    

3. New risk factors of hepatocellular carcinoma 

The epidemic of obesity has been correlated to an increased risk of various types of cancer 
(Kaidar-Person et al., 2011). In the last few decades, experimental and epidemiological 
studies have shown a strong correlation between obesity or its related co-morbidities and 
HCC incidence or mortality. In this section we will review the data linking metabolic 
syndrome and HCC risk, as well as some recent results published in the literature 
suggesting novel paths to be explored in liver cancer etiology. 

3.1 Metabolic syndrome and hepatocellular carcinoma: Experimental data 

Although no long-term carcinogenic bioassays have been specifically performed to 
investigate the carcinogenic potential of a high-fat diet, some recent studies provide 
interesting clues, in particular concerning liver carcinogenesis. A 20-month study on 
C57BL/6J male mice fed with a high fat western style diet showed that treated animals 
developed NASH (non-alcoholic steatohepatitis) at 14 months while at 20 months primary 
liver dysplastic nodules were found (VanSaun et al., 2009). Similar results were found by 
another group which showed that a high fat diet induced NASH and HCC in C57BL/6J 
mice but not in A/J mice (Hill-Baskin et al., 2009). Interestingly, the switch from the high-fat 
to low-fat diet after 100 days of administration until the end of the experiment (400 days of 
life) in C57BL/6J males prevented the development of obesity by the end of study and 
reversed the progression of the disease (Hill-Baskin et al., 2009). Again, a study using a 
diethylnitrosamine-initiated hepatocarcinogenesis model on Sprague-Dawley rats showed 
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that animals fed with high-fat diets had an increased incidence of preneoplastic liver foci 
after 6 weeks compared to control animals (Wang et al., 2009). 

These data may represent an early warning as to a possible liver cancer epidemic in coming 
decades. While obvious measures to contrast obesity have been undertaken in the last few 
years in many countries (WHO, 2006; Ministère de la Santé et de la Solidarité, 2006; White 
House Task Force on Childhood Obesity, 2010) and need to be strengthened, the impact of 
chemical indoor and outdoor pollution on obesity and HCC risk has been poorly studied 
and may play an underestimated and synergistic role. In this chapter, we will focus on 
chemical agents recognized as liver carcinogens and on novel mechanisms of 
hepatocarcinogenesis, in particular concerning metabolic and endocrine disruption. 

3.2 Metabolic syndrome and hepatocellular carcinoma: The dimension 

Metabolic syndrome and its characteristic manifestations, such as obesity (or central 
obesity), insulin resistance/type 2 diabetes, dyslipidemia or hypertension, are the most well-
studied emerging risk factors of HCC (Bugianesi 2007; Starley et al., 2010; Welzel et al., 
2011). In a recent US study, increase in Body Mass Index (BMI) results in a statistically 
significant increasing trend for HCC mortality both for women (highest calculated RR 1.68, 
CI 0.93-3.05, p for trend 0.04) and for men (highest calculated RR 4.52, CI 2.94-6.94, p for 
trend <0.001) (Calle et al., 2003). Other studies have shown that obesity is a risk factor for 
developing HCC, increasing the risk from 1.5 to 4 times (Møller et al., 1994; Wolk et al., 2001; 
Oh et al., 2005). Diabetes has been also shown to be an independent risk factor for HCC, 
with an increase in the risk ranging from 1.8 to 4 times in Swedish, Danish and Greek 
cohorts (Adami et al., 1996; Wideroff et al., 1997; Lagiou et al., 2000). Recently, metabolic 
syndrome has been reported to be more common in persons who developed HCC (37.1%) 
than in persons who did not (17.1%, p<0.0001) and it was significantly associated with 
increased risk of HCC after multiple logistic regression analyses (OR=2.13; 95%CI=1.96-2.31, 
p<0.0001) (Welzel et al., 2011). It is worth noting that a concurrent increase in the incidence 
and prevalence of NAFLD has been observed with the obesity epidemic (McCullough, 2004; 
Williams et al., 2011). NAFLD is a spectrum of liver disease ranging from simple steatosis to 
non-alcoholic steatohepatitis and cirrhosis (Bugianesi, 2007). The prevalence of NAFLD in 
the general population is estimated to range from 17 to 33% (McCullough, 2004). However, 
a recent prospective study on 328 persons (average age 54 years) reported that the 
prevalence of NAFLD was 46%, the global prevalence of NASH was 12.2% (Williams et al., 
2011) and 2.7% of patients presented advanced NASH (fibrosis graded more than 2). The 
results of this study confirmed previous reports, as NAFLD and NASH were more 
frequently diagnosed in overweight/obese males, with a history of hypertension and 
diabetes (Williams et al., 2011); it suggests that NAFLD and its complications may be more 
widespread than previously reported. Importantly, some studies and several case reports 
have shown a direct relationship between NAFLD and HCC (Page and Harrison, 2009). In 
a Danish cohort study, the risk for primary liver cancer among NAFLD patients was 
elevated with a standardized incidence ratio of 4.4 (CI 1.2-11.4) (Sørensen et al., 2003). In a 
US single center case series, NAFLD accounted for 13% of the cases of HCC (Marrero et 
al., 2002). Moreover, at least 67 cases of HCC arising in a context of NASH have been 
reported and in 33% of cases HCC seems to have arisen in the absence of cirrhosis (Page 
and Harrison, 2009). In this context, it is of major concern that NAFLD is becoming the 
most common cause of liver disease in children and adolescents (Sundaram et al., 2009). A 
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large pediatric autopsy study found a NAFLD global prevalence of 9.6%, with 38% 
prevalence in obese children (Schwimmer et al., 2006). The prevalence of fatty liver 
increased with age from 0.7% in 2-4 year olds to 17.3% in 15-19 year olds (Schwimmer et 
al., 2006). Of even greater concern is the higher initial incidence of fibrosis or cirrhosis 
reported in pediatric cases than in adults: a study of obese children with liver steatosis 
and elevated aminotransferases found NASH in 88% and fibrosis in 71% of patients 
(Nadeau et al., 2003; Rashid & Roberts 2000).  

3.3 Endocrine disruption: Linking metabolic disorder to cancer etiology in the liver? 

Endocrine disruption is a term coined in the 1990s which refers to the hormone-like effects 
of various synthetic chemicals present in the environment (Wingspread consensus 
statement, 1992; Kavlock et al., 1996). Since then, most laboratory and epidemiological 
research conducted on endocrine disruptors (ED) has focused on reproductive system 
pathologies, such as decreased sperm quality, malformations of male genital tract 
(cryptorchidisme or hypospadia), prostate and breast cancers, and on thyroid dysfunction 
(Soto & Sonnenschein, 2010). However, in the last decade, several ED, such as derivatives of 
alkylphenols (i.e. 4-nonylphenol), phthalates, polybrominated diphenyl ethers (PBDEs) or 
organotin compounds (i.e. tributyltin), have been shown to alter adipose tissue development 
and to promote fat accumulation in both adipose and liver tissues (Masumo et al., 2002; 
Grün et al., 2006; Grün & Blumberg 2009). Thus, some ED may also be addressed as 
“obesogens” and more generally considered as metabolic disruptors, suggesting that the 
various pathophysiological effects of ED may be due to pleiotropic effects on multiple 
metabolic pathways and that analyses of toxicological effects should not be limited to the 
endocrine system, but extended to all organs and tissues, with particular attention to 
adipose tissue and the liver (Grün & Blumberg, 2009; Casals-Casas & Desvergne, 2011). 

Most data on the potential carcinogenic effects of ED derive from studies based on evidence 
of estrogen carcinogenicity. Estrogen carcinogenicity was experimentally demonstrated on 
the mouse mammary gland as early as the 1930s by Lacassagne (Lacassagne, 1936). In 
humans the most notorious case of estrogen carcinogenicity is diethylstilbestrol, a synthetic 
estrogen prescribed to pregnant women to prevent miscarriage in the 1940s-early 1970s. 
Diethylstilbestrol has been associated with an increased risk of developing clear-cell 
carcinoma of the vagina and breast cancer in daughters of exposed women (Herbst et al., 
1971; Goodman et al., 2011; Palmer et al., 2006). Other ED, such as bisphenol A, tamoxifen or 
2,3,7,8-tetrachlorodibenzodioxin, have been shown to alter mammary development and to 
induce precancerous and cancerous lesions in rodents (Vandenberg et al., 2008; Fenton et al., 
2002; Soto & Sonnenschein, 2010). However, information on the potential carcinogenicity of 
ED for the liver is still elusive while the marshalling of epidemiological and experimental 
evidence for a potential carcinogenic effect by ED in the liver remains to be properly 
addressed. Interaction with nuclear receptors (NR) is one potential mechanism that may be 
involved in any pathological effects of ED on the liver. Indeed, many NR are signally 
expressed in the liver and have been reported to play an important role in liver diseases, 
such as steatosis and HCC (Wagner et al., 2011). Since many ED are small lipophilic 
compounds, their effects are thought to be mediated mostly by direct interaction with NR, 
modulating downstream gene expression (Casals-Casas & Desvergne, 2011). However, 
activation of various receptors, such as G protein-coupled membrane receptors, is also 
possible, as reported at least in the case of the well-established ED Bisphenol A (Chevalier et 
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al., 2011). The NR superfamily encompasses 48 members and ED are able to alter the 
signaling pathways mediated by many of them, including estrogen and androgen receptors, 
thyroid hormone receptor (TR), glucocorticoid receptor (GR), mineralcorticoid receptor 
(MR), retinoid X receptor (RXR), peroxisome proliferator-activated receptors (PPARs), liver 
X receptors (LXRs), farnesoid X receptor (FXR), constitutive androstane receptor (CAR), and 
pregnane X receptor (PXR) (Arrese & Karpen, 2010; Casals-Casas & Desvergne, 2011). The  
ability of ED to interact with various NR at nanomolar concentrations explains the diversity 
of induced metabolic perturbation and the increased effects observed particularly when fetal 
and neonatal exposures occur (Heindel, 2003; Soto & Sonnenschein, 2010; Casals-Casas & 
Desvergne, 2011). It is worth noting that in addition to sex steroid receptors, this receptor 
superfamily includes transcription factors playing a central role in integrating metabolic and 
developmental signaling pathways (Wagner et al.,2011). In particular, data from knockout 
mice showed that functional PPAR-alpha or FXR are essential in the regulation of hepatic 
lipid metabolism, as deletion or deficiency of them induces hepatic steatosis in mice. 
Moreover, PXR and CAR (NRs for which many xenobiotics are ligands) promote hepatic 
lipid storage by decreasing fatty acid beta-oxidation (Wagner et al., 2011). Importantly, FXR, 
CAR and PXR are also variously involved in HCC formation. FXR knockout mice suffer 
from chronic bile acid-induced chronic inflammation and are prone to develop HCC, while 
CAR and PXR are important in the liver proliferative response, although their exact role in 
liver tumor promotion is not clear (Yang et al., 2007; Wagner et al., 2011). These data suggest 
that important interactions exist between NR signaling, lipid metabolism and liver 
carcinogenesis. This hypothesis is supported by recent findings showing a direct implication 
of impaired lipid metabolism in the development of hepatocellular carcinoma in animal 
models. A recent study showed that mice double mutants (due to a growth hormone-
activated signal transducer and activator of transcription (STAT5) and GR) developed liver 
steatosis that progressed to hepatocellular carcinomas (Mueller et al., 2011). Altered 
STAT5/GR signaling was associated with insulin resistance, high reactive oxygen species 
levels and increased liver and DNA injuries; that it function correctly was essential for 
maintenance of lipid homeostasis (Mueller et al., 2011). A second study showed that 
transgenic CAR -/- mice fed with a NASH-inducing diet are protected from 
diethylnitrosamine-induced hepatocarcinogenesis (Takizawa et al., 2011). These results 
suggest that the nuclear receptor CAR might play an important role in promoting 
hepatocellular carcinomas against a background of NASH. Interestingly, human HCC have 
been associated with altered lipid metabolism, in particular choline and phospholipid 
metabolism with an increased synthesis in lysophosphatidic acid, which may provide a 
mitogenic and proliferative microenvironment through activation of G-protein-coupled 
receptors (Skill et al., 2011). Moreover, stimulation of lipid biosynthesis and perpetuating 
chronic hepatic metabolic disease by activation of the transactivator of stress proteins HSF1 
promotes HCC development in mice (Jin et al., 2011). Finally, an interesting paper based on a 
microarray analysis of a hepatitis-induced HCC murine model showed that pro-inflammatory 
cytokines may promote HCC predominantly in males causing the loss of a gender-identifying 
hepatic molecular signature (Rogers et al., 2007), suggesting that HCC may be associated with 
liver-gender disruption in male mice and supporting the idea that endocrine disruption may 
have broader effects than those reported in reproductive and sexual organs.  

Although the scientific data on ED and their effects on liver disease are mostly anecdotal, a few 
toxicological studies have  shown that perinatal exposure to Bisphenol A (BPA) or organotin 
compounds alters not only adipogenesis in rodents, but also increases both the expression of 
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lipogenic genes and lipid accumulation in the liver of animals exposed (Somm et al., 2009; 
Grün et al., 2006). Ecotoxicological studies have shown that ED may bioaccumulate and induce 
altered gene expression in the liver of various animal species (Ter Veld et al., 2008). In 
particular, BPA, PCBs and PBDE were shown to bioaccumulate in fish livers caught in Italian 
seas or US lakes (Mita et al., 2011; Pérez-Fuenteaja et al., 2010) and nonylphenol (NP) was 
reported to induce the expression of female specific proteins in male lizard livers (Verderame 
et al., 2011). Although the relevance of NR stimulation to human liver cancer is still unclear, 
this is a well-known non-genotoxic mechanism of rodent liver cancer, in particular concerning 
PPAR-alpha activation (Ren et al., 2010). Interestingly, it has been shown that rodent 
carcinogens show higher in vitro potency for human NR than do non-carcinogens (Shah et al., 
2011). NP was shown to activate human CAR in vitro and in vivo using transgenic mouse 
models (Hernandez et al., 2007). Moreover, CAR is involved in hepatic injury and in the 
development of HCC in a dietary model of NASH, probably by its cell proliferation promoting 
activity (Takizawa et al., 2011).  

Available data on ED-induced hepatic alterations and on their potential action on systemic 
and hepatic lipid metabolism suggest that ED may have a role in the establishment and 
progression of some liver diseases, in particular NAFLD and HCC. However, systematic 
research aiming to investigate interactions between endocrine/metabolic disruption in liver 
disease/carcinogenesis is still lacking. We will report on some recent advances in the 
identification of common new subcellular targets in metabolic disease and liver 
carcinogenesis, with a particular focus on mitochondria and endoplasmic reticulum 
alterations and their cross-talks with NR signaling perturbation. 

4. Molecular aspects of hepatocellular carcinoma 

HCC is a cancer caused by a variety of etiologies, including HBV and HCV infection, alcohol 

over-consumption, aflatoxin B1 exposure and chemical agents. Thus, it is not surprising that 

a variety of HCC-associated molecular alterations have been detected and no universal 

molecular signature is definitively associated with all hepatic tumors, either in humans or in 

experimental animals (Degli Esposti et al., 2009; Pei et al., 2009). In particular, in humans 

HCC alterations are classically reported in four genetic pathways, namely p53, 

retinoblastoma (Rb), TGF-beta pathway and Wnt-beta-catenin pathways (Laurent-Puig, 

2001; Saffroy et al., 2007). However, the carcinogenic process in the liver looks to be more 

complex, as a recent review on omics-based studies seems to suggest (Pei et al., 2009). In 

particular, comparative genomic hybridizations, high-throughput methods used to identify 

deletion or amplification in genomic DNA, have shown chromosomal aberrations in 

fourteen human chromosomes, not uniquely associated with viral infections (Pei et al., 

2009). Various studies have also reported epigenetic alterations in HCC, in particular 

hypermethylation and subsequent silencing of some tumor suppressor genes (Pei et al., 

2009). Microarray studies have been performed on both mRNA and microRNA (miRNA), 

but no consistent expression signatures seem to arise, due to alleged differences in 

technology and experimental design (Pei et al., 2009). All together, these data reinforce the 

view that the development of HCC, and probably all cancer types, involves multiple factors 

and interactions at a molecular level. While meta-analysis and integration of –omics data 

could prove a helpful approach for biomarker identification in cancer (Zender et al., 2006; 

Ludwig & Weinstein, 2005), it seems urgent we adopt a comprehensive framework 
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including pathophysiological and developmental aspects of the disease with consistent  

molecular, biochemical and biophysical interactions (Soto & Sonnenschein, 2004). 

As we reported in the previous section, the case of endocrine and metabolic perturbation in 

liver disease and carcinogenesis offers a useful starting point for discussing newly identified 

or potential carcinogenic pathways and future directions to clarify the complex picture of 

hepatocellular carcinoma and, maybe more generally, of cancer. 

4.1 New aspects of hepatocarcinogenesis: Metabolic disruption and altered cellular 
homeostasis 

Alterations in the metabolism of cancerous tissues have been found since 1930s. Warbug 
(1930) described that, even in the presence of oxygen, cancer tissues had acquired an 
irreversible glycolytic metabolism. Increased glycolysis proves to allow the utilization of 
glycolytic intermediates into the various biosynthetic pathways, including nucleoside and 
amino acid synthesis, required by highly replicating cells (Potter, 1958, Vander Heiden et al., 
2009). This feature is also described in rapidly dividing embryonic tissues, even though they 
are able to switch to oxidative metabolism as proliferation ceases and cells differentiate, 
suggesting that cancer development may be understood as altered embryonic development 
(Barger & Plas, 2010, Cooper, 2009, Soto & Sonnenschein, 2004). As a result of Warburg’s 
observations, defects in mitochondrial function have been suspected as contributing to 
cancer development and progression (Chatterjee et al., 2011). Recently, not only 
mitochondria but also endoplasmic reticulum have been found to be implicated in 
controlling the lipid metabolism, in particular in the liver. Thus, since reprogramming of the 
energy metabolism has been rediscovered as a hallmark of cancer (Hanahan & Weinberg, 
2011) while alteration of the lipid metabolism seems to be associated with HCC 
development, the role of mitochondria and endoplasmic reticulum in metabolic disruption 
during liver carcinogenesis forms a testable hypothesis in the context of liver carcinogenesis.  

Mitochondria are key organelles both for energy (ATP) production (by oxidative 
phosphorylation of components of the tricarboxylic acid cycle and lipid beta-oxydation) and 
for integration of pro-survival/pro-death signaling in cells of every tissue and organ. These 
functions are essential in determining cellular and tissue homeostasis. In the last decade, a 
lot of research has focused on the role of mitochondria in liver diseases and mitochondrial 
dysfunctions have been described both in NAFLD and in HCC (Begriche et al., 2006; Chang 
et al., 2005; Sato, 2007; Rector et al., 2010). A recent study compared liver histology and 
function in the obese rodent model Otsuka Long-Evans Tokushima Fatty (OLETF) rat with 
its lean homolog LETO rat (Rector et al., 2010). The ultrastructure of  hepatic mitochondria 
proved to be impaired and the total mitochondrial content decreased in OLETF rats. 
Moreover, mitochondrial and total fatty acid oxidation were already reduced as early as the 
fifth week of age in obese animals, before hepatic steatosis and insulin resistance were 
observed, suggesting that mitochondrial dysfunction may be a very early event in the 
natural history of NAFLD (Rector et al., 2010). Various mitochondrial alterations have been 
reported in patients with NASH. Megamitochondria with ultrastructure abnormalities have 
been found in NASH patients (Caldwell et al., 1999a; Sanyal et al., 2001). Severe depletion of 
mitochondrial DNA (mtDNA) has been also reported in patients with NASH or hepatic 
fibrosis (Caldwell et al., 1999b; Ducluzeau et al., 1999). mtDNA depletion may contribute to 
impairment of the respiratory chain, a common feature in drug-induced and primary NASH 
(Begriche et al., 2006). It should be noted that in primary NASH impairment of the 

www.intechopen.com



 
Hepatocellular Carcinoma – Clinical Research 

 

24

respiratory chain is concomitant with an increase in beta-oxidation flux (due to insulin 
resistance), leading to production of a high level of reactive oxygen species (ROS) (Begriche 
et al., 2006). Increased ROS generation by mitochondria has also been observed in 
genetically obese ob/ob mice (Yang et al., 2000) and in rat fed on a choline-deficient diet, a 
model of steatosis and NASH (Hensley et al., 2000). An increased production of ROS in fatty 
livers induces lipid peroxidation and subsequently reactive aldehyde formation (Begriche et 
al., 2006). ROS and aldehydes may further damage mitochondria, generating a vicious circle, 
and increase the expression of pro-inflammatory cytokines, such as TGF-beta, TNF-alpha, 
IL-8 or Fas ligand, worsening liver injury (Pessayre & Fromenty, 2005). Mitochondria are 
also involved in hepatocarcinogenesis. A decrease in mtDNA-dependent cytochromes with 
disturbed electron transfer has been reported in liver carcinomas, with a subsequent 
increase in ROS production that can induce nuclear gene mutation in carcinogenesis (Sato, 
2007). Moreover, a higher frequency of somatic mutation in regulatory and coding regions 
of mtDNA has recently been reported in HCC compared to adjacent non-cancerous tissue 
(Yin et al., 2010). Interestingly, an experimental study showed that long-term administration 
of L-carnitine, a key molecule in fatty acid transport to mitochondria, decreases the 
occurrence of hepatic preneoplastic lesions in Long-Evans Cinnamon rats (Chang et al., 
2005). These data reinforce the idea that mitochondrial dysfunction, and in particular its role 
in lipid catabolism, is involved in hepatocarcinogenesis. It is interesting to note that some 
chemicals with endocrine disruptive properties have been shown to target mitochondrion 
functionality in various tissues and organs, including the liver (Kovacic, 2010). In particular, 
five-month exposure to 10-50 ppm diethyl phthalate induced liver impairment, triglyceride 
accumulation and mitochondrial proliferation in Wistar rats (Pereira et al., 2006). Since 
phthalates are plasticizers present in plastics used for medical reasons, such as storage bags 
for blood conservation or instruments for dialysis, it is interesting to note that liver biopsies 
on dialyzed patients show peroxisome proliferation (Ganning et al., 1984) and that phthalate 
leakage from blood bags has been proposed as potentially pro-inflammatory (Rael et al., 
2009). Furthermore, male mice treated perinatally with 160 or 480 mg/kg of BPA for 14 days 
showed an increase in cell death mediated by the mitochondrial apoptotic pathway in the 
testes (Wang et al., 2010). While the hepatic effects on the liver were not evaluated in this 
study, these results suggest that BPA may directly or indirectly target mitochondria. Other 
evidence of ED toxicity in mitochondria is provided by results showing that tamoxifen 
decreased ATP production in a model of isolated perfused rat liver (Marek et al., 2011) and 
that it impaired mitochondrial respiration, increased cytochrome c release, mitochondrial 
lipid peroxidation and mitochondrial protein nitration by stimulating mitochondrial nitric 
oxide synthase (Nazarewicz et al., 2007). Importantly, although epidemiological studies 
available in humans did not identify any increased risk of liver cancer in women who were 
administered tamoxifen for breast cancer, several experiments have shown that tamoxifen 
induces hepatocarcinomas in rats  when administered at high doses (Maltoni et al., 1997; 
IARC, 2011). Another reported ED and human carcinogen, 2,3,7,8 TCDD, has been reported 
to induce cytotoxicity and mitochondrial dysfunction in isolated rat hepatocytes (Aly & 
Domènech, 2009) and to mediate tumor progression by activating signaling pathways 
similar to mtDNA depletion (Biswas et al., 2008). In this context, it would be helpful to 
consider the interactions between mitochondria, lipid metabolism and nuclear receptors in 
order to improve our understanding of liver disease and carcinogenesis. In point of fact, 
several members of the nuclear receptor superfamily are lipid-sensing factors that affect 
many aspects of lipid metabolism (Alaynick, 2008). PPARs, LXRs, interacting with their 
transcriptional coactivator PPARgamma Coactivator 1 alpha (PGC-1alpha) have been 
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shown to regulate insulin sensitivity and lipid metabolism (Alaynick, 2008). Interestingly, 
PGC-1alpha is a known regulator of mitochondrial biogenesis and also able to modulate 
hepatic steatosis (Puigserver et al., 1998; Sonoda et al., 2007; Wu et al., 1999). Moreover, the 
mitochondrial protein ANT, a translocase that provides mitochondria with ADP allowing 
ATP synthesis, has recently been shown to be essential for the functioning of PGC-1 alpha 
(Kim et al., 2010) while another NR, the estrogen-related receptor alpha (ERR-alpha), 
important for adaptive energy metabolism (Villena & Kralli, 2008), has been shown to be an 
effector of PGC-1 alpha, regulating the expression of genes involved in oxidative 
phosphorylation and mitochondrial biogenesis (Schreiber et al., 2004). Thus, PGC-1 alpha 
may be a key molecule linking NR signaling to mitochondrial function and activity. Finally, 
it is important to note that ED and other NR ligands may also act independently on the 
receptor action and mitochondria can be a direct target of this mechanism, as proposed for 
PPAR agonists (Scatena et al., 2004). Hence, it has been suggested that characterization of 
reciprocal influences between mitochondria and PPAR physiology would be fundamental 
for a better understanding of cancer biology (Scatena et al., 2008). 

Endoplasmic reticulum is an organelle responsible for protein synthesis, folding, 
maturation, quality control and trafficking, as well as for Ca2+ homeostasis. Every condition 
that stresses its folding ability, such as an excess of protein synthesis or alteration of energy 
availability, causes a physiological response called Unfolded Protein Response (UPR). UPR 
activation aims to increase the folding capacity of endoplasmic reticulum by inducing 
transcription of chaperons and by globally decreasing protein synthesis (Schroeder & 
Kaufman, 2005). In recent years, it has been shown that endoplasmic reticulum plays a 
central role in the multi-organ coordination of systemic metabolism through the integration 
of synthetic and catabolic pathways (Kammoun et al., 2009b, Hotamisligil, 2010). Obesity 
and diabetes have been shown to induce ER stress in both adipose tissue and the liver 
(Ozcan et al., 2004, Kammoun et al., 2009a). Puri et al., examined the role of endoplasmic 
reticulum stress in human NAFLD, showing UPR activation in liver biopsies from patients 
with NAFLD and NASH compared to subjects with the metabolic syndrome and normal 
liver histology (Puri et al., 2008). Moreover, free fatty acids (FFA) may be important 
mediators of cell dysfunction (lipotoxicity) not only through death receptors or the 
mitochondrial-lysosomal pathway, but also via endoplasmic reticulum stress (Alkhouri et 
al., 2009). Endoplasmic reticulum stress and activation of the UPR are also present in solid 
cancers, often characterized by hypoxia, nutrient starvation, oxidative stress and other 
metabolic deregulation, factors that cause endoplasmic reticulum impairment (Li et al., 
2011). Depending on the duration and degree of ER stress, the UPR can provide either 
survival signals by activating adaptive and antiapoptotic pathways, or death signals by 
inducing cell death programs (Schroeder & Kaufman, 2005; Li et al., 2011). In hepatocellular 
carcinoma, higher accumulation of the Bip/GRP78 and nuclear localization of ATF6, 
characteristic of UPR activation, were found in moderately to poorly differentiated human 
HCC tissue samples (Shuda et al., 2003). Although direct demonstrations at a molecular 
level are still lacking, the cross-links between endoplasmic reticulum stress, NAFLD and 
HCC seem to be numerous and future research should address this potential new 
carcinogenic pathway. However, endoplasmic reticulum seems also to be a target of 
endocrine disruption. Recently, BPA has been shown, in a murine liver cell line, to increase 
the gene expression of various actors involved in endoplasmic reticulum stress, such as 
C/EBP homologous protein, caspase 12 and GRP78 (Asahi et al., 2010). This ties up 
interestingly with a microarray study in which activation of genetic networks involved in 
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endoplasmic reticulum stress was also detected in mouse testicular Sertoli cells treated with 
BPA at a concentration of 200 microM (Tabuchi et al., 2006). Furthermore, a number of ED, 
such as nonylphenol, octylphenol, bisphenol A, and butylated hydroxytoluene, have been 
shown to inhibit endoplasmic reticulum Ca2+ ATPase pumps in a low micromolar 
concentration (Hughes et al., 2000), suggesting that alterations in endoplasmic reticulum 
homeostasis may be a common action mechanism by BPA in various different organs. In this 
connection, some recent papers have highlighted a possible direct interaction between nuclear 
receptor signaling, lipid metabolism and endoplasmic reticulum stress. A protein deacetylase 
(SIRT1) has been shown to positively regulate the nuclear receptor PPAR alpha (Purushotham 
et al., 2009). In particular, hepatic-specific deletion of SIRT1 impairs PPAR alpha signaling and 
SIRT1 knockout mice develop hepatic steatosis, liver inflammation and endoplasmic reticulum 
stress (Purushotham et al., 2009). Moreover, the endoplasmic reticulum stress-induced 
transcription factor ATF6 has been shown to suppress insulin gene expression through the up-
regulation of a transcriptional partner of nuclear receptors, SHP, in pancreatic beta-cells and in 
pancreatic islets of OLETF rats (Seo et al., 2008), suggesting that endoplasmic reticulum stress 
signaling may also act via NR signaling. As for mitochondria, while no extensive data are 
available, interactions between endoplasmic reticulum homeostasis and NR physiology have 
been shown and may play an important yet still under-explored role in the initiation and 
progression of liver steatosis and HCC. Perturbation of this network by ED is possible, 
although more research is needed to address the effects of environmental concentrations and 
to identify the biochemical pathways affected and any long-term pathophysiological 
consequences, in particular in liver carcinogenesis. 

5. Conclusions 

In this chapter, we have reviewed some recent acquisitions in HCC epidemiology, in 

particular regarding the association between obesity and metabolic syndrome and HCC 

incidence and mortality. We have also reviewed the evidence for liver susceptibility  to 

chemical-induced carcinogenesis, in both rodents and humans, and have shown that long-

term carcinogenicity bioassays are a useful tool for identifying potential hepatocarcinogens. 

In the last part of the chapter, we suggest that endocrine and metabolic disruption, a 

mechanism involved in the toxic effects of various chemicals, might be a plausible and 

testable hypothesis in the pathophysiology of NAFLD and its progression toward HCC, in 

particular concerning the alteration of mitochondria and endoplasmic reticulum in the liver 

and other tissues. We suggest that long-term carcinogenicity bioassays are a valuable 

approach to integrating pathological end-points, such as tumor induction, and the analysis 

of early chronic alteration in tissue and cellular homeostasis, such as mitochondrial and 

endoplasmic reticulum dysfunctions. This approach could provide important insights into 

chemical-induced carcinogenic mechanisms, in particular for non-genotoxic carcinogens 

such as most endocrine disruptors. Moreover, the comparison of experimental results with 

human biopsies of neoplastic and pre-neoplastic lesions, such as NASH, in well-

characterized patients may help to develop specific early markers towards identifying the 

population at higher risk of HCC. 
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