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On-Line Monitoring of Batch  
Process with Multiway PCA/ICA 

Xiang Gao 
Yantai Nanshan University 

P. R. China 

1. Introduction 

Batch processes play an important role in the production and processing of low-volume, 

high-value products such as specialty polymers, pharmaceuticals and biochemicals. 

Generally, a batch process is a finite-duration process that involves charging of the batch 

vessel with specified recipe of materials; processing them under controlled conditions 

according to specified trajectories of process variables, and discharging the final product 

from the vessel.  

Batch processes generally exhibit variations in the specified trajectories, errors in the 

charging of the recipe of materials, and disturbances arising from variations in impurities. If 

the problem not being detected and remedied on time, at least the quality of one batch or 

subsequent batches productions is poor under abnormal conditions during these batch 

operations. Prior to completion of the batch or before the production of subsequent batches, 

batch processes need effective strategy of real-time, on-line monitoring to be detected and 

diagnosed the faults and hidden troubles earlier and identified the causes of the problems 

for safety and quality.  

Based on multivariable statistical analysis, several chemometric techniques have been 
proposed for online monitoring and fault detection in batch processes. Nomikos and 
MacGregor (1994, 1995) firstly developed a powerful approach known as multiway 
principal component analysis (MPCA) by extending the application of principal component 
analysis (PCA) to three-dimensional batch processes. By again projecting the information 
contained in the process-variable trajectories onto low-dimensional latent-variable space 
that summarizes both the variables and their time trajectories, the main idea of their 
approach is to compress the normal batch data and extract information from massive batch 
data. A batch process can be monitored by comparing with its time progression of the 
projections in the reduced space with those of normal batch data after having set up normal 
batch behaviour. Several studies have investigated the applications of MPCA (Chen & 
Wang, 2010; Jung-hui & Hsin-hung, Chen, 2006; Kosanovich et al., 1996; Kourti, 2003; 
Westerhuis et al., 1999).  

Many of the variables monitored in one  process are not independent in some cases, may be 

combination of independent variables not being measured directly. Independent component 

analysis (ICA) can extract the underlying factors or components from non-Gaussian 
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multivariate statistical data in the process, and define a generative model for massive 

observed data, where the variables are assumed to be linear or nonlinear mixtures of 

unknown latent variables called as independent components (ICs) (Lee et al., 2004; Ikeda 

and Toyama, 2000). Unlike capturing the variance of the data and extracting uncorrelated 

latent variable from correlated data on PCA algorithm, ICA seeks to extract separated ICs 

that constitute the variables. Furthermore, without orthogonality constraint, ICA is different 

from PCA whose direction vectors should be orthogonal. Yoo et al. (2004) extended ICA to 

batch process on proposing on-line batch monitoring using multiway independent 

component analysis (MICA), and regarded that ICA may reveal more information in non-

Gaussian data than PCA. 

Although the approach proposed by Nomikos and MacGregor (1994, 1995) is based on the 

strong assumption that all the batches in process should be equal duration and 

synchronized, every operational period of the batches is almost different from others 

actually because of batch-to-batch variations in impurities, initial charges of the recipe 

component, and heat removal capability from seasonal change, therefore operators have to 

adjust the operational time to get the desired product quality. There are several methods to 

deal with the different durations for the algorithm MPCA. However, neither stretching all 

the data length to the maximum by simply attaching the last measurements nor cutting 

down all ‘redundant trajectories’ to the minimum directly could construct the process model 

perfectly. Kourti et al. (1996) used a sort of indicator variable which is followed by other 

variables to stretch or compress them applied on industrial batch polymerization process. 

Kassidas et al. (1998) presented an effective dynamic time warping (DTW) technique to 

synchronize trajectories, which is flexible to transform the trajectories optimally modelling 

and monitoring with the concept of MPCA. DTW appropriately translates, expands and 

contracts the process measurements to generate equal duration, based on the principle of 

optimally of dynamic programming to compute the distance between two trajectories while 

time aligning the two trajectories (Labiner et al., 1978). Chen and Liu (2000) put forward an 

approach to transform all the variables in a batch into a series of orthonormal coefficients 

with a technique of orthonormal function approximation (OFA), and then use those 

coefficients for MPCA and multiway partial least square (MPLS) modelling and monitoring 

(Chen and Liu, 2000, 2001). One group of the extracted coefficients can be thought as 

abbreviation of its source trajectory, and subsequent relevant information of the projection 

from PCA can reveal the variation information of process well.  

About the measures of online monitoring MPCA, Nomikos and MacGregor (1995) presented 
three solutions: filling the future observation with mean trajectories from the reference 
database; attaching the current deviation as the prediction values of incomplete process; and 
partial model projection that the known data of appeared trajectories are projected onto the 
corresponding partial loading matrix. The former two schemes are introduced to estimate 
the future group of data by just filling hypothesis information simply, without consideration 
of possible subsequent variations; and on the latter scheme only part information of MPCA 
model is used with the appeared trajectories projection onto the corresponding part of 
loading matrix of MPCA to analyze the variation of local segments. Therefore the indices of 
monitoring may be inaccurate on the above three solutions. To eliminate the errors of 
monitoring, Gao and Bai (2007) developed an innovative measure to estimate the future data 
of one new batch by calculation of the Generalized Correlation Coefficients (GCC) between 
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the new batch trajectory and historical trajectories, to fill the subsequent unknown portion 
of the new batch trajectory with the corresponding part of the history one with  
maximum GCC.  

Recently, for online monitoring of batch process, some papers were involved in GCC 
prediction after DTW synchronization with MPCA/MICA (Bai et al., 2009a, 2009b; Gao et 
al., 2008b), other works were concerned with GCC prediction after OFA synchronization 
with MPCA/MICA (Bian 2008; Bian et al., 2009; Gao et al., 2008a). These examples proved 
that both DTW and OFA are integrated with GCC prediction perfectly with MPCA/MICA. 

In this chapter, a set of online batch process monitoring approaches are discussed. On real 
industrial batch process, the process data is not always followed Gaussian distribution, 
Compared with MPCA, MICA may reveal more hidden variation than MPCA though its 
complexity of computation; the methods of synchronization DTW and OFA, are applied in 
compound monitoring approaches respectively; four solutions for missing data of future 
value, are applied in an example comparatively.  

The chapter is organized as follows. Section 2 gives introduction of the principle of DTW 
and relevant method of synchronization. In section 3, the principle of OFA is also 
introduced in advance and narration of how the extracted coefficients from the trajectories 
are used for model and monitoring. Then the traditional three solutions of Nomikos and 
MacGregor (1995) and GCC estimation are discussed in Section 4. An industrial polyvinyl 
chloride (PVC) polymerization process is employed to illustrate the integrative approaches 
in Section 5. Finally, a conclusion is presented in Section 6. 

2. Dynamic time warping 

Dynamic Time warping (DTW) is a flexible, deterministic pattern matching method for 
comparing two dynamic patterns that may not perfectly aligned and are characterized by 
similar, but locally transformed, compressed and expanded, so that similar features within 
(Kassidas et al.,1998) the two patterns are matched. The problem can be discussed from two 
general trajectories, R and T. 

2.1 Symmetric and asymmetric DTW algorithm 

Let R and T express the multivariate trajectories of two batches, whose matrices of 
dimension t×N and r×N, separately, where t and r are the number of observations and N is 
the number of measured variables. In most case, t and r are not always equal, so that the two 
batches are not synchronized because they have not common length. Even if t=r, their 
trajectories may not be synchronized because of their different local characteristics. If one 
applies the monitoring scheme of MPCA (Nomikos and MacGregor, 1994), or the scheme of 
MICA (Yoo et al., 2004), by simply add or delete some measured points artificially, 
unnecessary variation will be included in statistical model and the subsequent statistical 
tests will not detect the faulty batches sensitively.  

On the principle of dynamic programming to minimize a distance between two trajectories, 
DTW warps the two trajectories so that similar events are matched and a minimum distance 
between them is obtained, because DTW will shift, compress or expand some feature vectors 
to achieve minimum distance (Nadler and Smith, 1993). 
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Fig. 1. Sketch map of nonlinear time alignment for two univariate trajectories R and T with 
DTW 

Let i and j denote the time index of the T and R trajectories, respectively. DTW will find 
optimal route in sequence F* of K points on a t×r grid. 

 * { (1), (2), ( )},max( , )F c c c K t r K t r     (1) 

where  

 ( ) [ ( ), ( )]c k i k j k  (2) 

and each point c(k) is an ordered pair indicating a position in the grid. Two univariate 
trajectories T and R in Figure 1 show the main idea of DTW. 

Most of DTW algorithms can be classified either as symmetric or as asymmetric. Although 
on the former scheme, both of the time index i of T and the time index j of R are mapped 
onto a common time index k, shown as Eqs.1, 2, the result of synchronization is not ideal, 
because the time length of synchronized trajectories often exceeds referenced trajectories. 
On the other hand, the latter maps the time index of T on the time index of R or vice-versa, 
to expand or compress more one trajectory towards the other. Compared with Eqs.1, 2, the 
sequence becomes as follow: 

 * { (1), (2), , ( ), ( )}F c c c j c r    (3) 

and 
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 ( ) ( ( ), )c j i j j  (4) 

This implies that the path will go through each vector of R, but it may skip some vectors of T. 

2.2 Endpoints, local and global constraints 

In order to find the best path through the grid of t×r grid, three rules of the DTW algorithm 
should be specified. 

(1) Endpoint constraints: c(1)=(1,1), c(K)=(t, r). 

(2) Local constraints: the predecessor of each (i, j) point of F* except (1,1) is only one from (i-
1, j), (i-1, j-1) or (i, j-1) , which is shown in Fig.2. 

(3)Global constraints: the searching area is ( )M M t r   widening strip area around the 

diagonal of the t×r grid, which is shown in Fig.3. 

The endpoint constraints illustrate that the initial and final points in both trajectories are 
located with certainty. The local continuity constrains consider the characteristics of time 
indices to avoid excessive compression or expansion of the two time scales (Myers et al. 1980). 

On the requirement of monotonous and non-negative path, the local constrains also prevent 
excessive compression or expansion from the several latest neighbors (Itakura, 1975). The 
global constraints prevent large deviation from the linear path. 

 

Fig. 2. Local continuity constraint with no constraint on slope 

2.3 Minimum accumulated distance of the optimal path 

As mentioned above, for the best path through a grid of vector-to-vector distances searched 

by DTW algorithm, some total distance measured between the two trajectories should be 

minimized. The calculation of the optimal normalized total distance is impractical, a feasible 

substitute is minimum accumulated distance, DA(i, j) from point (1,1) to point (i, j)(Kassidas 

et al., 1998). The suitable one is:  

 A A A A AD ( , ) ( , ) min[D ( 1, ),D ( 1, 1),D ( , 1)],D (1,1) (1,1)i j d i j i j i j i j d        (5) 

where 

 ( , ) [ ( ,:) ( ,:)] [ ( ,:) ( ,:)]Td i j T i R j W T i R j      (6) 
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d(i, j) is the weighted local distance between the i vector of the T trajectory and the j vector of 
the R trajectory, therein W is a positive definite weight matrix that reflects the relative 
importance of each measured variables. 

2.4 Synchronization based on combination of symmetric and asymmetric DTW 

2.4.1 The advantage and disadvantage of symmetric and asymmetric DTW 

As mentioned above, DTW works with pairs of patterns. Therefore, the problem of whether 
symmetric or asymmetric is suitable for synchronization. 

Let Bi(bi×N), i=1,2,…,I be a training set of good quality batches for MPCA/MICA models, 

where bi is the number of observations and N is number of measured variables, and one 

defined reference batch trajectories BREF, the objective is to synchronize each Bi with BREF 

(bREF×N). 

Symmetric DTW algorithms include all points in the original trajectories, but expanded 

trajectories of various lengths, because the length is determined by DTW. After 

synchronization, each Bi will be individually synchronized with BREF, but not with each 

other unfortunately. 

Although asymmetric may eliminate some points, they will produce synchronized trajectories 

of equal length, because each time axis of Bi will be mapped with the one of BREF so that they 

all are synchronized with reference trajectories BREF and synchronized with each other. 

Unavoidably, the asymmetric algorithms have to skip some points in the optimal path, so 

the characteristics of some segments may be left out after synchronization to construct 

incomplete MPCA/MICA model from ‘trimmed’ trajectories to cause miss/false alarm. 

2.4.2 The circumstance of combination of symmetric and asymmetric DTW 

The essence of DTW is to match the pairs of two trajectories on synchronization. At first, on 
symmetric DTW algorithm, the optimal path is reconstructed following above 3 constraints 
and Eq.5,6. Aligning points of Bi with BREF on asymmetric synchronization, some statuses 
would appear: 

(a) Some point of Bi may be copied multiply, because it matches several points of BREF; 

(b) Some point of Bi may be matched with the point in various time index of BREF, which 

means it will be transferred after synchronization; 

(c) More than one point of Bi may be averaged to a point that will be aligned with the 

particular point of BREF, because they are aligned with only one point of BREF in symmetric 

DTW algorithm. Although some local feature of points may be smoothed, it is proved that 

ensure that all Bi after asymmetric operation have the same duration bREF. 

2.4.3 An improvement of DTW algorithm for more measurements 

In some processes, the measurement may be relative too large to be satisfied with the need 
of memory of many calculated minimum accumulate distance DA (i, j). Gao et al. (2001) 
presented a solution to overcome the problem ‘out of memory’. Their idea is that DA (i, j) 
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should not be worked out until the final result DA (t, r) to accumulate a large number of the 
medium result. The programming can be composed with local dynamic programming in 
strip of adjacent time intervals, following is the improved algorithm under the three 
constraints and eq.5, 6, which is shown in Fig.3. 

1) When i=1, compute DA (i, :) from DA (1, 1), let IP=1, JP=1; 

2) Then i←(i +1), compute DA (i, :) with the aid of the result of DA (i-1, :); 

3) The local optimal path could be searched between the columns (i–1, :) and (i, :). The start 
point of the path is (IP, JP) and the relay end point is (IE, JE), where IE=IP+1, JE is ascertained 
on the following comparison: 

 *

arg min[ ( , ), ( , 1), ( , )

min{ , [ ( 1) /( 1) ]}

E A E P A E P A E
F

E

J D I J D I J D I q

q r fix I r t M

 

    


 (7) 

where fix is the function that keeps only the integer fraction of the result of computation. 

4) Delete the column of DA (i-1, :), then set IP←IE, JP←JE; 

5) Repeate step 2 to step 4 till i=t (t is one end point of pair); 

6) If (IP, JP) is (t, r), searching stops; otherwise if the (IP, JP) is (t, p) (p＜r), the rest path is from 

the point (t, p) to the final point (t, r). 

 

Fig. 3. The local optimization between two columns in the improved DTW 

2.5 Procedure of synchronization of batch trajectories 

The iterative procedure proposed for the synchronization of unequal batch trajectories 
(Kassidas et al., 1998) is a practical approach for industrial process, which is now being 
presented. 

First of all, each variable from each batch should be scaled as preparation. Let Bi, i=1,…,I be 

the result of scaled batch trajectories from I good quality raw batches, the scaling method is 

to find the average range of each variable in raw batches by averaging the range form each 

batch, then to divide each variable in all batches with its average range, and store average 

ranges for monitoring. Then synchronization begins. 
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Step 0: Select one of the scaled trajectories Bk as the referenced trajectories BREF on the 
technic requirement. Set weight matrix W equal to the identity matrix. Then execute the 
following steps for a specified maximum number of iterations. 

Step 1: Apply the DTW method between Bi, i=1,…,I, and BREF. Let , 1,iB i I  be the 

synchronized trajectories whose common durations is same as the one of BREF. 

Step 2: Compute the average trajectory B from average values of all Bi. 

Step 3: For each variable, compute the sum of squared deviations from B , whose inverse 
will be the newer weight of the particular variable for the next iteration. 

 

1

2

1 1

( , ) [ ( , ) ( , )]
REFbI

i
i k

W j j B k j B k j



 

 
  
 
   (8) 

As a diagonal matrix, W should be normalized so that the sum of the weight is equal to the 
number of variables, that is, W could be replaced as: 

 
1

/ ( , )
N

j

W W N W j j


      
   

  (9) 

Step 4: In most case, the times of iterations are not greater than 3, so keep the same 

referenced trajectory: BREF=Bk. If the more iterations are needed, set the reference equal to 

the average trajectory: BREF= B . 

2.6 Offline implementation of DTW for batch monitoring 

Now, a available complete trajectory of one new batch BRAW, NEW (bNEW×N) needs to be 
monitored using MPCA/MICA. It has to be synchronized before the monitoring scheme is 

applied because most probably the new batch trajectory BRAW, NEW hardly accord with the 
referenced trajectory BREF. 

When being scaled, each variable in the new batch BRAW, NEW is divided with the average 

range from referenced trajectory to get the resulting scaled new trajectory, B NEW. B NEW is 

synchronized with referenced trajectory BREF using W from Eq.8, 9 in the synchronization 

procedure to get the result NEWB (bNEW×N) which can be used in MPCA/MICA model. 

3. Orthonormal function approximation 

Under the condition of synchronous batch processes, the data from batch process are 
supposed to take the form of three-way array: j=1,2…J variables are measured at k=1,2,…K 

time intervals throughout i=1,2,…I batch runs. The most effective unfolding the three-way 
data on monitoring is to put its slices (I×J) side by side to the right, starting with the one 
corresponding to the first interval, then to generate a large two–dimensional matrix (I×JK) 

(Nomikos and MacGregor 1994, 1995; Wold et al., 1987). The variable in the two-
dimensional matrix is treated as a new variable for building PCA model. Nevertheless, the 
batch processes are asynchronous in some cases so that two–dimensional matrix (I×JK) can 
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not be formed. Unlike translation, expansion and contraction of process measurements to 
generate equal duration in DTW, orthonormal function is employed to eliminate the 
problem resulted from the different operating time to turn the implicit system information 

into several key parameters which cover the necessary part of the operating conditions for 
each variable in each batch (Chen and Liu, 2000; Neogi and Schlags, 1998).  

3.1 Orthonormal function 

On the concept of Orthonormal Function Approximation (OFA), the process measurements 
of each variable in each batch run can be mapped onto the same number of orthonormal 
coefficients to represent the key information. As an univariate trajectory, the profile of each 
variable in each batch run can be represented as a function F(t), which can be approximated 
in terms of an orthonormal set {φn } of continuous function: 

 
1

0

( ) ( , ) ( )
N

n n n
n

F t F C t t 




   (10) 

where the coefficients, { }nC  , ( ) ( )n nF t t dt   are the projection of F(t) onto each basis 

function. Therefore, the coefficients C of the orthogonal function is representative of the 

measured variable F(t) of one batch run. Not being calculated from a set of K measurements, 

the coefficient αn can be derived practically with orthonormal decomposition of F(t): 

 

0

1

1

( ) ( )

[ ]

( ) ( ) ( )

1,2, ,

0,1, , 1; 1,2, ,

k k

T
n n n n n

n k n k n n k

i

E t F t

E t E t t

k K

n N i I


 







   
 


  

E


 

 (11) 

where En= [En(t1) En(t2)…En(tki)]T and Φn= [φn(t1) φn(t2)…φn(tki)]T. The Legendre polynomial 

basis function is regard as an effective function to be used due to the finite time interval for 

each batch run (Chen and Liu, 2000): 

 
2

2 1
( ) ( )

2

1
( ) [( 1) ]

2 !

n n

n
n

n n n

n
t P t

d
P t t

n dt

 


 
 (12) 

where t∈[-1,1]. When n=0, the constant coefficient α0 is for 0 0( ) ( ) / 2t P t   and P0(t)=1. 
Before applying the orthonormal function approximation, the variables of the system with 
different units needs to be pretreated in order to be put on an equal basis. However, mean 
centering of the measurement data is not necessary because the constant coefficient α0 is for 
φ0 orthonormal basis function. Mean centering will affect the constant coefficient for φ0 
corresponding to zero. The ratio convergence test for mathematical series is applied to 
determine the approximation error associated with the reduction in the number of the basis 
spaces (Moore and Anthony, 1989). The measure of approximation effectiveness can be 
obtained as: 
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2 2 2
1 1

2 1
2

0

( ) N N N
N

N
n

n

F F
G N

F





 





 


 (13) 

where 
2

NF is the square of the Euclidean function norm of approximation FN(C, t). When a 

consistent minimum Gij(N) is reached, the required optimal number of terms Nij can be 

chosen for the measurement variable j at batch i (Moore and Anthony, 1989). Therefore, 

most of the behavior of the original F(t) is extracted from the coefficients C. Nevertheless, 

the maximum number of terms of the approximated function for each variable in all batch 

runs is taken to obtain enough more terms whose expansion FN(t) extracts the main behavior 

of F(t). 

 max{ }j ij
i

N N  (14) 

C1,1 C1,2 C1,J

C2,JC2,2C2,1

CI,1 CI,2 CI,J

Variables

Tim
e

OFA 

X

I

J

I

K

N1 N2 NJ

...

 

Fig. 4. The three-way array X in each batch run of different duration maps into a coefficient 
matrix Θ 

Therefore, the problem originated from the different operational time in each batch run is 
eliminated with the orthonormal approximation method when the same number of 
coefficients is used for the same measured variable. In this way, the key parameters contain 
the necessary part of the operating condition for each variable in each batch run. Like the 
multiway method, the coefficients are reorganized into time-ordered block and the blocks 

can be put in order with multiway matrices 
1

( )
J

j
j

I N


Θ : 
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1 1 1 2 1

2 1 2 2 2

1 2

, , , J

, , ,J

I, I, I, J

C C C

C C C

C C C

 
 
   
 
  

Θ






 (15) 

where , ,0 ,1 , 1[ , ]
ji j i i i NC      , represents the coefficient vector of the approximation 

function for the measurement variable j at batch i, and Nj is the needed number of terms for 

variable j. 

3.2 Offline implementation of OFA for batch monitoring 

When one new batch is completed, after being applied orthonormal function 

transformation, all the variables of the batch along the time trajectory become a row vector 

composed of a series of coefficients ,1 ,2 ,[ , ,..., ]new new new new JC C C  that can be projected onto Θ 

to implement PCA/ICA algorithm. 

4. Online monitoring schemes 

4.1 Traditional online monitoring schemes 

It is assumed that the future measurements are in perfect accordance with their mean 
trajectories as calculated from reference database, the first approach is to fill the unknown 
part of xnew with zeros. In other words, batch is supposed to operate normally for the rest of 
its duration with no deviations in its mean trajectories. On the analysis of Nomikos and 
MacGregor (1995), the advantage of this approach is a good graphical representation of the 
batch operation in the t plots and the quick detection of an abnormality in the SPE plot, 
whereas the drawback of this approach is that the t scores are reluctant, especially at the 
beginning of the batch run, to detect an abnormal operation. 

On the hypothesis that the future deviations form the mean trajectories will retain for the 
rest of the batch duration at their current values at the time interval k, the second approach 
is to fill the unknown part of xnew with current scaled values under the assumption that the 
same errors will persist for the rest of the batch run. Although the SPE chart is not relative 
sensitive than one in the first approach, the t scores pick up an abnormality more quickly 
(Nomikos and MacGregor, 1995). Nomikos and MacGregor (1995) had to suggest that the 
future deviations will decay linearly or exponentially from their current values to the end of 
the batch run, to share the advantages and disadvantages of the first two approaches. 

The unknown future observations can be regarded as missing data from a batch in MPCA 

on the third approach. To be consistent with the already measured values up to current time 

k, and with the correlation structure of the observation variables in the database as defined 

by the p-loading matrices of MPCA model, one can use the sub model of principal 

components of the reference database without excessive consideration of the unknown 

future values. MPCA projects the already known measurements ,( ( 1))new kx kJ   into the 

reduced space and calculates the t scores at each time interval as: 

 1
, ,( )T T

R k k k k new kt P P P x  (16) 
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where P ( )k kJ R is a matrix whose all elements in each columns of p-loading vectors (pr) 

from all the principal component are from start to the current time interval k. The matrix 
1( )T

k kP P  is well conditioned even for the early times, and approaches the identity matrix as k 

approaches the final time interval K because of the orthogonality property of the loading 

vectors pr (Nomikos and MacGregor, 1995). The advantage of this method is that at least 

10% known measurements of new batch trajectory are enough for computation and perfect t 

scores near to the actual final values. However, Nomikos and MacGregor (1995) also 

indicated that little information will result in quite large and unexplainable t scores at the 

early stage of the new batch run. Similarly, the third approach can be applied to MICA 

model that the deterministic part of independent component vector, ,
ˆ ( )d ks d Jk , can be 

calculated as: 

 , ,
ˆ

d k d new ks W x  (17) 

where Wd(Jk×1)is the deterministic part of Ws, a separating matrix in ICA algorithm. 

It is uncertain that which one of above mentioned schemes is most suitable for batch 

process. Nomikos and MacGregor (1995) stated that each scheme is fit for respective 

condition: the third for non frequent discontinuities, the second for persistent disturbances 

and the first for non persistent disturbances. They also suggested combining these schemes 

when online monitoring. 

4.2 Online monitoring with filling similar subsequent trajectory  

Generally, as measurements of correlation degree between two vectors, Correlation 

Coefficients (CC) are numerical values which stand for the similarity in some sense. 

However, because each multivariable trajectory can be expressed as one matrix whose 

columns are variables with time going on, the relationship of corresponding two matrices of 

two multivariable trajectories can not be distinctly denoted with CC in the form of a 

numerical value but a matrix that one can not examine the similarity between the matrices 

by comparing the CC value. A sort of Generalized Correlation Coefficients measuring 

method was presented to the solution of the mentioned problem by computation of the 

traces of covariances, because as the sums of the eigenvalues of the matrices, their traces 

expresses the features of corresponding matrices in some ways (Gao and Bai., 2007). 

Suppose that a monitoring trajectory V (k ×m), where k is the current time interval, and m is 

the number of variables, another trajectory Y (k ×m) from history model database is chosen 

to match with V (k ×m) , their GCC can be defined as: 

 
)][cov()][cov(

)],[cov(
),(

YV

YV
YV

trtr

tr
  (18) 

where tr is the function of trace, ρ(V,Y) is the GCC. In eq.18, the definitions of cov(V), 

cov(Y), cov(V, Y) are: 

 
1

)]E([)]E([
)cov(





n

T VVVV
V  (19) 

www.intechopen.com



 
On-Line Monitoring of Batch Process with Multiway PCA/ICA 

 

251 

 
[ E( )] [ E( )]

cov( )
1

T

n

 



Y Y Y Y

Y  (20) 

 cov( , ) E{[ E( )] [ E( )]}T  V Y V V Y Y  (21) 

When two trajectories align with each other from start, the range of GCC is (0, 1], they are 
more similar as the value of their GCC near to 1. Caution must be paid when two trajectories 
are asynchronous so that the two matrices which have different dimensions have to be dealt 
with in eq. 22. 

4.3 The procedure of online monitoring of asynchronous batch 

The first step is to deal with the lack of data of online batch. The trouble of online 
monitoring of asynchronous batch is to choose the scheme properly. As above mentioned, 
traditional schemes are relative easy to be implemented whereas GCC approach need more 
computation time than others. The ongoing new batch V (k ×m) needs to compare with 
many normal batches and abnormal batches included in history model database Ω 
contained more matrices for prepared in many cases. Due to different dimensions of 
matrices between the new batch run and history batch run Ni(Kn×m)∈Ω, i=1,2,...,h, h is the 
number of stored history batches in Ω, the pseudo covariance is introduced to be calculated 
instead of Eq. 21 (Gao et al., 2008b). 

 

Fig. 5. A sketch of GCC matching to decide the substitute of future measurements inhistory 
model library 

 cov( , ) [ ( )][ ( )] /max( , )T
i i i npsd E E K k  N V N N V V  (22) 
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Then one of trajectories, Ni(Kn×m) , that have the largest GCC with V (k ×m) is chosen. If 
k<Kn, extend V (k ×m) by copying from k+1 to Kn part of Ni(Kn×m) to follow V (k ×m), 
otherwise maintain V (k ×m). Although k is far less than Kn sometimes, the result of Eq.22 
reveals the homologous relationship like covariance between the two matrices. Hence, the 
insufficiency of data of online batch run can be solved by filling the assumptive values in 
different ways. 

The second step is pre-treatment of data. Before synchronization, all the measurements of 
new batch should be scaled. 

The third step is synchronization; one can choose DTW or OFA to deal with the 
asynchronous running trajectory. After that, the new test batch is similar to offline batch so 
as to be projected onto MPCA/MICA model.  

5. Case study 

5.1 Brief introduction of technics of PVC polymerization process 

As a thermoplastic resin, when its vinyl chloride molecules are associated, the production of 
PVC is forming chains of macromolecules, whose process is called polymerization. The 
vinyl chloride (VC) monomer, dipped in aqueous suspension, is polymerized in a rector 
shown as Fig.6. 

 

Fig. 6. Flow diagram of PVC polymerization progress  

The polymerization process reaction changes violently because the container in the rector 
goes through water phase, liquid VC phase and solid PVC phase on different stage of 
reaction. At the start of reaction, water, VC, suspension of stabilizers and initiator are on 
request loaded into the reactor through respective inlets, and then they are stirred 
adequately to create a kind of milky solution, suspension of VC droplets. 

It is noticed that several indices should be monitored and controlled on each stages of the 
reaction, especially temperatures. Nine important variables of all the batches depicted on 
Table 1, are shown in Fig.7 from one batch. At the beginning of the reaction, the hot water is 
pumped into the jacket of reactor to heat the reactor content to the set temperature (57℃). 
The indirect heating does not continue until the sufficient reaction heat has been generated 
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from the reaction. PVC in the solution will precipitate quickly to form solid phase PVC  
granules inside almost each VC monomer droplets on the polymerization, because it is not 
soluble in water, but little dissolved in the VC. 
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Fig. 7. Typical batch profiles of nine variable of PVC form one batch 

 

Variable NO. Sensor NO. Variable name Unit 

1 TIC-P101 Temperature of the reactor ℃ 
2 TIC-P102 Temperature of the reactor jacket inlet ℃ 
3 TI-P107 Temperature of the water inlet ℃ 
4 TI-P108 Temperature of the baffle outlet ℃ 
5 TI-P109 Temperature of the reactor jacket outlet ℃ 
6 PIC-P102 Pressure of the reactor MPa 
7 FIC-P101 Flow rate of baffle water m3/h 
8 FIC-P102 Flow rate of jacket water m3/h 
9 JI-P101 Stirring power KW 

Table 1. Polymerization reactor variables 

Due to the exothermic reaction, the temperature of the reactor will rise gradually so that the 
redundant reaction heat should be removed at once to keep constant temperate. In order to 
cool down the reactor, a flow of cooling water is pumped into the jacket surrounding the 
reactor. The condenser on the top the reactor also concentrates VC monomer from vapor to 
liquid. If temperature of reactor is lower than the set point temperature, the hot water is 
commanded to be injected in the jacket again, which is the automatic control of process by 
the parameters of the important variables. At the end of the polymerization, there is a little 
monomer of remained gaseous VC. With the VC being absorbed from the byproduct of 
exhaust gas, the polymerization does not continue until the action of terminator. 
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5.2 The essential of the batches of training set and test set 

Although the PVC process last just several hours (3h~8h), the sampling frequency is 
comparatively higher because it is necessary to online monitor time-variant batch process. 
The sampling interval is 5 seconds, so that all the measurements of any one batch is on the 
scope of (2000, 6000) due to the adjustment of the duration for different requirements of 
products. After more observation of the production, most of the durations of batches are 
around 3200 measurements and the distribution of the batches does not follow normal 
distribution.  
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Fig. 8. The profile of asynchronous batches of temperature of the reactor of PVC 

 

Batch Situation Details 

# 1 abnormal deviation from mean trajectories  
# 2 abnormal fluctuation of temperature of reactor, in the metaphase of reaction 
# 3 abnormal lower stirring power in the early stage of reaction, bring down 

various flow rates and various temperatures  
# 4 abnormal lower temperate of the water inlet in the early stage of reaction, 

cause the fluctuation of flow rate of baffle water and lower pressure 
of the reactor 

others normal  

Table 2. The situations of 10 tested batches of PVC 

The data of 50 normal batches are selected from the examples of the practical process as a 
training dataset. There are other 50 batches sent to the history library Ω, so the number of 
the batches in Ω is 100. 

From Fig.8 we can observe clearly the asynchronous chosen batches from temperature of 

the reactor (variable 1). There are 10 batches (#1~#10) taken as test data from the batch 

process in the plant. Some problems of these batches are listed in Table 2 in the 

polymerization of batch process, one tries to discriminate the abnormal of them with two 

statistics of SPE and T2 of MPCA, or SPE and I2 of MICA, and then find whose variables 

were affected. 
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5.3 The offline monitoring of batches without intelligent synchronization 

For those asynchronous batches modeling and monitoring, without intelligent 
synchronization of DTW or OFA, the rough method of synchrozation, to prune so-called 
redundant data over the specified terminal or to extend the short trajectories with the last 
values, is experimented. All the durations of reference batches and test batches should be 
3200 measurements. 

Then the reference data set is arranged as a three-way X (I×J×K), where I corresponds to 
50 batches, J corresponds to 9 process variables, and K corresponds to 3200 th time 
intervals. With the reference batch data X, the MPCA and MICA models are constructed 
initially. Offline analysis of ten test batches is executed to show if this kind of rough 
construction of data for MPCA or MICA is appropriate or not. After batch-wise unfolding, 
8 principal components of the MPCA model are determined by the cross-validation 
method (Nomikos and MacGregor, 1994), which explain 82.61% of the variability in the 
data. 8ICs are selected for the MICA for 77.54% variation of the whole data. Fig.9 shows 
the results of SPE based on MPCA and MICA under 99% control limit. It is clear that 
neither of MPCA nor MICA does well on the incorrect asynchronous multivariate statistic 
model: MPCA misses  the detection of the batch #2, and MICA reports false alarm batches 
#4,#5, and misses #1,#2. 
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Fig. 9. Offline analysis for ten test batches of PVC, left: MPCA, right: MICA 

5.4 Online monitoring of PVC batch process 

5.4.1 Online monitoring of PVC with DTW-MPCA and DTW-MICA 

On synchronization of DTW operation, all durations of the batches should be 3200. The 

weight matrix W= [1.1527, 1.8648, 0.2390, 1.4778, 0.1742, 0.2118, 0.8186, 0.2760, 0.4592, 

3.3258] from Eq.8, 9 for twice iterations. The MPCA model is built and its retained principal 

number is 8 to show 88.44%the variation of the batch process, whereas MICA retains 3 IC to 

explain the 93.85% of variation of data. All three solutions of of Nomikos and MacGregor 

(1995) and GCC are simulated compared with the offline analysis to find which one is the 

most appropriate in the batch process. 
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Fig.10 shows several online monitoring SPE indices of the 10 test batches compared with 
offline in MPCA and MICA, respectively. It can be shown that the MPCA results of first 
solution always misses faults in abnormal batches because of its smoothing the variation, 
the MICA result also misses the alarm of #2 and #3; while the results of second and third 
soltions are too large to alarm by mistake. 
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Fig. 10. SPE indices of online monitoring solutions, GCC and three solutions, left: DTW-
MPCA; right: DTW-MICA 

Comparatively, SPE of GCC prediction has adequate information of variations to identify 
the abnormal, only its MPCA results miss the abnormal of #4, the MICA results perform 
well. 

5.4.2 Online monitoring of PVC with OFA-MPCA and OFA-MICA 

After OFA synchronization, the information of original trajectories are extracted. Each 

variable of each batch run can be transformed into two coefficients, therefore in stead of 

irregular time length of three-dimensional data block, the two-dimensional coefficients 

matrix Θ  (50×18) inherits the main features from the primative three-dimensional data 

block. Based on the new data of coefficients, the MPCA and MICA are experimented 

respectively. The online monitoring time point is set to 800 th measurement. MPCA 

algorithm holds 12 PCs to explain the 89.52% variation of the data, whereas MICA reserved 

3ICs to illustrate the 51.92% variability in the data. The first two solutions of Nomikos and 

MacGregor (1995) and GCC are experimented in contrast with the offline analysis to find the 

best one in the batch process. It is noticed that the third solution does not fit for the 

coefficients matrix because the loading matrix is not from the coefficients, but from 

primative variables.  

From various on-line monitoring solutions and offline analysis, Q-statistics-the SPE indices 
of 10 test batches are drawn in Fig.11, with MPCA and MICA, respectively. Similarly, the 
first solution of Nomikos and MacGregor (1995) erases many fine characters of the process 
so that it cannot detect the problem of many batches correctly, and the values of results of 
second online monitoring method are too large to be drawn in Fig.11, and always make false 
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alarm to these batches, so it has to list them in Table 3. GCC performs well that it followed 
offline with a little difference. OFA-MPCA approach misses the abnormal of #1, #2, #4, 
whereas OFA-MICA detects four abnormal all.  

 

No. 1 2 3 4 5 

MPCA 232.89 101.48 84.305 206.15 153.59

MICA 738.69 844.37 254.93 437.87 301.89

No. 6 7 8 9 10 

MPCA 81.499 143.74 81.499 143.74 127.83

MICA 160.76 322.75 160.76 322.75 401.52

Table 3. The SPE of online monitoring in MPCA and MICA of the second solution 
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Fig. 11. SPE indices of online monitoring solutions, GCC and the mean values of the first 
solution, left: OFA-MPCA; right: OFA-MICA 

The D-statistics of PVC, T2 of OFA-MPCA and I2 of OFA-MICA are drawn in Fig.12 as 

well. GCC performs well in the D-statistics in the same way, either T2 or I2, which are both 

close to the counterparts of offline. The first traditional solution can not predict any little 

variation after the time of detection, and the second one always has too larger error to be 

drawn in Fig. 12 that the results of the second solution has to be enumerated in Table 4.  

 

No. 1 2 3 4 5 

T2 158.23 155.09 143.63 113.78 102.80

I2 252.67 926.58 263.94 114.91 104.79

No. 6 7 8 9 10 

T2 53.445 129.22 53.445 129.22 131.87

I2 41.569 70.977 41.569 70.977 110.13

Table 4. The T2 in MPCA and I2 in MICA of the second solution online monitoring  
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From Fig.12, it can be seen that OFA-MICA misses alarm #1 and #4, but OFA-MPCA has 
more errors: missed #1 and #3, and has a false alarm about #5, #7, #9 and #10. 

Consquently, it is proved that the effect of OFA-MICA is better than ones of OFA-MPCA on 
both of Q-statistics and D-statistics in Fig.11 and Fig.12.  
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Fig. 12. T2 or I2 indices of online monitoring solutions, GCC and the mean values of the first 
solution, left: OFA-MPCA; right: OFA-MICA 

5.5 Contribution plot of SPE and I
2
 in OFA-MICA 

The contribution plots can be used to dignose the event from non-conforming batches so as 

to assign a cause of abnormal by indication of which variables are predominatly responsible 

for the deviations (Jackson and Mudholkar, 1979). For instance, based on the approach of 

OFA-MICA, when the 800 th measurements of a diseased batch #3, the online SPE and I2 

contribution plots of 9 process variables are shown in Fig. 13 and Fig.14. It is obvious that 

the ratio of GCC (upper right) looks like the one of offline (upper left) which is different 

from the others (lower) distinctly. From Fig.13, The comparative larger ones of SPE is 

temperature of the baffle outlet (variable 4), flow rate of jacket water (variable 8) and stirring 

power (variable 9). Meanwhile we can find that the notable contribution of I2 in Fig.14 are 

temperature of the reactor jacket inlet (variable 2), baffle outlet (variable 4) and flow rate of 

jacket water (variable 8). Therefore, contrasted with the report from plant in Table 2, the root 

cause is lower stirring power (the most conspicuous one in bar plot of Fig.13), which 

decreased other variables such as variable 4 and variable 8 consequently. It is inferred that 

lower stirring power decreased the rate of the reaction and generated less heat and needed 

smaller quantity of cooling water. 
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Fig. 13. SPE Contribution plots of 4 monitoring methods in PVC. Upper left: offline; Upper 
right: online GCC; Lower left: online mean trajectories of first solution; Lower right: online 
current values of second solution 
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Fig. 14. I2 Contribution plots of 4 monitoring methods in PVC. Upper left: offline; Upper 
right: online GCC; Lower left: online mean trajectories of first solution; Lower right: online 
current values of second solution 
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6. Conclusion 

This chapter introduces online monitoring approaches of batch process to detect fine 
abnormal at early stage. MICA reveals more nature that occurs abnormal than MPCA. By 
DTW/OFA, two kinds of synchronization method, more accurate multivariate statistical 
models are constructed and new batch run is manipulated as much for correct monitoring. 
GCC method speculates the unknown data of future for MPCA/MICA well when batch 
process is online. However, in spite of its accuracy, the computation of MICA is more 
complicated than one of MPCA. It is not suggested to use the methods of synchronization 
if it is not serious asynchronous among the batch processes, because any method of 
synchronization consumes a large amount time and memory. Similarly, than other three 
traditional solutions, GCC needs more time of computation to compare with each other, 
and huge history model database. None of methods is predominant on the online 
monitoring of batch processes. The future work may combine the integrative approaches 
with SDG (Signed Direct Graph) to detect the root cause of the faults (Vedam & 
Venkatasubramanian, 1999). 
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