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1. Introduction

Many problems in various fields require measuring the similarity between two distributions.
Often, the distributions are represented through samples and no closed form exists for the
distribution, or it is unknown what the best parametrization is for the distribution . Therefore,
the traditional approach of first estimating the probability distribution using the samples, then
comparing the distance between the two distributions is not feasible. In this chapter, a method
to compute the similarity between two distributions, which is robust to noise and outliers, is
presented. The method works directly on the samples without requiring the intermediate
step of density estimation, although the approach is closely related to density estimation. The
method is based on mapping the distributions into a reproducing kernel Hilbert space, where
eigenvalue decomposition is performed. Retention of only the top M eigenvectors minimizes
the effect of noise on density comparison.

The chapter is organized in two parts. First, we explain the procedure to obtain the
robust density comparison method. The relation between the method and kernel principal
component analysis (KPCA) is also explained. The method is validated on synthetic examples.
In the second part, we apply the method to the problem of visual tracking. In visual tracking,
an initial target and target appearance is given, and must be found within future images. The
target information is assumed to be characterized by a probability distribution. Thus tracking,
in this scenario, is defined to be the problem of finding the distribution within each image of a
sequence that most fits the given target distribution. Here, the object is tracked by minimizing
the similarity measure between the model distribution and the candidate distribution where
the target position is the optimization variable.

2. Mercer kernels

Let {ui}n
i=1, ui ∈ R

d, be a set of n observations. A Mercer kernel is a function k : R
d ×R

d → R,
which satisfies:

1. k is continuous

2. k(ui, uj) = k(uj, ui). Symmetric

3. The matrix K, with entries Kij = k(ui, uj) is positive definite.
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φ : R
2 → R

3

Fig. 1. Toy example: Dot product in the mapped space can be computed using the kernel in
the input space.

Theorem: If k is a Mercer kernel then, there exists a high dimensional Hilbert space H with
mapping φ : R

d → H such that:

φ(ui) · φ(uj) = k(ui, uj). (1)

The Mercer kernel k implicitly maps the data to a Hilbert space H, where the dot product is
given by the kernel k.

3. Example

Figure 1 shows a simple binary classification example from Schölkopf & Smola (2001). The
true decision boundary is given by the circle in the input space. The points in the input

space, u = [u1, u2]
T, are mapped to R

3 using the mapping φ(u) = [u2
1,
√

2 u1u2, u2
2]

T. In R
3,

the decision boundary is transformed from an circle to a hyperplane, i.e. from a non-linear
boundary to a linear one. There are many ways to carry out the mapping φ, but the above
defined mapping has the important property that the dot product in the mapped space is
given by the square of the dot product in the input space. This means that the dot product in
the mapped space can be obtained without explicitly computing the mapping φ.

φ(u) · φ(v) = u2
1v2

1 + 2u1v1u2v2 + u2
2v2

2

= (u1v1 + u2v2)
2 = (u · v)2 = k(u, v).

An example Mercer kernel is Gaussian kernel:

k(ui, uj) =
1

√

|2πΣ|
exp

(

− 1

2
(ui − uj)

TΣ−1(ui − uj)

)

, (2)

where Σ is d × d covariance matrix.

4. Maximum nean discrepancy

Let {ui}nu

i=1, with ui ∈ R
d, be a set of nu observations drawn from the distribution Pu. Define

a mapping φ : R
d → H, such that

〈

φ(ui), φ(uj)
〉

= k(ui, uj), where k is a Mercer kernel
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Robust Density Comparison Using Eigenvalue Decomposition 3

function, such as the Gaussian kernel. The mean of the mapping is defined as μ : Pu → μ[Pu],
where μ[Pu] = E[φ(ui)]. If the finite sample of points {ui}nu

i=1 are drawn from the distribution

Pu, then the unbiased numerical estimate of the mean mapping μ[Pu] is 1
nu

∑
nu

i=1 φ(ui). Smola
et al. (2007) showed that the mean mapping can be used to compute the probability at a test
point u ∈ R

d as

p(u) = 〈μ[Pu], φ(u)〉 ≈ 1

nu

nu

∑
i=1

k(u, ui). (3)

Equation (3) results in the familiar Parzen window density estimator. In terms of the Hilbert
space embedding, the density function estimate results from the inner product of the mapped
point φ(u) with the mean of the distribution μ[Pu]. The mean map μ : Pu → μ[Pu] is injective,
Smola et al. (2007), and allows for the definition of a similarity measure between two sampled
sets Pu and Pv, sampled from the same or two different distributions. The measure is defined
to be D(Pu, Pv) := ||μ[Pu]− μ[Pv]||. This similarity measure is called the maximum mean
discrepancy (MMD). MMD has been used to address the two sample problem, Gretton et al.
(2007). The next section introduces Robust MMD (rMMD).

5. Robust maximum mean discrepancy

In the proposed method, principal component analysis is carried out in the Hilbert space H
and the eigenvectors corresponding to the leading eigenvalues are retained. It is assumed that
the lower eigenvectors capture the noise present in the data set. Mapped points in the Hilbert
space are reconstructed by projecting them onto the eigenvectors. The reconstructed points
are then used to compute the robust mean map. All the computations in the Hilbert space are
performed through the Mercer kernel in the input space and no explicit mapping is carried
out.

5.1 Eigenvalue decomposition

Let {ui}nu

i=1, with ui ∈ R
d, be a set of nu observations. As mentioned before, if k is a Mercer

kernel then there exists a high dimensional Hilbert space H, with mapping φ : R
d → H. The

covariance matrix CH in the Hilbert space H is given by

CH =
1

nu

nu

∑
i=1

φ(ui)φ(ui)
T,

Empirical computations of CH require one to know the mapping up front. A technique to
avoid this requirement is to perform eigenvalue decomposition of the covariance matrix CH
using the inner product matrix K, called the Gram/kernel matrix, with Kij = φ(ui)

Tφ(uj) =
k(ui, uj). The Gram matrix allows for an eigenvalue/eigenvector decomposition of the
covariance matrix without explicitly computing the mapping φ. The Gram kernel matrix
can be computed using the Mercer kernel. If ak

i , i = 1, . . . , n, and λk are the k-th eigenvector
components and eigenvalue of the kernel matrix K, then the k-th eigenvector of the covariance
matrix CH is given by Leventon (2002)

Vk =
1√
λk

n

∑
i=1

ak
i φ(ui).

209Robust Density Comparison Using Eigenvalue Decomposition
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Input space

Hilbert space

Reduced space

H → R
m

φ : R
d → H

Projections, f

Fig. 2. Eigenvalue decomposition in the Hilbert space H. Observations {ui}nu

i=1 are mapped
implicitly to the Hilbert space where eigenvalue decomposition results in an m-dimensional
reduced space.

5.2 Robust density function

Let V = [V1, · · · , Vm] be the m leading eigenvectors of the covariance matrix CH, where the
eigenvector Vk is given by

Vk =
nu

∑
i=1

αk
i φ(ui) with αk

i =
ak

i√
λk

,

where λk and ak
i are the kth eigenvalue and its associated eigenvector components,

respectively, of the kernel matrix K. The reconstruction of the point φ(u) in the Hilbert space
H using m eigenvectors V is

φr(u) = V · f(u), (4)

where f(u) = [ f 1(u), . . . , f m(u)]T is a vector whose components are the projections onto each
of the m eigenvectors. The projections are given by

f k(u) = Vk · φ(u) =
nu

∑
i=1

αk
i k(ui, u), (5)

This procedure is schematically described in Figure 2.

Kernel principal component analysis (KPCA) Scholköpf et al. (1998) is a non-linear extension
of principal component analysis using a Mercer kernel k. Eigenvectors V are the principal
components and the KPCA projections are given by Equation (5).

The reconstructed points, φr(u), are used to compute the numerical estimate of the robust
mean mapping μr[Pu]:

μr[Pu] =
1

nu

nu

∑
i=1

φr(ui) =
1

nu

nu

∑
i=1

m

∑
k=1

Vk f k(ui) =
m

∑
k=1

ωkVk,

where

ωk =
1

nu

nu

∑
i=1

f k(ui) (6)
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www.intechopen.com



Robust Density Comparison Using Eigenvalue Decomposition 5

The density at a point u is then estimated by the inner-product of the robust mean map μr[Pu]
and the mapped point φ(u).

p(u) = μr[Pu] · φ(u) =
m

∑
k=1

ωk f k(u). (7)

Retention of only the leading eigenvectors in the procedure minimizes the effects of noise
on the density estimate. Figure 3(d) shows density estimation of a multimodal Gaussian
distribution in the presence of noise using the robust method. The effect of noise is
less pronounced as compared to the kernel density estimation (Figure 3(b)). An alternate
procedure that reaches the same result (Equation 7) from a different perspective is proposed
by Girolami (2002). There, the probability density is estimated using orthogonal series of
functions, which are then approximated using the KPCA eigenfunctions.

5.2.1 Example:

As mentioned before a kernel density estimate, obtained as per Equation (3), is computable
using the inner product of the mapped test point and the mean mapping. The sample mean
can be influenced by outliers and noise. In Kim & Scott (2008), the sample mean is replaced
with a robust estimate using M-estimation Huber et al. (1981). The resulting density function
is given by

p(u) = 〈μ̂[Pu], φ(u)〉 , (8)

where the sample mean μ[Pu] is replaced with a robust mean estimator μ̂[Pu]. The robust
mean estimator is computed using the M-estimation criterion

μ̂[Pu] = arg min
μ[Pu]∈H

nu

∑
i=1

ρ(||φ(ui)− μ[Pu]||), (9)

where ρ is robust loss function. The iterative re-weighted least squares (IRWLS) is used to
compute the robust mean estimate. IRWLS depends only on the inner products and can be
efficiently implemented using the Mercer kernel Kim & Scott (2008). The resulting density
estimation function is

p(u) =
1

nu

nu

∑
i=1

γik(u, ui), (10)

where γi ≥ 0, ∑ γi = 1 and γi are obtained through IRWLS algorithm. The γi values tend to
be low for outlier data points.

In this section, we compare the performance of kernel density estimation (Equation (3)), robust
density estimation using M-estimation (Equation (10)) and robust density estimation using
eigenvalue decomposition (Equation 7).

A sample set X of 150 points is generated from a 2-dimensional multimodal Gaussian
distribution

X ∼ 1

3
N1(μ1, Σ1) +

1

3
N2(μ2, Σ2) +

1

3
N3(μ3, Σ3), (11)

where μ1 = [3, 3]T, μ2 = [−3, 3]T, μ3 = [0,−3]T and Σ1 = Σ2 = Σ3 = I. Outliers are
added from a uniform distribution over the domain [−6, 6]× [−6, 6]. Figure 3 shows the true
and the estimated density using the three methods. Data points corresponding to the outliers

211Robust Density Comparison Using Eigenvalue Decomposition

www.intechopen.com



6 Will-be-set-by-IN-TECH

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(a) True density

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(b) Kernel density estimation

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(c) Robust Kernel density estimation using
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(d) Robust Kernel density estimation using
eigenvalue decomposition

Fig. 3. Density estimation comparisons. The effect of outliers is less pronounced in the robust
density estimation using eigenvalue decomposition.

are marked as +. To measure the performance of the density estimates, the Bhattacharyya
distance is used. The number of outliers used in the tests are Γ = [20, 40, 60, 80, 100]. At each
Γ the simulations are run 50 times and the average Bhattacharyya distance is recorded. The
results are shown in Figure 4. The number of eigenvectors retained for the robust density
estimation were 8.

5.3 Robust maximum mean discrepancy

The robust mean map μr : Pu → μr[Pu], with μr[Pu] := ∑
nu

k=1 ωkVk, is used to define the
similarity measure between the two distributions Pu and Pv. We call it the robust MMD
(rMMD),

Dr(Pu, Pv) := ||μr[Pu]− μr[Pv]|| .

The mean map μr[Pv] for the samples {vi}nv

i=1 is calculated by repeating the same procedure
as for Pu. This may be computationally expensive as it requires eigenvalue decomposition of
the kernel matrices. Further, the two eigenspaces may be unrelated. The proposed solution is
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Robust Density Comparison Using Eigenvalue Decomposition 7
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Fig. 4. Bhattacharyya distance measure between true and estimated densities. Red: Robust
density estimation using eigenvalue decomposition, Green: robust density estimation using
M-estimation, Blue: Kernel density estimation.

to use the eigenvectors Vk of the distribution Pu. The similarity measure between the samples
is then given by

Dr(Pu, Pv) = ||ωu −ωv || , (12)

where ωu = [ω1
u, . . . , ωm

u ]
T and ωv = [ω1

v, . . . , ωm
v ]

T. Since both mean maps live in the same
eigenspace, the eigenvectors Vk have been dropped from the (Equation 12).

5.4 Summary

The procedure is summarized below.

• Given samples {ui}nu

i=1 and {vi}nv

i=1 from two distributions Pu and Pv.

• Form kernel matrix K using the samples from the distribution Pu. Diagonalize the kernel
matrix to get eigenvectors ak = [ak

1, . . . , ak
nu
] and eigenvalues λk for k = 1, ..., m, where m is

the total number of eigenvectors retained.

• Calculate ωu using Equation (6), and ωv by ωk
v = 1

nv
∑

nv

i=1 f k(vi).

• The similarity of Pv to Pu is given by Equation (12).

5.5 Example 1

As a simple synthetic example (visual tracking examples will be given in the next section), we
compute MMD and robust MMD between two distributions. The first one is a multi-modal
Gaussian distribution given by

X ∼ 1

3
N1(μ1, Σ1) +

1

3
N2(μ2, Σ2) +

1

3
N3(μ3, Σ3), (13)

where μ1 = [0, 0]T, μ2 = [5, 5]T, μ3 = [5,−5]T and Σ1 = Σ2 = Σ3 = .5 × I. The sample points
for the other distribution are obtained from the first one by adding Gaussian noise to about
50% of the samples. Figure 5(c) shows the MMD and robust MMD measure as the standard
deviation of the noise is increased. The slope of robust MMD is lower than MMD showing that
it is less sensitive to noise. In Figure 6, the absolute value of the difference between the two
distributions is plotted for MMD and rMMD measure. The samples from the two distributions
are shown in red and blue color. The effect of noise is more pronounced in case of MMD.

213Robust Density Comparison Using Eigenvalue Decomposition
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(b) Distribution 2 is obtained
by adding noise to distribution
1.
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Fig. 5. MMD vs robust MMD.
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(b) Difference function for rMMD

Fig. 6. Illustration of the effect of noise on the difference between the the two distributions.
The samples from the two distributions are shown in red and blue.

5.6 Example 2

Consider another example of a 2-dimensional swiss roll. The data set is generated by the
following function.

t =
3

2
· π · (1 + 2r) where r ≥ 0,

x = t · cos(t),

y = t · sin(t),

where x and y are the coordinates of the data points. 300 points are uniformly sampled and
are shown in Figure 7(a). The noisy data sets are obtained by adding Gaussian noise to the
original data set at standard deviations, σ = [0 − 1.5]. For example Figure 7(b) shows a noisy
data at σ = 1. We measure the similarity between the two data sets using MMD and rMMD.
20 eigenvectors are retained for the rMMD computation. Figure 8 shows that the MMD and
rMMD measure as the standard deviation of the noise is increased. The slope of rMMD is
lower than MMD showing that it is less sensitive to noise.

As mentioned earlier, the eigenvectors corresponding to the lower eigenvalues capture noise
present in the data set. The rMMD measure uses the the reconstructed points φr (Equation 4)
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Fig. 7. Swiss roll example
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Fig. 8. Curves measure the similarity between the two data sets as the noise level is increased.
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Fig. 9. Reconstruction of the noisy points using 10, 20, 30 eigenvectors Rathi, Dambreville &
Tannenbaum (2006). Blue: noise data set, Red: reconstructed points.

to compute the robust mean map. The reconstructed points are obtained by using only the
leading eigenvectors. Therefore, the effect of noise on the reconstructed points is reduced.
We use the method descibed in Rathi, Dambreville & Tannenbaum (2006) to visualize the
reconstructed points in the input space. Figure 9 shows the reconstructed points using
10, 20 and 30 eigenvectors. The blue dots are the noisy data set and the red dots are the
reconstructed points. It is clear from the figure that the reconstructed data points using few
leading eigenvectors match faithfully to the original data set.
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6. Visual tracking through density comparison

In the first part of the chapter, we presented a technique to robustly compare two distributions
represented by their samples. An application of the technique is visual target tracking. The
object is tracked by finding the correspondence of the object region in consecutive images by
using a template or a set of templates of the target object to define a model distribution. To
track the object, each image of the sequence is searched to find the region whose candidate
distribution closely matches the model distribution. A key requirement here is that the
similarity measure should be robust to noise and outliers, which arise for a number of reasons
such as noise in imaging procedure, background clutter, partial occlusions, etc.

One popular algorithm, the mean shift tracker Comaniciu et al. (2003), uses a histogram
weighted by a spatial kernel as a probability density function of the object region. The
correspondence of the target object between sequential frames is established at the region
level by maximizing the Bhattacharyya coefficient between the target and the candidate
distributions using mean-shift Cheng (1995). Instead of using the Bhattacharyya coefficient
as a distance measure between the two distributions, Hager et al. (2004) use the Matusita
distance between kernel-modulated histograms. The Matusita distance is optimized using
Newton-style iterations, which provides faster convergence than the mean-shift. Histograms
discard spatial information, which becomes problematic when faced with occlusions and/or
the presence of target features in the background. In Birchfield & Rangarajan (2005),
histograms were generalized to include spatial information, leading to spatiograms. A
spatiogram augments each histogram bin with the spatial means and covariances of the pixels
comprising the bin. The spatiograms captures the probability density function of the image
values. The similarity between the two density functions was computed using Bhattacharyya
coefficient. Elgammal Elgammal et al. (2003) employs a joint appearance-spatial density
estimate and measure the similarity of the model and the candidate distributions using
Kullback-Leigbler information distance.

Similarly, measuring the similarity/distance between two distributions is also required
in image segmentation. For example, in some contour based segmentation algorithms
(Freedman & Zhang (2004); Rathi, Malcolm & Tannenbaum (2006)), the contour is evolved
either to separate the distribution of the pixels inside and outside of the contour, or to
evolve the contour so that the distribution of the pixels inside matches a prior distribution
of the target object. In both cases, the distance between the distributions is calculated using
Bhattacharyya coefficient or Kullback-Liebler information distance.

The algorithms defined above require computing the probability density functions using the
samples, which becomes computationally expensive for higher dimensions. Another problem
associated with computing probability density functions is the sparseness of the observations
within the d-dimensional feature space, especially when the sample set size is small. This
makes the similarity measures, such as Kullback-Leibler divergence and Bhattacharyya
coefficient, computationally unstable, Yang & R. Duraiswami (2005). Additionally, these
techniques require sophisticated space partitioning and/or bias correction strategies Smola
et al. (2007).

This section describes a method to use robust maximum mean discrepancy (rMMD) measure,
described in the first part of this chapter, for visual tracking. The similarity between the two
distributions can be computed directly on the samples without requiring the intermediate step
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Robust Density Comparison Using Eigenvalue Decomposition 11

of density estimation. Also, the model density function is designed to capture the appearance
and spatial characteristics of the target object.

6.1 Extracting target feature vectors

The feature vector associated to a given pixel is a d-dimensional concatenation of a
p-dimensional appearance vector and a 2-dimensional spatial vector u = [F (x), x], where
F (x) is the p-dimensional appearance vector extracted from I at the spatial location x,

F (x) = Γ(I , x),

where Γ can be any mapping such as color I(x), image gradient, edge, texture, etc., any
combination of these, or the output from a filter bank (Gabor filter, wavelet, etc.).

The feature vectors are extracted from the segmented target template image(s). The set of all
feature vectors define the target input space D,

D = {u1, u2, ..., un},

where n is the total number of feature vectors extracted from the template image(s). The set
of all pixel vectors, {ui}nu

i=1, extracted from the template region R, are observations from an

underlying density function Pu. To locate the object in an image, a region R̃ (with samples
{vi}nv

i=1) with density Pv is sought which minimizes the rMMD measure given by Equation
(12). The kernel in this case is

k(ui, uj) = exp

(

− 1

2
(ui − uj)

TΣ−1(ui − uj)

)

, (14)

where Σ is a d × d diagonal matrix with bandwidths for each appearance-spatial coordinate,
{σF1

, . . . , σFp
, σs1 , σs2}.

An exhaustive search can be performed to find the region or, starting from an initial guess,
gradient based methods can be used to find the local minimum. For the latter approach, we
provide a variational localization procedure below.

6.2 Variational target localization

Assume that the target object undergoes a geometric transformation from region R to a region
R̃, such that R = T(R̃, a), where a = [a1, . . . , ag] is a vector containing the parameters of
transformation and g is the total number of transformation parameters. Let {ui}nu

i=1 and

{vi}nv

i=1 be the samples extracted from region R and R̃, and let vi = [F (x̃i), T(x̃i , a)]T =

[F (x̃i), xi]
T. The rMMD measure between the distributions of the regions R and R̃ is given by

the Equation (12), with the L2 norm is

Dr =
m

∑
k=1

(

ωk
u − ωk

v

)2
, (15)

where the m-dimensional robust mean maps for the two regions are ωk
u = 1

nu
∑

nu

i=1 f k(ui) and

ωk
v = 1

nv
∑

nv

i=1 f k(vi). Gradient descent can be used to minimize the rMMD measure with
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respect to the transformation parameter a. The gradient of Equation (15) with respect to the
transformation parameters a is

∇aDr = −2
m

∑
k=1

(

ωk
u − ωk

v

)

∇aωk
v,

where ∇aωk
v = 1

nv
∑

nv

i=1 ∇a f k(vi). The gradient of f k(vi) with respect to a is,

∇a f k(vi) = ∇x f k(vi) · ∇aT(x̃, a),

where ∇aT(x̃, a) is a g × 2 Jacobian matrix of T and is given by ∇aT = [ ∂T
∂a1

, . . . , ∂T
∂ag

]T. The

gradient ∇x f k(vi) is computed as,

∇x f k(vi) =
1

σ2
s

nu

∑
j=1

wk
jk(uj, vi)(πs(uj)− xi),

where πs is a projection from d-dimensional pixel vector to its spatial coordinates, such that
πs(u) = x and σs is the spatial bandwidth parameter used in kernel k. The transformation
parameters are updated using the following equation,

a(t + 1) = a(t)− δt∇aDr ,

where δt is the time step.

Frame 1

(a) Original

Frame 1

(b) Noise σ = .1

Frame 1

(c) Noise σ = .2

Frame 1

(d) Noise σ = .3

120 240

Frame

Fig. 10. Construction Sequence. Trajectories of the track points are shown. Red: No noise
added, Green: σ = .1, Blue: σ = .2, Black: σ = .3.
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Sequence Resolution Object size Total Frames

Construction 1 320 × 240 15 × 15 240

Construction 2 320 × 240 10 × 15 240

Pool player 352 × 240 40 × 40 90

Fish 320 × 240 30 × 30 309

Jogging (1st row) 352 × 288 25 × 60 303

Jogging (2nd row) 352 × 288 30 × 70 111

Table 1. Tracking sequence

6.3 Results

The tracker was applied to a collection of video sequences. The pixel vectors are constructed
using the color values and the spatial values. The value of σ used in the Gaussian kernel is
σF = 60 for the color values and σs = 4 for the spatial domain. The number of eigenvectors,
m, retained for the density estimation were chosen following Girolami (2002). In particular,
given that the error associated with the eigenvector k is

ǫk = (ωk)2 =

{

1

n

n

∑
i=1

f k(ui)

}2

, (16)

the eigenvectors satisfying the following inequality were retained,

{

1

n

n

∑
i=1

f k(ui)

}2

>
1

1 + n

{

1

n

n

∑
i=1

( f k(ui))
2

}

. (17)

In practice, about 25 of the top eigenvectors were kept, i.e, M = 25. The tracker was
implemented using Matlab on an Intel Core2 1.86 GHz processor with 2GB RAM. The run
time for the proposed tracker was about 0.5-1 frames/sec, depending upon the object size.

In all the experiments, we consider translation motion and the initial size and location of the
target objects are chosen manually. Figure 10 shows results of tracking two people under
different levels of Gaussian noise. Matlab command imnoise was used to add zero mean
Gaussian noise of σ = [.1, .2, .3]. The sample frames are shown in Figure 10(b), 10(c) and 10(e).
The trajectories of the track points are also shown. The tracker was able to track in all cases.
The mean shift tracker (Comaniciu et al. (2003)) lost track within few frames in case of noise
level σ = .1.

Figure 11 shows the result of tracking the face of a pool player. The method was able to track
100% at different noise levels. The covariance tracker Porikli et al. (2006) could detect the face
correctly for 47.7% of the frames, for the case of no model update (no noise case). The mean
shift tracker Comaniciu et al. (2003) lost track at noise level σ = .1.

Figure 12 shows tracking results of a fish sequence. The sequence contains noise,
background clutter and fish size changes. The jogging sequence (Figure 13) was tracked in
conjunction with Kalman filtering (Kalman (1960)) to successfully track through short-term
total occlusions.
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(a) Sample Frame. (b) No Noise

(c) Noise σ = .1. Noise is shown in only two
columns for better visualization.

(d) Noise σ = .2. Noise is shown in only two
columns for better visualization.

Fig. 11. Face sequence. Montages of extracted results from 90 consecutive frames for different
noise levels.
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  1  40 120 160

170 210 250 300

Fig. 12. Fish Sequence.

  1  56  65  80 300

Frame

304 316 323 330 414

Frame

Fig. 13. Jogging sequence.

7. Conclusion

This chapter presented a novel density comparison method, given two sets of points sampled
from two distributions. The method does not require explicit density estimation as an
intermediate step. Instead it works directly on the data points to compute the similarity
measure. The proposed similarity measure is robust to noise and outliers. Possible
applications of the proposed density comparison method in computer vision are visual
tracking, segmentation, image registration, and stereo registration. We used the technique
for visual tracking and provided a variational localization procedure.
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