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1. Introduction

In vivo 'H Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic
Imaging (MRSI) signals contain relevant metabolic information commonly used as biomarkers
of diseases that can provide complementary information for the diagnosis. These signals are
measured in the time domain, however, their representation in the frequency domain provides
a better visualization of the metabolites in the form of resonances (peaks). In 'H MRS(I), not
only metabolites but also water and macromolecule/lipid resonances can be observed. In
practice, the concentrations of metabolites and the presence of macromolecule/lipids contain
the relevant information for diagnosis purposes.

The technique used to determine metabolic contributions is called quantification and different
methods have been proposed in the time or the frequency domain. In these methods, the
metabolite concentrations are estimated, e.g., using a linear combination of individual peaks
or a basis set of known metabolite profiles to fit the MR signal (Poullet et al., 2007; Provencher,
1993; 2001; Ratiney et al., 2004; Slotboom et al., 1998). No matter which quantification method
is used, the quality of MRS signals is important for obtaining accurate estimates of the
metabolite concentrations.

Although in vivo MRS(I) acquisitions provide non-invasively metabolic information, different
limitations related to the specifications of the acquisition protocol, the localization of the
voxels of interest and the homogeneity of the magnetic field in the selected region make the
accurate quantification of these signals still a challenge. Therefore, advanced and efficient
measurements have been developed to decrease the scanning time and to increase the spectral
resolution. Nevertheless, it is essential to perform a series of preprocessing steps to improve
spectral quality of MRS signals before performing quantification. Successful combinations
between advanced acquisition techniques and appropriate signal processing increase the
potential of integrating MR techniques in the clinical diagnosis routines (Chu et al., 2003;
Devos et al., 2004; Huang et al., 2001; Ruiz-Pena et al., 2004; Vermathen et al., 2003).

In the next sections, we introduce the MRS(I) signals together with some of the most
common preprocessing and quantification methods. In particular, we focus on recent methods
and approaches to improve the quantification of in vivo MRS(I) signals, performed with
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4 Magnetic Resonance Spectroscopy

the quantification method AQSES (Poullet et al., 2007): a) filtering of residual water, b)
lineshape estimation, c) baseline estimation and d) inclusion of spatial constraints in MRSI
quantification.

2. Description of 'H MRS(l) signals and preprocessing methods

2.1 'H MRS(I) signals

These signals are measured in the time domain and have ideally a decaying shape, also
called FID, which can be represented as a sum of complex-damped exponentials. They
can be measured from a specific anatomical region (single voxel MRS), or from an entire
organ overlaid by a grid of multiple voxels (MRSI). In order to observe the contribution of
individual metabolites, MRS(I) signals are transformed to the frequency domain using the
Fast Fourier Transform (FFT), producing a spectrum where the metabolite resonances can
be visualized. Typically, a water suppression technique is applied as part of the acquisition
protocol in order to enhance the visualization of the metabolites of interest. Additionally,
an unsuppressed water signal is always measured, which is commonly used as a reference for
phase, eddy currents and lineshape corrections. Depending on the acquisition protocol, single
voxel signals have commonly a better signal-to-noise (SNR) ratio and thinner linewidths than
multi-voxel signals, however, the advantage of multi-voxel signals is the possibility to study
complete anatomical organs using one acquisition. See Fig. 1 for an example of a single and
multi-voxel acquisition.

2.2 Preprocessing 'H MRS(I) signals

Preprocessing of MRS signals aims at the improvement of signal quality in order to accurately
extract relevant information about the metabolites via the technique called quantification.
Some essential preprocessing procedures in 'H MRS(I) are:

¢ Time circular shift. The digital filter and decimation in the Bruker scanners distort the
beginning of the FIDs, as a consequence, the MR spectrum is filled with wiggles and the
metabolite resonances are hard to identify. These first data points are initially zero and then
increase, until the actual FID starts (Cobas & Sardina, 2003). A solution to this distortion is
a time circular shift. This step is performed in the time domain and consists of removing
data points from the beginning and adding them to the end of the signal.

* Frequency alignment. Due to variations in the physiological and experimental conditions
(e.g., temperature and pH), MR resonances experiment a frequency shift. Specially in
multivariate analysis, this peak misalighment needs to be corrected. Thus, the FIDs
are first transformed to the frequency domain and the spectra are shifted such that
some recognizable peaks reach the desired frequency locations (Veselkov et al., 2009).
In 'H MRS, the resonance frequency of known metabolites can be used for shifting
the full spectra. For instance, the peak of N-Acetyl-Aspartate (NAA) is known to be
located at 2.01 ppm. Moreover, the displacement of individual spectral peaks from one
metabolite can be corrected using advanced frequency alignment techniques, such as,
quantum mechanics approaches and advanced warping algorithms (Giskeodegard et al.,
2010; Lazariev et al., 2011).

¢ Phase correction. Ideally, MRS spectra should have zero-phase (i.e., all peaks are pointing
upwards), however, differences between the reference phase and the receiver detector
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Fig. 1. (a) T2-weighted MRI of a brain tumor patient overlaid with a grid of voxels
corresponding to an MRSI measurement. (b) Real part of the spectrum of a single voxel in
vivo MRS signal acquired with a 1.5 T Philips NT Gyroscan (Philips Medical Systems, Best,
The Netherlands) with acquisition parameters: PRESS sequence, repetition time (TR)=6s,
echo time (TE)=23 ms, bandwidth (SW)=1 KHz, number of points (NDP)=512 points and 64
averages. (c) Real part of the spectrum of a signal from a selected multi-voxel (MRS(I))
measurement acquired with a 3.0 T Philips Achieva (Philips Medical Systems, Best, The
Netherlands) with acquisition parameters: PRESS sequence, TR=2 s, TE=35 ms, SW=2 KHz
and NDP=2048 points and 1 average. These measurements were done at the University
Hospital of the Katholieke Universiteit Leuven, Belgium.

phase, the time delay between the excitation and detection, the flip-angle variation
across the spectrum, and the phase shifts from the filter employed to reduce noise
outside the spectral bandwidth, produce different phase distortions (Chen et al., 2002).
As a solution, phase correction approaches have been successfully used to improve the
visualization of MR spectra. In practice, the phase correction consists of two components,
one frequency-dependent (first order phase) and one frequency-independent (zero order
phase). In particular, the zero-order phase correction consists of the multiplication of the
complex spectrum by a complex phase factor equal to the initial phase of the FID (Jiru,
2008). On the other hand, adjusting the first order phase corresponds to the modification
of the begin time of the MR signal (Chen et al., 2002). Although some quantification
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6 Magnetic Resonance Spectroscopy

methods (Poullet et al., 2007; Provencher, 2001; Ratiney et al., 2005) are able to take into
consideration phase distortions and provide accurate metabolite estimates even if the
spectra are not zero-phased, other quantification methods, such as peak integration,
require zero-phased spectra in order to obtain reliable metabolite estimates.

¢ Eddy current corrections. These currents are induced by the rapid switching of the
magnetic field gradient in the magnet coils and surrounding metal structures (de Graaf,
1998). Because these currents are caused by the scanner and can not always be avoided, a
spectral correction is necessary. Klose (Klose, 1990) has developed a method to correct
eddy currents, called ECC, by point-wise dividing the water suppressed signal by the
phase term of the water unsuppressed signal measured at the same location.

¢ Lineshape correction/estimation. The lineshape of MR signals is determined by the decay
function (damping) of the time domain signal and refers to the shape of the peaks in the
frequency domain. Ideally, it is represented by a Lorentzian, Gaussian or Voigt function,
corresponding in the time domain to an exponentially decaying sinusoid. However, when
magnetic field perturbations and field inhomogeneities are present, these lineshapes are
disturbed (in symmetry and linewidth) and as a consequence, the ideal model used in
the quantification method is unable to yield accurate metabolite estimates. Therefore,
different hardware and mathematical approaches have been developed to cope with this
problem. For instance, shimming techniques (i.e., coils adjustment) are applied during
the MR acquisition in order to correct field inhomogeneities and thus improve spectral
quality (Blamire et al., 1996; Gruetter, 1993; Juchem et al., 2010). Moreover, local magnetic
field susceptibility problems caused by measurements near an air cavity such as sinuses,
may not always be corrected with shimming techniques making lineshape distortions
unavoidable. Notwithstanding, some preprocessing methods have been successfully
used based on the deconvolution of the spectra using either the unsuppressed water
signal or a reference peak from the experimental signal (Bartha et al., 2000; de Graaf et al.,
1990; Metz et al., 2000). Alternatively, other lineshape estimation methods based on
self-deconvolution have been proposed in cases when a reference signal is not available
(Maudsley, 1995; Popa et al., 2011; Sima et al., 2009).

e Baseline correction/estimation. 'H MRS signals measured at short TE contain not
only information from metabolites but also from lipids and macromolecules which may
affect the baseline of the spectra. This baseline influences the quantification causing
the mis-fitting of individual peaks or metabolite profiles. Therefore, different correction
algorithms have been proposed to estimate and remove the baseline contribution from
the spectrum (Chang et al., 2007; Cobas et al., 2006; Xi & Rocke, 2008). Alternatively, other
methods have been proposed to estimate the baseline using special acquisition protocols
or characterizing each macromolecule/lipid component to finally consider them in the
quantification procedure (Behar & Ogino, 1993; Hofmann et al., 2001; Knight-Scott, 1999).

e Filtering of residual water. 'H MRS signals contain a water peak thousands of units
larger than those of metabolites. Therefore, in order to visualize metabolites, this water
peak needs to be suppressed. Although the water resonance is partially suppressed
during acquisition, the residual water requires a reliable filter for further elimination
without affecting the metabolite resonances. Moreover, especially at short TE, the tail
of this residual water may overlap with the baseline of macromolecule/lipids and thus,
pose problems for accurate quantification. As a solution, the Hankel Lanczos Singular
Value Decomposition (HLSVD) method proposed by (Pijnappel et al., 1992) parametrizes
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the MR signals as a sum of complex-damped exponentials. Extensions of this method
for quantification and peak suppression have been successfully applied to MR signals
(Chen et al., 2004; Laudadio et al., 2004). Alternative to HLSVD, other filtering approaches
have also been used for this purpose (Antoine et al., 2000; Sundin et al., 1999). Additional
to the residual water, other unwanted resonances (e.g., reference peaks from in vitro
phantom solutions) may also need to be suppressed from the spectrum (Cabanes et al.,
2001).

3. Quantification

Several quantification methods have been developed in the time and the frequency domain
to determine metabolite concentrations. Thus, depending on the nuclei, the complexity of
the signal and the prior information available, MR signals can be quantified with the methods
listed below. An extended review of time- and frequency domain methods has been given in
(Mierisova & Ala-Korpela, 2001; Vanhamme et al., 2001) and more recently in (Poullet et al.,
2008).

e Time- and frequency domain fitting using a linear combination of individual
peaks/profiles to fit the spectra QUEST (Ratiney et al., 2004), AQSES (Poullet et al., 2007)
LCModel (Provencher, 1993; 2001)

¢ Time-domain estimation of parameters using prior knowledge (Soheretal.,, 1998;
Young et al., 1998), AMARES (Vanhamme et al., 1997)

¢ Time-domain non-iterative fitting methods such as HLSVD (Barkhuijsen et al., 1987;
Chenetal.,, 1996; Dologlouetal.,, 1998; Laudadioetal.,, 2002; Pijnappeletal., 1992;
van den Boogaart, 1997)

¢ Jterative time- and frequency domain fitting (Slotboom et al., 1998)
¢ Semi-parametric fitting (Elster et al., 2005)

¢ Time-domain variable projection (VARPRO) (Cavassila et al., 1999; van der Veen et al.,
1988)

¢ Time domain fitting of one peak at a time and wavelet modeling for the baseline
(Dong et al., 2006; Romano et al., 2002)

¢ Constrained least squares (TARQUIN) (Reynolds et al., 2006; Wilson et al., 2011)
¢ Genetic algorithms (Metzger et al., 1996)

e Fast Padé Transform (Belki¢ & Belki¢, 2006)

e Artificial Neural Networks (Bhat et al., 2006; Hiltunen et al., 2002)

* Sparse representation (Guo et al., 2010)

¢ C(Circular fitting (Gabr et al., 2006)

* Principal Component Analysis (PCA), Independent Component Analysis (ICA)
(Hao et al., 2009; Stoyanova & Brown, 2001)
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3.1 Automated Quantification of Short echo time MRS signals (AQSES)

We present in more details the method AQSES, which will be used in the next sections
to illustrate several recent improvements in the field of MRS(I) signal processing. This
time-domain quantification method has been especially developed for short TE MRS signals,
where a mathematical model fits to a basis set of predefined metabolite profiles. From
this fit, metabolite amplitudes are obtained, which represent the weighting coefficients
of a linear combination of corrected metabolite profiles with Lorentzian lineshapes used
for quantification. Finally, these values are proportional to the concentrations of all
estimated metabolites. AQSES is available in the Java open source software AQSES GUI
(De Neuter et al., 2007; Poullet et al., 2007), as a quantification method inside the Matlab®
graphical user interface SPID (Poullet, 2008) and as a plug-in in the jJMRUI software package
(version 4.1) (Stefan et al., 2009). Fig. 2 shows the results window for a quantification made in
SPID.

The model describing a short TE in vivo time-domain MRS signal y(t) as a combination of
several metabolite profiles is:

K
y(t) = Y agel P el B2y, (1) 4 B(t) + w(t) + €(t) 1)
k=1

where K is the number of metabolites (k = 1,...,K), vi(t) the metabolite profile in the
basis set measured as individual phantoms or simulated using quantum mechanics, a; the
amplitudes, ¢, the phase shifts, d; the damping corrections, fy the frequency shifts due to field
inhomogeneity, | = v—1,B (t) is the baseline due to macromolecule/lipid contamination (in
AQSES it is fitted via nonparametric modeling using a basis of splines (Eilers & Marx, 1996)),
w(t) the water resonance (filtered either before quantification as explained in section 3.2.1, or
during quantification as in (Sundin et al., 1999)) and e(t) denotes white noise with standard
deviation o.

In order to assess quantification results, the Cramér-Rao lower bounds (CRLB)
(Cavassila et al., 2001) are computed to provide an indication about the uncertainty and
reliability of the estimated amplitudes (concentrations). Small CRLB values may (but not
necessarily) indicate good parameter estimates and are proportional to the variance of the
residue obtained from subtracting the fitted signal and the baseline from the original signal.
Thus, acceptable CRLB should normally be below 40%.

3.2 Methods for quantification improvement

Although the quantification of in vivo MRS signals can often be reliably done using model
(1) in AQSES, several issues appear when high field, short TE signals or multi-voxel MRSI
data are being quantified. In this section, we present several quantification improvement
methods implemented in AQSES (Croitor Sava, 2011; Osorio-Garcia, 2011). Whereas the filter
of residual water is performed as a preprocessing step, the lineshape and baseline estimation
methods are included inside the quantification method. Finally, a modified version of AQSES
for MRSI data, which includes spatial knowledge is presented.
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Fig. 2. Quantification results window for AQSES in SPID (left side) of an in vivo IH MRS
signal from mouse brain acquired with a 9.4 T Bruker Biospec small animal MR scanner
(Bruker BioSpin MRI, Ettlingen, Germany) with acquisition parameters: PRESS sequence,
TR=4 s, TE=12 ms, SW=4 KHz, NDP=2048 points and 256 averages, volume of interest
(VOI)= 3 x 1.75 x 1.75 mm3. The basis set of 16 metabolites used for quantification was
measured in vitro. Right: plots of residue, splines baseline, estimated metabolites and
original with estimated signal.

3.2.1 Filtering of residual water

As described in section 2.2, the water component (w(t) from Eq.(1)) can be filtered using
HLSVD, however, appropriate filtering of this resonance in the case of distorted signals is
often inaccurate. When HLSVD with one component (i.e., a model order K = 1) is used to
fit one non-Lorentzian peak, the result obtained by subtracting that modeled peak from the
original signal produces a non-flat residual. In an ideal case, only white noise should be left
in the residual.

The state-of-the-art methods proposed for determination of an optimal model order K
in order to provide a reliable water peak removal have been described and studied on
simulated, noiseless or non-overlapping peaks (Cabanes et al., 2001; Hu et al., 2010; Lin et al.,
1997; Papy et al., 2007; Van Huffel & Vandewalle, 1991). For instance, (Cabanes et al., 2001)
presented a method for optimal residual water removal of in vivo 'H MRS signals of
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10 Magnetic Resonance Spectroscopy

human brain using HLSVD with a model order of 25 (K = 25). Nevertheless, suppression
of unwanted resonances of in vivo MRS signal using HLSVD may require more than 25
components. In fact, it is certain that a higher model order may better fit one non-Lorentzian
peak. In such cases, the model order in HLSVD can be overestimated to adequately fit the
experimental signal with distorted shape. Finally, all components encountered in the selected
filtering region are suppressed without affecting the other resonances.

Therefore, we present a heuristic approach to estimate the model order by overestimating the
number of components in HLSVD (Osorio-Garcia, 2011). In this chapter, we use the Lanczos
algorithm with partial reorthogonalization, HLSVD-PRO (Laudadio et al., 2004). First, the tail
of the time domain signal is truncated in order to obtain by Fourier transformation a spectrum
with lower, but still adequate, spectral resolution; this truncation starts at the point at which
the FID completely decays into the noise. Then, the signal is transformed to the frequency
domain and an estimated number for the model order is obtained by counting the number of
spectral points larger in absolute value than a noise-related threshold. We illustrate in Fig. 3
to 6 good peak suppression results on short TE in vivo and in vitro 'H MRS signals, as follows:

e 1.5 T signals. Filtering of residual water and reference peaks for an in vivo (normal
human brain) and an in vitro (NAA) MRS signal obtained at 1.5 T was done by
suppressing all peaks in the frequency region outside the intervals [0 ppm, 4.3 ppm] and
[1 ppm, 4.44 ppm], respectively. For the in vivo signal in Fig. 3, results for K = 25 and
K overestimated (K = 44) show a good water suppression, but the water region is flatter
when K = 44. Fig. 4 illustrates the incomplete filtering of the reference peaks at 0 ppm and
8.4 ppm corresponding to solvents added to the NAA phantom solution when K = 25, but
this is not the case when K is overestimated, thus, K = 309.

* 9.4 T signals. Filtering of residual water and reference peaks for an in vivo (mouse
brain) and an in vitro (Glucose (Glc)) MRS signal obtained at 9.4 T was done by
suppressing all peaks in the frequency region outside the intervals [0 ppm, 4.3 ppm] and
[2.95 ppm, 4.44 ppm], respectively. A residual reference peak located at 2.8 ppm contained
in the in vitro signal could only be suppressed when K was overestimated. Figures 5 and 6
show the results for both signals.

3.2.2 Lineshape estimation

The metabolite profiles used for quantification have ideally a Lorentzian shape, however, the
lineshape of the metabolite resonances in an in vivo signal might be distorted. We aim to
estimate the lineshape distortion from the in vivo signal and impose the same distortion to each
individual metabolite to ensure the same lineshape in both the in vivo and the model spectra.
Here, we present a method (AQSES Lineshape) to estimate a common lineshape which has
been successfully used in simulated, in vitro and in vivo signals (Osorio-Garcia et al., 2011;
Sima et al., 2009).

In the presence of magnetic field inhomogeneities due to field perturbations or tissue
heterogeneities, the symmetry and linewidth of the lineshapes are disturbed. Therefore, the
fitting of the MR signal using an ideal lineshape (e.g., Lorentzian, Gaussian or Voigt) becomes
unreliable. Although some preprocessing methods can correct lineshape distortions, the use
of a separate reference acquisition signal or a well-separated reference peak may limit their
applicability.
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Fig. 3. Top: Real part of the spectrum of an in vivo MRS signal measured at 1.5 T with
acquisition parameters: Philips scanner, PRESS sequence, TR=6 s, TE=23 ms, SW=1 KHz,
NDP=512 points and 64 averages. Bottom: filtered signals using HLSVD-PRO with the
model orders of K = 25 and overestimated as K = 44. All modeled peaks in the frequency
region outside the interval [0 ppm, 4.3 ppm] were suppressed.

The lineshape of a peak in the frequency domain is determined by the decay function
(damping) of the time domain signal. Self-deconvolution methods make use of the fact
that within a measurement the most important factor that determines the decay rate is the
local field heterogeneity, thus, all metabolites are distorted in the same way and therefore,
a common lineshape can be estimated. Nevertheless, the computation of this lineshape
produces a noisy function that needs to be converted into a smooth function. Methods in the
literature differ in the approaches used for smoothing this noisy function. Here, we present
a lineshape estimation method for correcting lineshape distortions during quantification with
AQSES, where the exponential dampings e( =) in Eq.(1) are replaced by the common factor
g(t) of arbitrary shape:

K
y(t) = g(t) Y axel®Ie®ft)o (1) + B(t) + e(t) )
k=1

The AQSES Lineshape algorithm for lineshape estimation is described below.

Step 1. Initial fitting. Quantification of the signal assuming a Lorentzian lineshape to extract
the spectral parameters: amplitudes, frequencies, phases and dampings using the model
in Eq. (1). Then, the signal is reconstructed from the estimated spectral parameters without
considering the damping estimates.
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NAA

Fixed 25

Overestimation

Fig. 4. Top: Real part of the spectrum of in vitro NAA measured at 1.5 T with acquisition
parameters: Philips scanner, PRESS sequence, TR=6 s, TE=23 ms, SW=1 KHz,

NDP=2048 points and 128 averages. Bottom: filtered signals using HLSVD-PRO with the
model orders of K = 25 and overestimated as K = 309. All modeled peaks in the frequency
region outside the interval [1 ppm, 4.44 ppm] were suppressed. Residual resonances are
visible for K = 25 in the water and reference peak regions, i.e., 4.7 ppm, 0 ppm and 8.44 ppm.

Step 2. Damping estimation. Computation of the damping function g(t) as:

_ y(t) — B(t)
g(t) - lele gke(j‘f’k)e(z”jfkt)yk(t)

©)

where y(t) is the experimental signal, B(f) is the current baseline estimate, K is the
number of metabolites, vy (f) the metabolite signal k in the basis set, and the amplitudes
ax, frequency shifts f; and phase shift ¢, are estimated from a previous AQSES iteration
from Step 1 or Step 4.

Step 3. Smoothing. Outliers caused by numerical instability and division by small numbers
are reduced using local regression (LOESS). This method assigns lower weight to outliers
in the regression (Cleveland, 1979) and allows a robust smoothing. (See Fig. 7)

Step 4. Estimate. Spectral analysis is carried out again after point-wise multiplying the
original metabolite basis set with the new smoothed function g(f) from Step 3.

Steps 2-4 are repeated until a residual smaller than a chosen threshold is obtained or a
convergence of amplitude estimates is reached.

Results of the lineshape estimation are shown below.

¢ Simulated signals. The simulated MRS signals were generated as a linear combination of
7 in vitro measured metabolites: Alanine (Ala), Creatine (Cr), Glutamine (GIn), Glutamate
(Glu), Lactate (Lac), N-Acetyl-Aspartate (NAA), and Taurine (Tau). Then a distortion
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Fig. 5. Top: Real part of the spectrum of an in vivo MRS signal measured at 9.4 T with
acquisition parameters: PRESS sequence with implemented pre-delay OVS as well as the
water suppression method VAPOR, FASTMAP shimming correction, TR=4 s, TE=12 ms,
SW=4 KHz, 2048 points and 256 averages. Bottom: Filtered signals with the model orders of
K = 25 and overestimated as K = 134. All modeled peaks in the frequency region outside the
interval [0 ppm,4.3 ppm] were suppressed.

was included to simulate a damping different from the ideal Lorentzian. Fig. 8 shows
the quantification results obtained for a set of simulated signals with triangular and
eddy current distortions having small and large dampings. The top row shows the fits
with AQSES and AQSES Lineshape with the corresponding residuals when simulating
the signals with a small (left) and a large (right) damping. The residual corresponding
to AQSES contains some patterns corresponding to metabolite contributions that were
not correctly quantified due to the Lorentzian lineshape model, whereas the residuals
corresponding to AQSES Lineshape show a nearly flat line containing white noise that may
be attributed to the estimated lineshape model. At the bottom of each plot, the amplitude
estimates using AQSES and AQSES Lineshape are shown.

* In vitro signals. An in vitro signal containing Ala, Cr, Gln, Glu, Lac, NAA and Tau was
acquired using the default shimming technique with linewidth=1.36 Hz and SNR=22. The
magnetic field was afterwards intentionally distorted by mis-setting the shim current of
the X coil in order to simulate lineshape distortions caused by incorrect shimming; two
distorted signals were then acquired. Results of quantification of in vitro signals are
shown in Fig. 9. The undistorted in vitro signal is fitted identically by AQSES and AQSES
Lineshape, i.e., AQSES Lineshape reports convergence after the first iteration (results not
shown). For the distorted signals, the resonances of Cr at 3 ppm and 3.9 ppm and the one
from NAA at 2 ppm are not very well fitted with AQSES, while AQSES Lineshape is able to
fit these peaks. This is due to the fact that the lineshape distortions have a shape different
from the typical Lorentzian type considered by AQSES.
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Fig. 6. Top: Real part of the spectrum of in vitro Glc measured at 9.4 T with acquisition
parameters: PRESS sequence with implemented pre-delay OVS as well as the water
suppression method VAPOR, FASTMAP shimming correction, TR=4 s, TE=12 ms,

SW=4 KHz, 6144 points and 64 averages. Bottom: filtered signal with the model orders of

K = 25 and overestimated as K = 126. All modeled peaks in the frequency region outside the
interval [2.95 ppm,4.44 ppm] were suppressed. Residual resonances are visible at the region
around 2.8 ppm (between the two vertical dashed lines).

Simulated In vitro In vivo

Original Original Original
m— Smoothed m— Smoothed m— Smoothed

500 1000 1500 1000 2000 3000 4000 5000 200 400 600 800
Time [sec] Time [sec] Time [sec]

Fig. 7. Time domain signal of the resulting lineshape for simulated (left), in vitro (middle) and
in vivo (right) signals. The signal labeled as ‘Original’ corresponds to the g(t) function
calculated with the ratio formula in Eq.(3) and the smoothed signal is its final denoised
version after convergence.
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Fig. 8. Simulated MRS signals with lineshape distortions and the corresponding
quantification results. These signals were obtained as the linear combination of 7 metabolites
(Ala, Cr, Gln, Glu, Lac, NAA, and Tau) measured in vitro at 9.4 T with acquisition parameters:
PRESS sequence, TR=8 s, TE=20 ms, SW=4 KHz and NDP=2048 points and 64 averages. Top
left: small damping (to simulate in vitro signals). Top right: large damping (to simulate in
vivo signals). The bottom plots represent the amplitude estimates for the corresponding
simulated signals using AQSES and AQSES Lineshape.

* In vivo signals. An in vivo signal was acquired using the default shimming technique.
Then, after modifying the first and second order shim coils X and Z?, two mis-shimmed
signals were also acquired. The undistorted in vivo signal was fitted similarly by AQSES
and AQSES Lineshape, i.e., AQSES Lineshape reports convergence after the first iteration
(results not shown). Results of quantification for the two distorted in vivo signals are shown
in Fig. 10.

3.2.3 Baseline estimation

The contribution from macromolecules and lipids may vary depending on the anatomical
region or due to disease (tumor or metabolic disease), providing potentially useful diagnostic
information, but also creating a sort of baseline in the spectra. As a consequence, some of these
macromolecule/lipid resonances also overlap with metabolite peaks and it is necessary to
account for these contributions during the quantification. Therefore, several baseline methods
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Fig. 9. Spectra of in vitro MRS signals measured with a Bruker scanner at 9.4 T containing 7
metabolites: Ala, Cr, Gln, Glu, Lac, NAA, and Tau. Acquisition parameters: PRESS sequence,
TR=8 s, TE=20 ms, SW=4 KHz and NDP=2048 points and 128 averages. Two distorted
signals were acquired by mis-setting the shim current of the X coil, Left: ‘in vitro 2" with
linewidth=3.92 Hz and SNR=20. Right: ‘in vitro 3" with linewidth=6.52 Hz and SNR=18.
Both were quantified by AQSES and AQSES Lineshape.
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Fig. 10. Rat brain in vivo spectra from the right hemisphere of the thalamus measured with a
Bruker scanner at 9.4 T with acquisition parameters: PRESS sequence, TR=8 s, TE=20 ms,
SW=4 KHz, NDP=2048 points and 128 averages. ‘In vivo 2" and ‘in vivo 3" were acquired by
mis-setting the shimming parameters of the first and second order shim coils X and Z2. The
linewidth for these signals was 27.8 Hz and 39.69 Hz, respectively with SNR=20. Both were
quantified by AQSES and AQSES Lineshape.
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have been developed based on advanced acquisition techniques using inversion recovery
(i.e., metabolite-nulled spectrum) (Cudalbu et al., 2009; Kunz et al., 2010; Mlynérik et al., 2008;
Pfeuffer et al., 1999), parametric (Bartha et al., 1999; Seeger et al., 2003) and non-parametric
estimation methods (Poullet et al., 2007; Provencher, 2001; Ratiney et al., 2004). Fig. 11 shows
an in vivo MRS signal from a mouse brain obtained at 9.4 T and the macromolecule/lipid
baseline obtained via inversion recovery.

Here, we present a method that extracts characteristic information from a set of inversion
recovery MM signals. Thus, individual macromolecule/lipid components are computed and
included in the metabolite basis set used in the AQSES quantification method.

Fig. 11. Real part of the spectrum of an in vivo MRS signal and an MM signal obtained from a
mouse brain. ‘Original” acquisition parameters: Bruker 9.4 T scanner, PRESS sequence,

TR=4 s, TE=12 ms, SW=4 KHz and 256 averages. ‘MM acquisition parameters: Bruker 9.4 T
scanner, TI=800 ms, TR=3 s, NDP=2048 points and 1024 averages.

Characterization of the macromolecular baseline was addressed by modeling m previously
identified profiles shown in Fig. 12 left. Thus, a set of 10 inversion recovery signals was
first measured and m individual lipid and macromolecular peaks were identified as prior
knowledge. These resonances were observed at frequency locations around: 0.89 (MM1),
1.20 (MM2), 1.36 (MM3), 1.63 (MM4), 2.02 (MM5), 2.29 (MM6), 2.65 (MM?7), 3.03 (MMS),
3.21 (MM9), 3.75 (MM10), and 4.31 ppm (MM11). The spectral fitting method AMARES
(Vanhamme et al., 1997) in jMRUI (Stefan et al., 2009) was used to quantify the set of inversion
recovery signals as a sum of 11 damped sinusoids and the mean of amplitudes, frequency
locations and linewidths were used to create the individual MM resonances shown in Fig. 12
right. The final MM components are included in the basis set of AQSES subject to small
parameter variations.

When lineshape and baseline estimations are considered in the quantification, the model in
Eq. (3) changes and g(f) is estimated as:

Zszl gke(jff’k)e(znjfkt)vk(t) + 2?1:1 ﬁie(j&)i)e(znjfit) MMi(t)

g(t)

where y(t) is the experimental signal, B(t) is the non-parametric (spline) baseline from the
previous iteration, MM;(t) is the set of modeled profiles, K is the number of metabolites, vy (t)
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Fig. 12. Left: Real part of an in vivo metabolite-nulled MM spectrum acquired with a Bruker
scanner at 9.4 T with acquisition parameters: TI=800 ms, TR=3 s, NDP=2048 points and 1024
averages. Spectra were post-processed with a 15 Hz Lorentzian line broadening. Due to a
shorter T7, the marked (Cr + PCr) resonance at 3.9 ppm was not completely minimized,
therefore this peak was filtered out using HLSVD-PRO (top curve). Macromolecular
resonances are labeled as MM from 1 until 11 at the following central frequencies: 0.89, 1.20,
1.36, 1.63, 2.02, 2.29, 2.65, 3.03, 3.21, 3.75, 4.31 ppm; the mean of 10 filtered MM signals is
shown in the bottom curve. Right: Real part of the MM spectrum obtained with AMARES
using prior knowledge from the measured inversion recovery signals. This plot shows the
individual MMs computed based on the mean of the AMARES estimates of all measured
MMs. Small variations are expected for different signals which are then corrected by AQSES.

the metabolite signal k in the basis set, and the amplitudes ay, d;, frequency shifts f;, f; and
phase shift ¢y, ¢; are estimated from the previous iteration of the AQSES Lineshape algorithm.

To avoid mis-quantification due to overlapping of MM resonances with metabolites, we
combined MM3 with MM5-MM11 to obtain a single profile of seven resonances located in
the region between 2 ppm - 4.1 ppm where all important metabolites are resonating. Fig. 13
shows the results of fitting using the mean of inversion recovery measured baselines and the
mean of individual MMs obtained with AMARES (i.e., five MM profiles).

3.2.4 Inclusion of spatial constraints in MRSI quantification

Magnetic Resonance Spectroscopic Imaging (MRSI) provides MR spectra from multiple
adjacent voxels within a body volume represented as a 2 or 3 dimensional matrix, allowing
measurement of the distribution of metabolites over this volume. Commonly, for estimating
the metabolite concentrations, the signals within an MRSI grid are analyzed on a single
voxel basis by quantifying each signal individually. To this aim, methods such as QUEST
(Ratiney et al., 2005), AQSES (Poullet et al., 2007) or AMARES (Vanhamme et al., 1999) may
be considered (the list can be extended, see the methods listed at the beginning of section 3).
Compared with in vitro, ex vivo and single voxel in vivo MRS signals, in vivo MRSI data
have a lower quality due to the spatial/spectral trade-off. Moreover, the magnetic field
inhomogeneities, relatively low signal-to-noise ratio (SNR) and physiological motion that
might appear during an MRSI acquisition compromise the spectral resolution and lead to
strongly overlapping metabolite peaks. Therefore, quantifying metabolites within MRSI
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Fig. 13. AQSES fit for the mean spectra of short TE 'H MRS in vivo from mouse brains. Real
part of the in vivo spectrum (noisy signal) together with the fit using AQSES (bold line on top
of the signal), MM (dash-dotted curve below the signal), spline baseline (smooth curve below
the MM signal) and the residual (noisy line beneath). Quantification was made accounting
for the baseline in two ways: (i) considering a metabolite-nulled signal computed as the
mean of all measured signals (left) and (ii) considering 5 MM profiles obtained via AMARES
(right). Additionally, a very smooth splines function was used to fit any broadening of the
baseline.

data on a voxel-by-voxel basis can suffer from accuracy limitations that are inherent to
maximum likelihood estimation, and, moreover, it can be prone to faulty convergence to
local minima. Since MRSI provides spatial knowledge, in order to improve quantification
results, and thus, metabolite estimates in MRSI data, a new metabolite quantification method,
in which the available spatial information is exploited, has been proposed. The method, called
AQSES-MRSI, is a modified version of AQSES for MRSI data (Croitor Sava et al., 2011).

AQSES-MRSI starts by individually fitting each signal in the grid using nonlinear least squares
(Poullet et al., 2007; Sima & Van Huffel, 2007) to extract the spectral parameters, frequencies
and dampings, from each voxel which will be further used as prior knowledge. Then, for the
quantification of each voxel ¢ within the MRSI grid, spatial information is taken into account
in more steps. Moreover, several sweeps are performed through the grid and at each run some
hyper-parameters may be tuned. Firstly, the starting values for the nonlinear parameters, 0.
(vector containing damping corrections and frequency shifts for voxel c) are optimized by
setting them to the median of the parameter values from the considered neighbors 6;(s =
1,...,5, where S is the total number of voxels in the considered neighborhood). Secondly,
optimized bounds on the parameters’ variability are computed so that the parameters of the
neighboring voxels do not present a high variability. Thirdly, a penalty term that promotes
a spatially smooth spectral parameter map for the frequency shifts and damping corrections
are imposed, while allowing complete freedom to the metabolite amplitudes. The weight on
the smoothness of individual parameters is adjustable:
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where the signal y.(t) corresponds to voxel ¢ in the grid and the model 7. (¢, 6) is considered
as a weighted sum of metabolite signals with nonlinear corrections 6., similarly to the model in
Eq. (1). The second term, called penalty term, encourages a smooth solution for the problem.
g5 accounts for the trade-off between an optimal fitting of the current signal and the penalty,
0? is an estimate of the noise variance computed from the tail of the signal in time domain
in voxel ¢, B¢s is a weighting scalar which gives the influence of the parameters 6; on the
parameters . (as described below), W is a diagonal weighting matrix, with W € RKmxKm
which accounts for the scale differences between parameters, where K is the number of
metabolite profiles and m is the number of parameters per metabolite.

AQSES-MRSI'’s performance on simulated MRSI data with several types of disturbances
and on short echo time in vivo proton MRSI data showed improved metabolites estimates
compared to quantification of each voxel signal individually, see Fig. 14 and 15. With

Parameter maps

A B C D

RMSE
AQSES
AQSES MRS
0 15 0 15 0 15 0 15

I g3 EI EKET

Fig. 14. First row: simulated MRSI grids with different parameter maps: A-D. 2" and 3
row illustrate color maps with the values of the error in estimating the metabolite
concentrations, computed as a root mean square error (RMSE computed as in

(Croitor Sava et al., 2011)), for each voxel for AQSES and AQSES-MRS]I, respectively.
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Fig. 15. Metabolic maps obtained after applying AQSES-MRSI. The color scheme is relative
to each metabolite. The patient is diagnosed to have glioblastoma tumor (lower right corner
of the MRI image).

AQSES-MRS], overlapping peaks or peaks of compounds present at low concentration can
be better resolved than in single-voxel approaches.

Fig. 14 presents four simulated MRSI data sets of 1010 voxels generated with different levels
of inhomogeneities within the parameter maps. 75% of each simulated MRSI grid contains a
region with normal-tissue-like spectra and 25% of the grid presents tumor-tissue-like spectra
(damping, frequency and amplitude values were set to values corresponding to the signals
measured in normal brain and tumor region, respectively). The simulated MRSI signals were
obtained as a linear combination of 11 metabolite profiles: NAA, myo-inositol (Myo), Cr,
Phosphocholine (PCh), Glu, Lac, Ala, Glc, Tau plus two simulated lipids profiles located at
1.3 ppm (Lip1) and 0.9 ppm (Lip2). These profiles were selected from a measured database
acquired with a 1.5 T Philips NT Gyroscan using a PRESS sequence with TE=23 ms, and a
PRESS box of 2 x 2 x 2 cm3. The results illustrated in Fig. 14 show that regardless of the
degree of inhomogeneity, AQSES-MRSI outperforms the single voxel approach, AQSES.

Results on an in vivo MRSI case (see Fig. 15) show that AQSES-MRSI method provides
a much less noisy spatial metabolite distribution compared to single voxel approaches
(Croitor Sava et al.,, 2011). Well-contoured metabolic maps are obtained for all illustrated

metabolites. Even metabolites that are difficult to quantify with conventional approaches (see
Glu) are well estimated with AQSES-MRSI.

4. Discussion and conclusions

When using HLSVD for filtering the water and unwanted resonances in in vitro and in vivo
MRS(I) signals, the model order plays an important role. Compared to other methods, the
overestimation approach is able to suppress distorted lineshape peaks in the presence of low
or high SNR. Although we focused on 'H MRS signals, potential implementation with other
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nuclei is also feasible. Thus, in MRS signals a good peak suppression is essential to achieve
accurate quantification results and is therefore important for a correct usage of the signals.

Even though increasing importance has been given to the lineshape of MR signals, many
in vivo studies seem to still ignore this problem. For not heavily distorted MRS signals,
the Lorentzian lineshape is a good approximation to the shape of the experimental data.
However, it is advantageous to rely on a method that takes any shape into account. Therefore,
AQSES Lineshape works iteratively and evaluates the performance of tuning a more flexible
lineshape starting with the Lorentzian model. As a result, quantification of distorted signals
with lineshape estimation showed good quantification results for simulated, in vitro and in
vivo distorted signals.

Although the MM signal acquired by inversion recovery is known to provide a good
approximation of the macromolecular contamination, it is also true that it requires a long
acquisition time and is not reproducible when the conditions of the region of interest are
affected by acquisition problems and various diseases. Moreover, it also contains some
unsuppressed metabolites. Nevertheless, the baseline information acquired with this method
is a good approximation to the expected MM contributions. Therefore, the presented
approach includes prior knowledge about the frequency locations, amplitudes and linewidths
of individual MM profiles, which are beneficial for the quantification method.

Exploiting spatial prior knowledge when analyzing MRSI data has been tackled previously
(Bao & Maudsley, 2007; Kelm, 2007; Pels, 2005). In all these approaches a common
quantification solution is formulated for the whole MRSI grid. Still, due to the heterogeneity
of the tissue that characterizes brain tumors, and to the variations induced by magnetic field
inhomogeneities, a common optimization over the whole MRSI array may not always provide
satisfactory results. With AQSES-MRSI the bounds on the relevant values of the parameters
are iteratively adapted, and/or the parameters of the model function take at each iteration
new starting values for each voxel. Such a dynamic approach shows improved quantification
results and demonstrates that considering spatial information can improve the estimation of
metabolite levels.
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