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1. Introduction

Principal components analysis (PCA) is a popular descriptive multivariate method for
handling quantitative data. In PCA of a mixture of quantitative and qualitative data, it
requires quantification of qualitative data to obtain optimal scaling data and use ordinary
PCA. The extended PCA including such quantification is called nonlinear PCA, see Gifi [Gifi,
1990]. The existing algorithms for nonlinear PCA are PRINCIPALS of Young et al. [Young
et al., 1978] and PRINCALS of Gifi [Gifi, 1990] in which the alternating least squares (ALS)
algorithm is utilized. The algorithm alternates between quantification of qualitative data and
computation of ordinary PCA of optimal scaling data.

In the application of nonlinear PCA for very large data sets and variable selection problems,
many iterations and much computation time may be required for convergence of the ALS
algorithm, because its speed of convergence is linear. Kuroda et al. [Kuroda et al., 2011]
proposed an acceleration algorithm for speeding up the convergence of the ALS algorithm
using the vector ε (vε) algorithm of Wynn [Wynn, 1962]. During iterations of the vε accelerated
ALS algorithm, the vε algorithm generates an accelerated sequence of optimal scaling data
estimated by the ALS algorithm. Then the vε accelerated sequence converges faster than the
original sequence of the estimated optimal scaling data. In this paper, we use PRINCIPALS
as the ALS algorithm for nonlinear PCA and provide the vε acceleration for PRINCIPALS
(vε-PRINCIPALS). The computation steps of PRINCALS are given in Appendix A. As shown
in Kuroda et al. [Kuroda et al., 2011], the vε acceleration is applicable to PRINCALS.

The paper is organized as follows. We briefly describe nonlinear PCA of a mixture of
quantitative and qualitative data in Section 2, and describe PRINCIPALS for finding least
squares estimates of the model and optimal scaling parameters in Section 3. Section 4 presents
the procedure of vε-PRINCIPALS that adds the vε algorithm to PRINCIPALS for speeding
up convergence and demonstrate the performance of the vε acceleration using numerical
experiments. In Section 5, we apply vε-PRINCIPALS to variable selection in nonlinear PCA.
Then we utilize modified PCA (M.PCA) approach of Tanaka and Mori [Tanaka and Mori,
1997] for variable selection problems and give the variable selection procedures in M.PCA
of qualitative data. Numerical experiments examine the the performance and properties of
vε-PRINCIPALS. In Section 6, we present our concluding remarks.
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2 Principal Component Analysis

2. Nonlinear principal components analysis

PCA transforms linearly an original data set of variables into a substantially smaller set of
uncorrelated variables that contains much of the information in the original data set. The
original data matrix is then replaced by an estimate constructed by forming the product of
matrices of component scores and eigenvectors.

Let X = (X1 X2 · · · Xp) be an n × p matrix of n observations on p variables and be
columnwise standardized. In PCA, we postulate that X is approximated by the following
bilinear form:

X̂ = ZA⊤, (1)

where Z = (Z1 Z2 · · · Zr) is an n × r matrix of n component scores on r (1 ≤ r ≤ p)
components, and A = (A1 A2 · · · Ar) is a p × r matrix consisting of the eigenvectors of

X⊤X/n and A⊤A = Ir. Then we determine model parameters Z and A such that

θ = tr(X − X̂)⊤(X − X̂) = tr(X − ZA⊤)⊤(X − ZA⊤) (2)

is minimized for the prescribed r components.

Ordinary PCA assumes that all variables are measured with interval and ratio scales and can
be applied only to quantitative data. When the observed data are a mixture of quantitative
and qualitative data, ordinary PCA cannot be directly applied to such data. In such situations,
optimal scaling is used to quantify the observed qualitative data and then ordinary PCA can
be applied.

To quantify Xj of qualitative variable j with Kj categories, the vector is coded by using an
n×Kj indicator matrix Gj with entries g(j)ik = 1 if object i belongs to category k, and g(j)ik′ = 0

if object i belongs to some other category k′( �= k), i = 1, . . . , n and k = 1, . . . , Kj. Then the
optimally scaled vector X∗

j of Xj is given by X∗
j = Gjαj, where αj is a Kj × 1 score vector for

categories of Xj. Let X∗ = (X∗
1 X∗

2 · · · X∗
p) be an n × p matrix of optimally scaled observations

to satisfy restrictions

X∗⊤1n = 0p and diag

[

X∗⊤X∗

n

]

= Ip, (3)

where 1n and 0p are vectors of ones and zeros of length n and p respectively. In the presence
of nominal and/or ordinal variables, the optimization criterion (2) is replaced by

θ∗ = tr(X∗ − X̂)⊤(X∗ − X̂) = tr(X∗ − ZA⊤)⊤(X∗ − ZA⊤). (4)

In nonlinear PCA, we determine the optimal scaling parameter X∗, in addition to estimating
Z and A.

3. Alternating least squares algorithm for nonlinear principal components analysis

A possible computational algorithm for estimating simultaneously Z, A and X∗ is the ALS
algorithm. The algorithm involves dividing an entire set of parameters of a model into the
model parameters and the optimal scaling parameters, and finds the least squares estimates
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Acceleration of Convergence of the Alternating Least Squares Algorithm for Nonlinear Principal Components Analysis 3

for these parameters. The model parameters are used to compute the predictive values of the
model. The optimal scaling parameters are obtained by solving the least squares regression
problem for the predictive values. Krijnen [Krijnen, 2006] gave sufficient conditions for
convergence of the ALS algorithm and discussed convergence properties in its application
to several statistical models. Kiers [Kiers, 2002] described setting up the ALS and iterative
majorization algorithms for solving various matrix optimization problems.

PRINCIPALS

PRINCIPALS proposed by Young et al. [Young et al., 1978] is a method for utilizing the ALS
algorithm for nonlinear PCA of a mixture of quantitative and qualitative data. PRINCIPALS
alternates between ordinary PCA and optimal scaling, and minimizes θ∗ defined by Equation
(4) under the restriction (3). Then θ∗ is to be determined by model parameters Z and A and
optimal scaling parameter X∗, by updating each of the parameters in turn, keeping the others
fixed.

For the initialization of PRINCIPALS, we determine initial data X∗(0). The observed data X
may be used as X∗(0) after it is standardized to satisfy the restriction (3). For given initial data

X∗(0) with the restriction (3), PRINCIPALS iterates the following two steps:

• Model parameter estimation step: Obtain A(t) by solving

[

X∗(t)⊤X∗(t)

n

]

A = ADr, (5)

where A⊤A = Ir and Dr is an r × r diagonal matrix of eigenvalues, and the superscript (t)

indicates the t-th iteration. Compute Z(t) from Z(t) = X∗(t)A(t).

• Optimal scaling step: Calculate X̂(t+1) = Z(t)A(t)⊤ from Equation (1). Find X∗(t+1) such that

X∗(t+1) = arg min
X∗

tr(X∗ − X̂(t+1))⊤(X∗ − X̂(t+1))

for fixed X̂(t+1) under measurement restrictions on each of the variables. Scale X∗(t+1) by
columnwise centering and normalizing.

4. The vε acceleration of the ALS algorithm

We briefly introduce the vε algorithm of Wynn [Wynn, 1962] used in the acceleration of
the ALS algorithm. The vε algorithm is utilized to speed up the convergence of a slowly
convergent vector sequence and is very effective for linearly converging sequences. Kuroda
and Sakakihara [Kuroda and Sakakihara, 2006] proposed the ε-accelerated EM algorithm that
speeds up the convergence of the EM sequence via the vε algorithm and demonstrated that its
speed of convergence is significantly faster than that of the EM algorithm. Wang et al. [Wang
et al., 2008] studied the convergence properties of the ε-accelerated EM algorithm.

Let {Y(t)}t≥0 = {Y(0), Y(1), Y(2), . . . } be a linear convergent sequence generated by an

iterative computational procedure and let {Ẏ(t)}t≥0 = {Ẏ(0), Ẏ(1), Ẏ(2), . . . } be the accelerated
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4 Principal Component Analysis

sequence of {Y(t)}t≥0. Then the vε algorithm generates {Ẏ(t)}t≥0 by using

Ẏ(t−1) = Y(t) +

[

[

(Y(t−1) − Y(t))
]−1

+
[

(Y(t+1) − Y(t))
]−1

]−1

, (6)

where [Y]−1 = Y
/

||Y||2 and ||Y|| is the Euclidean norm of Y. For the detailed derivation of

Equation (6), see Appendix B. When {Y(t)}t≥0 converges to a limit point Y(∞) of {Y(t)}t≥0,

it is known that, in many cases, {Ẏ(t)}t≥0 generated by the vε algorithm converges to Y(∞)

faster than {Y(t)}t≥0.

We assume that {X∗(t)}t≥0 generated by PRINCIPALS converges to a limit point X∗(∞). Then

vε-PRINCIPALS produces a faster convergent sequence {Ẋ∗(t)}t≥0 of {X∗(t)}t≥0 by using
the vε algorithm and enables the acceleration of convergence of PRINCIPALS. The general
procedure of vε-PRINCIPALS iterates the following two steps:

• PRINCIPALS step: Compute model parameters A(t) and Z(t) and determine optimal scaling

parameter X∗(t+1).

• Acceleration step: Calculate Ẋ∗(t−1) using {X∗(t−1), X∗(t), X∗(t+1)} from the vε algorithm:

vecẊ∗(t−1) = vecX∗(t) +

[

[

vec(X∗(t−1) − X∗(t))
]−1

+
[

vec(X∗(t+1) − X∗(t))
]−1

]−1

,

where vecX∗ = (X∗⊤
1 X∗⊤

2 · · · X∗⊤
p )⊤, and check the convergence by

∥

∥

∥
vec(Ẋ∗(t−1) − Ẋ∗(t−2))

∥

∥

∥

2
< δ,

where δ is a desired accuracy.

Before starting the iteration, we determine initial data X∗(0) satisfying the restriction (3) and

execute the PRINCIPALS step twice to generate {X∗(0), X∗(1), X∗(2)}.

vε-PRINCIPALS is designed to generate {Ẋ∗(t)}t≥0 converging to X∗(∞). Thus the estimate of

X∗ can be obtained from the final value of {Ẋ∗(t)}t≥0 when vε-PRINCIPALS terminates. The
estimates of Z and A can then be calculated immediately from the estimate of X∗ in the Model
parameter estimation step of PRINCIPALS.

Note that Ẋ∗(t−1) obtained at the t-th iteration of the Acceleration step is not used as the estimate

X∗(t+1) at the (t + 1)-th iteration of the PRINCIPALS step. Thus vε-PRINCIPALS speeds

up the convergence of {X∗(t)}t≥0 without affecting the convergence properties of ordinary
PRINCIPALS.

Numerical experiments 1: Comparison of the number of iterations and CPU time

We study how much faster vε-PRINCIPALS converges than ordinary PRINCIPALS. All
computations are performed with the statistical package R [R Development Core Team,
2008] executing on Intel Core i5 3.3 GHz with 4 GB of memory. CPU times (in seconds)
taken are measured by the function proc.time1. For all experiments, δ for convergence

1 Times are typically available to 10 msec.
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Acceleration of Convergence of the Alternating Least Squares Algorithm for Nonlinear Principal Components Analysis 5

of vε-PRINCIPALS is set to 10−8 and PRINCIPALS terminates when |θ(t+1) − θ(t)| < 10−8,

where θ(t) is the t-th update of θ calculated from Equation (4). The maximum number of
iterations is also set to 100,000.

We apply these algorithms to a random data matrix of 100 observations on 20 variables with
10 levels and measure the number of iterations and CPU time taken for r = 3. The procedure
is replicated 50 times.

Table 1 is summary statistics of the numbers of iterations and CPU times of PRINCIPALS
and vε-PRINCIPALS from 50 simulated data. Figure 1 shows the scatter plots of the number
of iterations and CPU time. The values of the second to fifth columns of the table and the
figure show that PRINCIPALS requires more iterations and takes a longer computation time
than vε-PRINCIPALS. The values of the sixth and seventh columns in the table are summary
statistics of the iteration and CPU time speed-ups for comparing the speed of convergence of
PRINCIPALS with that of vε-PRINCIPALS. The iteration speed-up is defined as the number
of iterations required for PRINCIPALS divided by the number of iterations required for
vε-PRINCIPALS. The CPU time speed-up is calculated similarly to the iteration speed-up.
We can see from the values of the iteration and CPU time speed-ups that vε-PRINCIPALS
converges 3.23 times in terms of the mean number of iterations and 2.92 times in terms of the
mean CPU time faster than PRINCIPALS. Figure 2 shows the boxplots of the iteration and
CPU time speed-ups. Table 1 and Figure 2 show that vε-PRINCIPALS well accelerates the

convergence of {X∗(t)}t≥0.
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Fig. 1. Scatter plots of the number iterations and CPU time from 50 simulated data.

Figure 3 is the scatter plots of iteration and CPU time speed-ups for the number of iterations
of PRINCIPALS. The figure demonstrates that the vε acceleration speeds up greatly the

convergence of {X∗(t)}t≥0 and its speed of convergence is faster for the larger number of
iterations of PRINCIPALS. For more than 400 iterations of PRINCIPALS, the speed of the
vε acceleration is faster 3 times more than that of PRINCIPALS and the maximum values
of both speed-ups are for around 1,000 iterations of PRINCIPALS. The advantage of the vε
acceleration is very obvious.
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Fig. 2. Boxplots of iteration and CPU time speed-ups from 50 simulated data.

200 400 600 800 1000 1200 1400 1600

2

The number of iterations of PRINCIPALS

It
e

ra
ti
o

n
 s

p
e

e
d

-u
p

3
4

5

200 400 600 800 1000 1200 1400 1600

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

The number of iterations of PRINCIPALS

C
P

U
 t

im
e

 s
p

e
e

d
-u

p

Fig. 3. Scatter plots of iteration and CPU time speed-ups for the number of iterations of
PRINCIPALS from 50 simulated data.
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Acceleration of Convergence of the Alternating Least Squares Algorithm for Nonlinear Principal Components Analysis 7

PRINCIPALS vε-PRINCIPALS Speed-up
Iteration CPU time Iteration CPU time Iteration CPU time

Minimum 136.0 2.64 46.0 1.07 1.76 1.69
1st Quartile 236.5 4.44 85.0 1.81 2.49 2.27
Median 345.5 6.37 137.0 2.72 3.28 2.76
Mean 437.0 8.02 135.0 2.70 3.23 2.92
3rd Quartile 573.2 10.39 171.2 3.40 3.74 3.41
Maximum 1564.0 28.05 348.0 6.56 5.71 5.24

Table 1. Summary statistics of the numbers of iterations and CPU times of PRINCIPALS and
vε-PRINCIPALS and iteration and CPU time speed-ups from 50 simulated data.

Numerical experiments 2: Studies of convergence

We introduce the result of studies of convergence of vε-PRINCIPALS from Kuroda et al.
[Kuroda et al., 2011]. The data set used in the experiments is obtained in teacher evaluation
by students and consists of 56 observations on 13 variables with 5 levels each; the lowest
evaluation level is 1 and the highest 5.

The rates of convergence of these algorithms are assessed as

τ = lim
t→∞

τ(t) = lim
t→∞

‖X∗(t) − X∗(t−1)‖

‖X∗(t−1) − X∗(t−2)‖
for PRINCIPALS,

τ̇ = lim
t→∞

τ̇(t) = lim
t→∞

‖Ẋ∗(t) − Ẋ∗(t−1)‖

‖Ẋ∗(t−1) − Ẋ∗(t−2)‖
for vε-PRINCIPALS.

If the inequality 0 < τ̇ < τ < 1 holds, we say that {Ẋ∗(t)}t≥0 converges faster than {X∗(t)}t≥0.
Table 2 provides the rates of convergence τ and τ̇ for each r. We see from the table that

{Ẋ∗(t)}t≥0 converges faster than {X∗(t)}t≥0 in comparison between τ and τ̇ for each r and thus
conclude that vε-PRINCIPALS significantly improves the rate of convergence of PRINCIPALS.
The speed of convergence of vε-PRINCIPALS is investigate by

r τ τ̇

1 0.060 0.001
2 0.812 0.667
3 0.489 0.323
4 0.466 0.257
5 0.493 0.388
6 0.576 0.332
7 0.473 0.372
8 0.659 0.553
9 0.645 0.494

10 0.678 0.537
11 0.592 0.473
12 0.648 0.465

Table 2. Rates of convergence τ and τ̇ of PRINCIPALS to vε-PRINCIPALS.

ρ̇ = lim
t→∞

ρ̇(t) = lim
t→∞

‖Ẋ∗(t) − X∗(∞)‖

‖X∗(t+2) − X∗(∞)‖
= 0. (7)
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8 Principal Component Analysis

If {Ẋ∗(t)}t≥0 converges to th same limit point X∗(∞) as {X∗(t)}t≥0 and Equation (7) holds,

we say that {Ẋ∗(t)}t≥0 accelerates the convergence of {X∗(t)}t≥0. See Brezinski and Zaglia

[Brezinski and Zaglia, 1991]. In the experiments, {Ẋ∗(t)}t≥0 converges to the final value of

{X∗(t)}t≥0 and ρ̇ is reduced to zero for all r. We see from the results that vε-PRINCIPALS

accelerates the convergence of {X∗(t)}.

5. Variable selection in nonlinear PCA: Modified PCA approach

In the analysis of data with large numbers of variables, a common objective is to reduce the
dimensionality of the data set. PCA is a popular dimension-reducing tool that replaces the
variables in the data set by a smaller number of derived variables. However, for example, in
PCA of a data set with a large number of variables, the result may not be easy to interpret. One
way to give a simple interpretation of principal components is to select a subset of variables
that best approximates all the variables. Various variable selection criteria in PCA has been
proposed by Jolliffe [Jolliffe, 1972], McCabe [McCabe, 1984], Robert and Escoufier [Robert and
Escoufier, 1976], Krzanowski [Krzanowski, 1987]. Al-Kandari et al. [Al-Kandari et al., 2001;
Al-Kandari et al., 2005] gave guidelines as to the types of data for which each variable selection
criteria is useful. Cadima et al. [Cadima et al., 2004] reported computational experiments
carried out with several heuristic algorithms for the optimization problems resulting from the
variable selection criteria in PCA found in the above literature.

Tanaka and Mori [Tanaka and Mori, 1997] proposed modified PCA (M.PCA) for deriving
principal components which are computed by using only a selected subset of variables but
which represent all the variables including those not selected. Since M.PCA includes variable
selection procedures in the analysis, its criteria can be used directly to find a reasonable subset
of variables. Mori et al. [Mori et al., 1997] extended M.PCA to qualitative data and provided
variable selection procedures, in which the ASL algorithm is utilized.

5.1 Formulation of modified PCA

M.PCA derives principal components which are computed as linear combinations of a subset
of variables but which can reproduce all the variables very well. Let X be decomposed into an
n × q submatrix XV1

and an n × (p − q) remaining submatrix XV2
. Then M.PCA finds r linear

combinations Z = XV1
A. The matrix A consists of the eigenvectors associated with the largest

r eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr and is obtained by solving the eigenvalue problem:

[(S2
11 + S12S21)− DS11]A = 0, (8)

where S =

(

S11 S12

S21 S22

)

is the covariance matrix of X = (XV1
, XV2

) and D is a q × q diagonal

matrix of eigenvalues. A best subset of q variables has the largest value of the proportion P =

∑
r
j=1 λj/tr(S) or the RV-coefficient RV =

{

∑
r
j=1 λ2

j /tr(S2)
}1/2

. Here we use P as variable

selection criteria.

5.2 Variable selection procedures

In order to find a subset of q variables, we employ Backward elimination and Forward
selection of Mori et al. [Mori et al., 1998; Mori et al., 2006] as cost-saving stepwise selection
procedures in which only one variable is removed or added sequentially.
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Acceleration of Convergence of the Alternating Least Squares Algorithm for Nonlinear Principal Components Analysis 9

[Backward elimination]

Stage A: Initial fixed-variables stage

A-1 Assign q variables to subset XV1
, usually q := p.

A-2 Solve the eigenvalue problem (8).

A-3 Look carefully at the eigenvalues, determine the number r of principal components
to be used.

A-4 Specify kernel variables which should be involved in XV1
, if necessary. The number

of kernel variables is less than q.

Stage B: Variable selection stage (Backward)

B-1 Remove one variable from among q variables in XV1
, make a temporary subset of size

q − 1, and compute P based on the subset. Repeat this for each variable in XV1
, then

obtain q values on P. Find the best subset of size q − 1 which provides the largest P
among these q values and remove the corresponding variable from the present XV1

. Put
q := q − 1.

B-2 If P or q is larger than preassigned values, go to B-1. Otherwise stop.

[Forward selection]

Stage A: Initial fixed-variables stage

A-1 ∼ A-3 Same as A-1 to A-3 in Backward elimination.

A-4 Redefine q as the number of kernel variables (here, q ≥ r). If you have kernel
variables, assign them to XV1

. If not, put q := r, find the best subset of q variables
which provides the largest P among all possible subsets of size q and assign it to XV1

.

Stage B: Variable selection stage (Forward)

B-1 Adding one of the p − q variables in XV2
to XV1

, make a temporary subset of size q + 1
and obtain P. Repeat this for each variable in XV2

, then obtain p − q Ps. Find the best
subset of size q + 1 which provides the largest (or smallest) P among the p − q Ps and
add the corresponding variable to the present subset of XV1

. Put q := q + 1.

B-2 If the P or q are smaller (or larger) than preassigned values, go back to B-1. Otherwise
stop.

In Backward elimination, to find the best subset of q− 1 variables, we perform M.PCA for each
of q possible subsets of the q− 1 variables among q variables selected in the previous selection
step. The total number of estimations for M.PCA from q = p − 1 to q = r is therefore large,
i.e., p + (p − 1) + · · ·+ (r + 1) = (p − r)(p + r + 1)/2. In Forward selection, the total number
of estimations for M.PCA from q = r to q = p − 1 is pCr + (p − r) + (p − (r + 1)) + · · ·+ 2 =

pCr + (p − r − 1)(p − r + 2)/2.

Numerical experiments 3: Variable selection in M.PCA for simulated data

We apply PRINCIPALS and vε-PRINCIPALS to variable selection in M.PCA of qualitative
data using simulated data consisting of 100 observations on 10 variables with 3 levels.

Table 3 shows the number of iterations and CPU time taken by two algorithms for finding
a subset of q variables based on 3 (= r) principal components. The values of the second
to fifth columns in the table indicate that the number of iterations of PRINCIPALS is very
large and a long computation time is taken for convergence, while vε-PRINCIPALS converges
considerably faster than PRINCIPALS. We can see from the sixth and seventh columns in the
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10 Principal Component Analysis

table that vε-PRINCIPALS requires the number of iterations 3 - 5 times smaller and CPU time
2 - 5 times shorter than vε-PRINCIPALS. In particular, the vε acceleration effectively works to

accelerate the convergence of {X∗(t)}t≥0 for the larger number of iterations of PRINCIPALS.

(a) Backward elimination
PRINCIPALS vε-PRINCIPALS Speed-up

q Iteration CPU time Iteration CPU time Iteration CPU time
10 141 1.70 48 0.68 2.94 2.49
9 1,363 17.40 438 6.64 3.11 2.62
8 1,620 20.19 400 5.98 4.05 3.37
7 1,348 16.81 309 4.80 4.36 3.50
6 4,542 53.72 869 11.26 5.23 4.77
5 13,735 159.72 2,949 35.70 4.66 4.47
4 41,759 482.59 12,521 148.13 3.34 3.26
3 124 1.98 44 1.06 2.82 1.86

Total 64,491 752.40 17,530 213.57 3.68 3.52
(b) Forward selection

PRINCIPALS vε-PRINCIPALS Speed-up
q Iteration CPU time Iteration CPU time Iteration CPU time
3 4,382 67.11 1442 33.54 3.04 2.00
4 154,743 1,786.70 26,091 308.33 5.93 5.79
5 13,123 152.72 3,198 38.61 4.10 3.96
6 3,989 47.02 1,143 14.24 3.49 3.30
7 1,264 15.27 300 4.14 4.21 3.69
8 340 4.38 108 1.70 3.15 2.58
9 267 3.42 75 1.17 3.56 2.93
10 141 1.73 48 0.68 2.94 2.54

Total 178,249 2,078.33 32,405 402.40 5.50 5.16

Table 3. The numbers of iterations and CPU times of PRINCIPALS and vε-PRINCIPALS and
their speed-ups in application to variable selection for finding a subset of q variables using
simulated data.

The last row in Table 3 shows the total number of iterations and total CPU time for selecting
8 subsets for q = 3, . . . , 10. When searching the best subset for each q, PRINCIPALS requires
64,491 iterations in Backward elimination and 178,249 iterations in Forward selection, while
vε-PRINCIPALS finds the subsets after 17,530 and 32,405 iterations, respectively. These values
show that the computation times by vε-PRINCIPALS are reduced to only 28%(= 1/3.52) and
19% = (1/5.16) of those of ordinary PRINCIPALS. The iteration and CPU time speed-ups
given in the sixth and seventh columns of the table demonstrate that the vε acceleration works

well to speed up the convergence of {X∗(t)}t≥0 and consequently results in greatly reduced
computation times in variable selection problems.

Numerical experiments 4: Variable selection in M.PCA for real data

We consider the variable selection problems in M.PCA of qualitative data to mild distribution
of consciousness (MDOC) data from Sano et al. [Sano et al. 1977]. MDOC is the data matrix
of 87 individuals on 23 variables with 4 levels. In the variable selection problem, we select a
suitable subset based on 2 (= r) principal components.

Table 4 summarizes the results of variable selection using Backward elimination and Forward
selection procedures for finding a subset of q variables. We see from the last row of the table
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(a) Backward elimination

PRINCIPALS vε-PRINCIPALS Speed-up
q Iteration CPU time Iteration CPU time Iteration CPU time P

23 36 1.39 10 0.65 3.60 2.13 0.694
22 819 32.42 231 15.40 3.55 2.11 0.694
21 779 30.79 221 14.70 3.52 2.10 0.693
20 744 29.37 212 14.05 3.51 2.09 0.693
19 725 28.43 203 13.41 3.57 2.12 0.692
18 705 27.45 195 12.77 3.62 2.15 0.692
17 690 26.67 189 12.25 3.65 2.18 0.691
16 671 25.73 180 11.61 3.73 2.22 0.690
15 633 24.26 169 10.85 3.75 2.24 0.689
14 565 21.79 153 10.02 3.69 2.17 0.688
13 540 20.69 147 9.48 3.67 2.18 0.687
12 498 19.09 132 8.64 3.77 2.21 0.686
11 451 17.34 121 7.95 3.73 2.18 0.684
10 427 16.29 117 7.46 3.65 2.18 0.682
9 459 16.99 115 7.05 3.99 2.41 0.679
8 419 15.43 106 6.42 3.95 2.40 0.676
7 382 14.02 100 5.89 3.82 2.38 0.673
6 375 13.51 96 5.41 3.91 2.50 0.669
5 355 12.58 95 5.05 3.74 2.49 0.661
4 480 16.11 117 5.33 4.10 3.02 0.648
3 2,793 86.55 1,354 43.48 2.06 1.99 0.620
2 35 1.92 10 1.34 3.50 1.43 0.581

Total 13,581 498.82 4,273 229.20 3.18 2.18

(b) Forward selection
PRINCIPALS vε-PRINCIPALS Speed-up

q Iteration CPU time Iteration CPU time Iteration CPU time P
2 3,442 176.76 1,026 119.07 3.35 1.48 0.597
3 5,389 170.82 1,189 44.28 4.53 3.86 0.633
4 1,804 60.96 429 20.27 4.21 3.01 0.650
5 1,406 48.53 349 17.41 4.03 2.79 0.662
6 1,243 43.25 305 15.75 4.08 2.75 0.668
7 1,114 39.03 278 14.61 4.01 2.67 0.674
8 871 31.35 221 12.39 3.94 2.53 0.677
9 789 28.57 202 11.52 3.91 2.48 0.680
10 724 26.32 187 10.74 3.87 2.45 0.683
11 647 23.69 156 9.39 4.15 2.52 0.685
12 578 21.30 142 8.60 4.07 2.48 0.687
13 492 18.39 125 7.76 3.94 2.37 0.688
14 432 16.23 110 6.94 3.93 2.34 0.689
15 365 13.91 95 6.13 3.84 2.27 0.690
16 306 11.80 80 5.30 3.83 2.22 0.691
17 267 10.32 71 4.66 3.76 2.21 0.691
18 226 8.77 60 3.96 3.77 2.21 0.692
19 193 7.48 51 3.39 3.78 2.21 0.692
20 152 5.91 40 2.65 3.80 2.23 0.693
21 108 4.26 30 2.00 3.60 2.13 0.693
22 72 2.85 20 1.33 3.60 2.14 0.694
23 36 1.39 10 0.66 3.60 2.11 0.694

Total 20,656 771.88 5,176 328.81 3.99 2.35

Table 4. The numbers of iterations and CPU times of PRINCIPALS and vε-PRINCIPALS,
their speed-ups and P in application to variable selection for finding a subset of q variables
using MDOC.
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that the iteration speed-ups are 3.18 in Backward elimination and 3.99 in Forward selection

and thus vε-PRINCIPALS well accelerates the convergence of {X∗(t)}t≥0. The CPU time
speed-ups are 2.18 in Backward elimination and 2.35 in Forward selection, and are not as
large as the iteration speed-ups. The computation time per iteration of vε-PRINCIPALS is
greater than that of PRINCIPALS due to computation of the Acceleration step. Therefore, for
the smaller number of iterations, the CPU time of vε-PRINCIPALS is almost same as or may be
longer than that of PRINCIPALS. For example, in Forward selection for q = 2, PRINCIPALS
converges in almost cases after less than 15 iterations and then the CPU time speed-up is 1.48.

The proportion P in the eighth column of the table indicates the variation explained by the first
2 principal components for the selected q variables. Iizuka et al. [Iizuka et al., 2003] selected
the subset of 6 variables found by either procedures as a best subset, since P slightly changes
until q = 6 in Backward elimination and after q = 6 in Forward selection.

6. Concluding remarks

In this paper, we presented vε-PRINCIPALS that accelerates the convergence of PRINCIPALS

by using the vε algorithm. The algorithm generates the vε accelerated sequence {Ẋ∗(t)} using

{X∗(t)}t≥0 but it does not modify the estimation equations in PRINCIPALS. Therefore the
algorithm enables an acceleration of the convergence of PRINCIPALS, while still preserving
the stable convergence property of PRINCIPALS. The vε algorithm in itself is a fairly simple
computational procedure and, at each iteration, it requires only O(np) arithmetic operations.
For each iteration, the computational complexity of the vε algorithm may be less expensive
than that for computing a matrix inversion and for solving the eigenvalue problem in
PRINCIPALS.

The most appealing points of the vε algorithm are that, if an original sequence converges to
a limit point then the accelerated sequence converges to the same limit point as the original
sequence and its speed of convergence is faster than the original sequence. In all the numerical

experiments, the vε accelerated sequence {Ẋ∗(t)}t≥0 converges to the final value of {X∗(t)}t≥0

after the significantly fewer number of iterations than that of PRINCIPALS.

The numerical experiments employing simulated data in Section 4 demonstrated that vε

acceleration for PRINCIPALS significantly speeds up the convergence of {X∗(t)}t≥0 in terms of
the number of iterations and the computation time. In particular, the vε acceleration effectively
works to speed up the convergence for the larger number of iterations of PRINCIPALS.
Furthermore, we evaluate the performance of the vε acceleration for PRINCIPALS by
applying to variable selection in M.PCA of qualitative data. Numerical experiments using
simulated and real data showed that vε-PRINCIPALS improves the speed of convergence
of ordinary PRINCIPALS and enables greatly the reduction of computation times in the
variable selection for finding a suitable variable set using Backward elimination and Forward
selection procedures. The results indicate that the vε acceleration well works in saving the
computational time in variable selection problems.

The computations of variable selection in M.PCA of qualitative data are partially performed
by the statistical package VASpca(VAriable Selection in principal component analysis) that
was developed by Mori, Iizuka, Tarumi and Tanaka in 1999 and can be obtained from Mori’s
website in Appendix C. We will provide VASpca using vε-PRINCIPALS as the iterative
algorithm for PCA and M.PCA of qualitative data.
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8. Appendix A: PRINCALS

PRINCALS by Gifi [Gifi, 1990] can handle multiple nominal variables in addition to the single
nominal, ordinal and numerical variables accepted in PRINCIPALS. We denote the set of
multiple variables by JM and the set of single variables with single nominal and ordinal scales
and numerical measurements by JS. For X consisting of a mixture of multiple and single
variables, the algorithm alternates between estimation of Z, A and X∗ subject to minimizing

θ∗ = tr(Z − X∗A)⊤(Z − X∗A)

under the restriction

Z⊤1n = 0r and Z⊤Z = nIp. (9)

For the initialization of PRINCALS, we determine initial data Z(0), A(0) and X∗(0). The values
of Z(0) are initialized with random numbers under the restriction (9). For j ∈ JM, the initial

value of X∗
j is obtained by X

∗(0)
j = Gj(G

⊤
j Gj)

−1G⊤
j Z(0). For j ∈ JS, X

∗(0)
j is defined as the

first Kj successive integers under the normalization restriction, and the initial value of Aj is

calculated as the vector A
(0)
j = Z(0)⊤X

∗(0)
j . Given these initial values, PRINCALS as provided

in Michailidis and de Leeuw [Michailidis and Leeuw, 1998] iterates the following two steps:

• Model parameter estimation step: Calculate Z(t+1) by

Z(t+1) = p−1

⎛

⎝ ∑
j∈JM

X
∗(t)
j + ∑

j∈JS

X
∗(t)
j A

(t)
j

⎞

 .

Columnwise center and orthonormalize Z(t+1). Estimate A
(t+1)
j for the single variable j by

A
(t+1)
j = Z(t+1)⊤X

∗(t)
j /X

∗(t)⊤
j X

∗(t)
j .

• Optimal scaling step: Estimate the optimally scaled vector for j ∈ JM by

X
∗(t+1)
j = Gj(G

⊤
j Gj)

−1G⊤
j Z(t+1)

and for j ∈ JS by

X
∗(t+1)
j = Gj(G

⊤
j Gj)

−1G⊤
j Z(t+1)A

(t+1)
j /A

(t+1)⊤
j A

(t+1)
j

under measurement restrictions on each of the variables.
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9. Appendix B: The vε algorithm

Let Y(t) denote a vector of dimensionality d that converges to a vector Y(∞) as t → ∞. Let the
inverse [Y]−1 of a vector Y be defined by

[Y]−1 =
Y

‖Y‖2
,

where ||Y|| is the Euclidean norm of Y.

In general, the vε algorithm for a sequence {Y(t)}t≥0 starts with

ε(t,−1) = 0, ε(t,0) = Y(t),

and then generates a vector ε(t,k+1) by

ε(t,k+1) = ε(t+1,k−1) +
[

ε(t+1,k) − ε(t,k)
]−1

, k = 0, 1, 2, . . . . (10)

For practical implementation, we apply the vε algorithm for k = 1 to accelerate the

convergence of {Y(t)}t≥0. From Equation (10), we have

ε(t,2) = ε(t+1,0) +
[

ε(t+1,1) − ε(t,1)
]−1

for k = 1,

ε(t,1) = ε(t+1,−1) +
[

ε(t+1,0) − ε(t,0)
]−1

=
[

ε(t+1,0) − ε(t,0)
]−1

for k = 0.

Then the vector ε(t,2) becomes as follows:

ε(t,2) = ε(t+1,0) +

[

[

ε(t,0) − ε(t+1,0)
]−1

+
[

ε(t+2,0) − ε(t+1,0)
]−1

]−1

= Y(t+1) +

[

[

Y(t) − Y(t+1)
]−1

+
[

Y(t+2) − Y(t+1)
]−1

]−1

.

10. Appendix C: VASpca

URL of VASpca
http://mo161.soci.ous.ac.jp/vaspca/indexE.html
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