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1. Introduction 

We may define climate as a statistical synthesis of the weather conditions at a given place or 
region during a period of time. Climate is different from place to place and also changes 
with time. For instance, the climate is different in the British Islands, in Central Europe, in 
the Iberian Peninsula, in the Sahara or in the Amazons. The climate changes from Winter to 
Summer and from daytime to nigh time. 

The climate also shows variations over long periods of time. There are strong evidences of 
the existence in the past times of glacial and interglacial periods. A brief synthesis on this 
subject can be seen, for instance, in Duplessy and Morel (1990). There are also evidences of 
changes in climate over shorter time scales. Some of them are not detectable from direct 
instrument measures, which just began in a systematic way after the Second World War 
(Peixoto & Oort, 1992). Considerable effort has been made during the last decade to 
reconstruct global or northern hemispheric temperatures for the past in a long term 
perspective (Ljungqvist, 2010), referring for example: von Storch et al. (2004), Wanner et al. 
(2008), Osborn & Briffa (2006), Mann & Jones (2003), Lee et al. (2008) and Jones et al. (2009). 

Besides these changes in time, the climate shows year to year variability. 

For quantitative studies of the climate in the near past or present times series of 
measurements of the climatic elements such as air temperature, atmospheric pressure, 
precipitation amount, etc., are analysed. 

Climatic series are composed in such a way that they filter the seasonal and daily variability. 
For instance, it can be used climatic chronological series of values of mean air temperature 
in every January year after year, series of total annual precipitation amount year after year, 
series of mean atmospheric pressure during every spring year after year, etc. 

The climatic series formed in this way do not show seasonality or daily variability and have 
a statistical behaviour that is, in a first approximation, similar to realizations of white noise 
or red noise stochastic processes. The principal aim of the statistical climatology analysis is 
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to detect in the series properties that significantly differ that what should be expected from 
simple realizations of stationary white or red noise. These properties are called "signals" and 
the remainder part of the series is called the "noise". Typically climatic series have low signal 
to noise ratios or, in other words, the fraction of variance explained by the signal (or signals) 
is generally low when compared to the variance of the remainder noise. 

For regional studies of climatic variability with interest in spatial and/or spatio-temporal 
patterns the climatic series to be used are time series of bi-dimensional almost horizontal 
fields (surface or constant pressure levels). These fields can be specified by a number of 
irregularly spaced time series in meteorological stations or, preferably, in regular grids. The 
gridded values are the result of the averaging of synoptic meteorological analysis based in 
the observations in the region and performed by methods that use interpolation with 
physical consistency (e.g., Kalnay et al., 1996; Kistler et al., 2001). The term reanalysis refers 
to ad posteriori analyses using constant procedures over a large period of time, to avoid 
inhomogeneities that could otherwise be introduced in the series by the modification of the 
analysis methods over time.  

Principal Component Analysis (PCA) is commonly used in understanding the principal 
modes of climatic variability of an atmospheric variable. PCA is based on a compression 
method that reduces the variability to some number of modes explaining a considerable 
part of the field variance. A detailed analysis of the mathematics of the Empirical 
Orthogonal Functions (EOFs) approach to both scalar and vector fields can be found in 
Peixoto and Oort (1992). In von Storch and Zwiers (1999) is presented also a detailed 
description of the technique with applications in climatology. The method is applied on 
this study, both to a small country or region (e.g. Portugal, in case of winter seasonal 
precipitation) and to an extended area like the atmospheric surface pressure over the 
North Atlantic, allowing the knowledge of the most important variability modes, namely 
the well known leading mode of climate variability over the North Hemisphere, the North 
Atlantic Oscillation (NAO). 

The Singular Spectral Analysis (SSA) is a recent tool used in time series analysis. Contrary to 
classical spectral analysis or maximum entropy methods (MEM), where the basis functions 
are prescribed sines and cosines, SSA produces data-adaptive filters that are able to isolate 
oscillations spells, which makes the method more flexible and better suited for the analysis 
of non-linear, anharmonic oscillations (Vautard et al., 1992). Furthermore, SSA allows the 
decomposition of the temporal series associated to each mode in trends and periodicity 
component series. These series are easier to analyse due to the obvious noise reduction and 
permits the grouping of selected temporal reconstructed components of the detected modes.  

However, PCA just allows the evaluation of the principal spatial modes and how the 
respective spatial patterns evolve in time. The quasi-meridional NAO behaviour has been 
reported in several studies (Hurrell, 1996; Hurrell & van Loon, 1997) where analyses are 
performed by methods just based on PCA. However some authors used or are using, 
depending on the season, different locations mainly for the southern pole of the NAO 
index: Azores (Rogers, 1984), Lisbon (Antunes et al., 2006) and Gibraltar (Jones et al., 
1997). These different locations are justified by the non-stationary seasonal behaviour of 
the poles of the oscillation that is evident when seasonal PCA is performed seasonally 
(e.g. Hurrell et al., 2003). 
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The analysis of space-temporal variability, that is, the spatio-temporal analysis of modes 
evolving in space and time may provide more information about the underlying physical 
system (Vautard, 1995). In fact, a spatio-temporal analysis of the North Atlantic mean sea 
level pressure field reveals that the first mode of variability only behaves like what was 
supposed to be the NAO pattern, in extreme high and low NAO index phases. This space-
time analysis shows that the principal mode of oscillation is not always quasi-meridional, as 
it is frequently assumed, but has an oscillation pattern that changes assuming different 
orientations with time (Antunes et al., 2010). 

The application of PCA to the annual or seasonal precipitation amount in Portugal reveals 
very simple variability patterns (Serrano et al., 2003). In winter the consideration of just 
three Empirical Orthogonal Functions (EOFs) explains 94% of the total variability and the 
first mode, associated with precipitation anomalies of the same sign over the whole region, 
explains 85% of the total variance. 

The analysis performed by SSA is able to detect periodic characteristics in the time 
variability of the precipitation amount (Antunes et al., 2000) but these signals are not found 
to be statistically significant. However, when a space-temporal method is applied, the space 
time periodic signals became statistically significant, revealing again that the Multichannel 
Singular Spectral Analysis (MSSA) is an efficient tool in the detection of non-purely random 
characteristics in series with a weak signal/noise relation. 

All the signal components, detected by SSA or MSSA, must be tested for their significance to 
determine if they correspond to real oscillations. Monte Carlo analysis is a recognized method 
to estimate the confidence intervals of determined significance levels. The tests formulated by 
Allen and Robertson (1996) assume that data have been generated, according to the null 
hypothesis, by first-order autoregressive (AR(1)) independent processes (red noise). 

Since a large fraction of the surface atmospheric pressure field variance in the North Atlantic 
can be explained by the NAO (Hurrel, 1996), and considering that the western Portugal is 
located near the Atlantic Ocean, it is not surprising that very significant correlations can be 
found between pressure and precipitation amount climatic series. 

Recently, several studies tried to detect the Atlantic variability modes (spatio or temporal) at 
several time scales, and their relations with precipitation variability for the whole Iberian 
Peninsula, mostly in winter, when the great part of precipitation occurs (e.g. Zorita et al., 
1992; Esteban-Parra et al., 1998; Rodriguez-Puebla et al., 1998; Ulbrich et al., 1999; Goodess & 
Jones, 2002; Trigo et al., 2004).  

The analyses using selected components extracted from the spatio-temporal variability 
reinforce the importance of detection of these noise reduced signals with similar periodic 
characteristics. The cross correlation functions reveal that there is a potential predictability 
of winter precipitation in Portugal. 

The spatial evolution of the principal variability modes detected by MSSA also allows the 
knowledge improvement of the behaviour of both variables for the same time steps. 

2. Data 

The analysis of mean sea level pressure fields was performed using data from the National 
Centers for Environmental Prediction/National Center for Atmospheric Research 
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(NCEP/NCAR) reanalysis project from 1949 to 2000 (Kalnay et al., 1996). Data are available 
in a latitude–longitude grid (2.5° × 2.5°) and refer to monthly means that are subsequently 
processed resulting in annual and seasonal means. The analysed area of the North Atlantic 
is bounded by latitudes 20 and 80°N and longitudes 90 and 0°W. Data obtained from 
reanalysis tend to be spatial-scale dependent causing the violation of the assumption of 
independence required for the statistical analysis. Thus, to avoid this dependence in 
adjacent series and the consequent temporal autocorrelation, the first ten principal 
components obtained by PCA are used instead of all channels of the field grid points. The 
former are orthogonal, that is, non-correlated for zero time lags. 

The analysis of multivariate precipitation time series was performed using 11 stations 
located in mainland Portugal from 1949 to 2000. The data represent the highest quality-
controlled series recorded in Portugal. These data have no missing values and have been 
subjected to a previous homogeneity analysis. More details about localization, station 
metadata and a climatologic summary can be found in Antunes (2006). Before processing, 
the data were normalized, that is, centred around the mean and standardized by the 
standard deviation. 

For both variables, winter refers to the months from December to February. The other seasons 
are defined similarly and the annual means are calculated from January to December. 

3. Methods 

3.1 Multichannel singular spectral analysis 

PCA is frequently used to compress variability into a reduced number of modes that explain 
a considerable part of the field variance. However, this method just allows the evaluation of 
the spatial mode and shows how the respective spatial pattern evolves in time, that is, the 
EOFs and the associated T-PCs. 

The space-temporal variability can be accomplished through the use of multichannel 
singular spectral analysis (MSSA) which is an extension of SSA, used in time series analysis 
and described in Vautard et al. (1992). 

Considering a spatio-temporal field Xli, l being the spatial index (l≤ l ≤L), i the discrete 
temporal index (1≤ i ≤N) and j the temporal lag, MSSA can be formulated as 

,
1

1 , 1
L M

k k
l i j i lj

k

X a E l L j M





      

where the coefficients k
ia are the spatio-temporal principal components (ST-PCs) and Ek are 

the eigenvectors of the cross-covariance matrix called spatio-temporal empirical orthogonal 
functions (ST-EOFs). 

The MSSA method computes the lagged cross covariances between the channels, and a 
multichannel trajectory matrix is created. This is done by first generating each channel (i.e. 
either the time series of each grid point or the time series of each T-PC) with M lagged 
copies of itself, M being the number of temporal lags, and then forming the full augmented 
trajectory matrix (Allen & Robertson, 1996).  
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This lagged cross covariance matrix TX of dimension (LxM)x(LxM) is formed by blocks that 
contain the lagged cross covariances of pairs of channels at lags 0 to M-1: 

11 12 1
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1 1

T T T
T T

T T
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L L
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   

 

 

where Tll’ of dimension (MxM) is the lag covariance of X between channels l and l’. 

Singular value decomposition (SVD) was the method applied to this matrix to yield two 
orthogonal bases, the right and the left singular vectors (Robertson, 1996). The first of these, 
the eigenvectors of the matrix, are a sequence of spatial modes (ST-EOFs) and the others, the 
associated principal components (ST-PCs), represent the way how these patterns evolve in 
time. The orthogonality of the covariance matrix both in time (zero cross covariance of two 
different ST-PCs at lag 0) and in space (orthogonality of the ST-EOFs) implies that the 
diagonal of the matrix corresponds to the associated explained variances. These variances 
are of decreasing importance as the order k increases. 

More details of MSSA can be found in Plaut and Vautard (1994). 

Both SSA and PCA are particular cases of the MSSA. SSA can be derived considering just 
one series in analysis: 

1
1

M
k k

i j i j ji
k

x a E X j M


     

and PCA can be derived from MSSA considering the null time lag: 

1

1
L

k k
li i l

k

X a E l L


    

MSSA, being a spatio-temporal variability analysis and allowing the evolution of the spatial 
patterns in time, improves the knowledge of modes evolving simultaneously in space and 
time. This analysis solves an eigenvalue matrix problem to be solved of an added 
embedding dimension of (number of series * window length) (Plaut & Vautard, 1994). 

As in other methods of spectral analysis, the window length M is an essential issue in 
MSSA. Its selection involves a compromise: N being the number of terms of the time series, 
N −M + 1 needs to be large enough to allow adequate signal/noise enhancement, but small 
enough to guarantee the statistical robustness. In this and previous studies (Antunes et al., 
2006, Antunes et al., 2010), the results of the experiments performed by Plaut and Vautard 
(1994) have been considered: the method does not distinguish between different oscillations 
of period longer than M, and a window length M typically allows the distinction of 
oscillations of periods in the range (M/5, M). 
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3.2 Statistical significance testing 

Contrary to classical or maximum entropy spectral analysis, where the basis functions are 
prescribed sines and cosines, SSA produces data-adaptive filters that are able to isolate 
oscillations spells, which makes the method more flexible and better suited for the analysis 
of non-linear, anharmonic oscillations (Vautard et al., 1992). Similar to SSA, if the variance of 
the series is dominated by an oscillation, MSSA generates a pair of EOFs nearly periodic, 
with a similar period, and in quadrature (Plaut & Vautard, 1994). 

However, these pairs can also be randomly generated realizations of processes which do not 
have an oscillatory nature and consequently, once detected, must be tested to determine if 
they correspond to real oscillations. 

The null-hypothesis, as formulated by Allen and Robertson (1996), is that data have been 
generated by L first-order autoregressive (AR(1)) independent processes (red noise), with L 
being the number of channels. 

The null-hypothesis can be rejected if the spectrum of the eigenvalues associated with the 
modes detected by MSSA is higher than that expected in data generated by red noise 
processes. The confidence intervals for a given significance level are estimated using Monte 
Carlo simulations. A large ensemble of normally distributed (gaussian) surrogate noise time 
series is generated with the null hypothesis characteristics, in the case autoregressive first 
order processes, with the same length, variance and temporal lag-one autocorrelation as the 
series that form the centred input channels. 

Allen and Robertson (1996) suggest two different significance tests based on the same null-
hypothesis: the first using the ST-PCs and ST-EOFs of the data, and the second using the ST-
PCs and ST-EOFs of the null hypothesis. In the first test the lag covariance matrix is 
computed from the data whereas, in the second, the lag covariance matrix is computed from 
data generated by Monte Carlo methods. The subsequent procedure of projecting data and 
noise surrogates onto the vector basis is similar in both the tests. The second test is more 
robust as the former implicitly assumes the existence of a signal before any signal has been 
identified (Allen and Smith, 1996). Besides that, the second test does not present the artificial 
variance compression problem that boosts the significance of the first ST-PCs in the 
detriment of higher order modes. 

Tests are based on the WMO Technical Note N° 79 (Mitchell, 1966): a spectral peak is 
considered significant at the 0.05 level if it goes above the upper limit of the 90% confidence 
interval with limits 5 and 95% (unilateral or one-tailed test). 

4. Pressure variability in the North Atlantic 

A Principal Component Analysis (PCA) applied to the mean sea level pressure field of the 
North Atlantic reveals the North Atlantic Oscillation (NAO) pattern as the principal mode 
of annual and seasonal variabilities. Before the application of PCA the time series were 
normalized, that is, centred and standardised to avoid overweighting the locations with 
larger variance; linear trends for each point of the field were also removed. 

This oscillation mode, presented in Figure 1 for all seasons, means that pressure above the 
mean at mid-latitudes tends to occur simultaneously with pressure below the mean at higher 
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latitudes (positive NAO phase) and vice-versa, pressure below the mean at mid-latitudes 
tends to occur with pressure above the mean at higher latitudes (negative NAO phase). 

 
Fig. 1. Representation of the first EOFs of North Atlantic pressure variability in (a) winter, 
(b) spring, (c) summer and (d) autumn. The units are arbitrary. 

The NAO is the principal mode of variability in all seasons but the patterns, namely the 
locations of the centres of action, differ from season to season. The variance explained by 
each first seasonal mode also changes depending on the season: it is in winter and in spring 
that these principal modes explain the most variance of the field variability (43 and 41%, 
respectively); in summer and autumn these modes just explain 32 and 30%, respectively, of 
the total pressure variance. 

The analysis of the time variability of the temporal principal components (T-PCs) associated 
with each principal seasonal empirical orthogonal functions (EOFs) was performed using 
Singular Spectral Analysis (SSA). The same analysis was applied to the T-PC associated with 
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the first annual pressure pattern. The method provides the decomposition of each of these 
series in reconstructed components, allowing to isolate the part of the signal involved with 
an oscillation. Table 1 presents the periodicities, estimated by maximum entropy methods, 
of the first two paired components of each T-PC. Results reveal different periodicities in the 
first annual and seasonal modes, which are not statistically significant when tested against 
the red noise null hypothesis at the 0.05 significance level. 

Comparison between the periodicities shows that winter is the season with most influence 
on the annual first mode of the pressure field variability. This season reveals a periodic 
behaviour of about 9 years. 
 

 Year Winter Spring Summer Autumn 
Periodicity (years) 13.5/15.0 8.8/9.1 4.3/4.4 5.6/6.9 2.1/2.2 

Table 1. Periodicities of the first two paired components extracted by SSA from the first 
annual and seasonal North Atlantic pressure variability modes. 

The winter spatio-temporal analysis of the North Atlantic pressure variability performed by 

the use of multichannel singular spectral analysis (MSSA) reveals that the first two spatio-
temporal principal components (ST-PCs) are nearly periodic and in quadrature (Figure 2), 
satisfying the conditions to represent an oscillation, according to the Plaut and Vautard 
(1994) criteria. 

 

 
Fig. 2. Temporal evolution of the first two ST-PCs of winter North Atlantic pressure. 

They also satisfy a third more restricted condition proposed by the same authors which 
establishes the existence of the oscillatory pair: in order to guarantee that, at least, one cycle 
of the oscillation is coherent, it is required to have a periodic behaviour in the ST-PCs cross 
correlation function with correlation absolute values higher than 0.5 for the two successive 
extremes on each side of the lag zero (Figure 3). According to Bartlett, the cross correlation 
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confidence intervals corresponding to the 0.05 significance level, estimated from the normal 
distribution with a standard deviation of ±1*sqrt(N − |τ |), where τ represents the temporal 
lag, is also presented in this figure (von Storch & Zwiers, 1999). 

 
 

 
Fig. 3. Lagged cross correlation function between the first and second ST-PCs of winter 
North Atlantic pressure and confidence intervals of the 0.05 significance level. 

Following the methodology presented in Section 3.2, the statistical significance of the 
oscillations is tested against the null-hypothesis of red noise, at the 0.05 significance level, 
using Monte Carlo methods. The results, using a base derived from data and also a base 
derived from the null-hypothesis, are presented in Figure 4(a) and (b), respectively. In the 
first case, three pairs of significant eigenvalues are detected: the longest significant 
components show a periodicity of about 9 years, followed by 4.5 and 2.7 years periodicity 
modes. However, in a more conservative significance test that uses a base derived from 
AR(1) processes, the analysis just shows the 2.7 years periodicity as significant. Other 
authors analysing the Northern Hemisphere sea level pressure have already detected this 
2/3 years shorter periodicity, but the mechanism behind this peak remains uncertain 
(Stephenson et al., 2000). Besides that, in the second significance test, which is more 
stringent than the first because the null-hypothesis is more difficult to reject, the eigenvalue 
associated with a 9 years periodicity has a spectral density almost reaching the 0.05 
significance upper level. 

The 9 years spatio-temporal mode is the mode which explains the largest fraction of the 
pressure winter field variance (15%). Power with this periodicity has already been detected 
(although not statistically significant) in the T-PCs derived from a simple PCA of the  
same field.  
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Fig. 4. Monte Carlo significance tests for winter pressure oscillations using a window length 
M = 25. The vertical bars indicate the 0.05 significance level (one-tailed test) for the red noise 
null-hypothesis. Periodicities of significant eigenvalues for this hypothesis are also shown. 
(a) Diamonds show the data eigenvalues projected onto the data-adaptive basis. (b) 
Diamonds show the data eigenvalues projected onto the null-hypothesis basis.  

This winter mode of spatio-temporal variability of about 9 years periodicity in North 
Atlantic is presented in Figure 5, where the time origin is arbitrary. 

a) 

b) 
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Fig. 5. Spatio-temporal evolution of the first mode of North Atlantic winter pressure 
variability for 1 year lags. The units are arbitrary. 
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The mode of oscillation has a quasi-meridional pattern during the high and low NAO index 
phases, with positive anomalies in the central North Atlantic and negative anomalies at high 
latitudes. The transition from the positive to the negative phase shows the weakening of 
pressure at lower latitudes and the strengthening at higher latitudes till half of the period. 
After that, the opposite evolution occurs, with pressure strengthening at lower latitudes and 
weakening at higher latitudes. During the cycle, for some lags (e.g. temporal lags of 3 and 7 
years) corresponding to transition phases, the patterns are quite different from what is 
known to be the NAO pattern. In the first case, the principal dipole reveals a W/E 
orientation at higher latitudes; in the second transition year, there is a diffuse pattern with 
no clear defined centres of action. 

5. Precipitation variability in Portugal 

The longest records of annual and seasonal precipitation time series of Portuguese stations, 
analysed by maximum entropy methods (MEM) do not reveal any characteristics 
significantly different from white-noise processes (Antunes & Oliveira Pires, 1998). Figure 6 
presents, as an example, the variance spectrum for the Lisbon annual precipitation time 
series (1871/1993) estimated by MEM. In same figure are also presented the 0.1 confidence 
intervals for the white noise null hypothesis.  
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Fig. 6. Lisbon annual precipitation variance spectrum and the 90% confidence intervals for 
the null hypothesis of white noise. 

The singular spectral analysis (SSA) applied to the same series is also unable to detect 
significant characteristics in precipitation variability (Antunes et al., 2000). Figure 7 presents 
the singular values estimated by this method, the associated error bars and the 90% 
confidence intervals estimated using the Monte Carlo methods for the white noise  
null hypothesis. 
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Fig. 7. Eigenvalue spectrum of annual precipitation amount in Lisbon, error bars and the 0.1 
significance level for the white noise null hypothesis. 

The spatial variability analysis of annual and seasonal precipitation in Portugal using 11 
meteorological stations of more than 50 years, performed by PCA, reveal that the first 
variability mode, that shows precipitation varying in same way in all country, explains a 
large fraction of the variance (75% in annual precipitation and 85% in winter which is the 
rainier season). Figure 8 presents the first three Empirical Orthogonal Functions (EOFs) for 
winter. The second EOF, explaining 6% of variance shows an opposite behaviour between 
north and southern regions and the third EOF accounting for 3% of total variability shows 
the opposite relation between littoral and inland, more obvious in northern areas. The 
second EOF shows that precipitation above the mean in northern areas of the country tends 
to occur with precipitation below the mean in southern areas and vice-versa; the third EOF 
reveals the opposite, coastland precipitation above the mean tending to occur with inland 
precipitation below the mean and vice-versa. 

 
Fig. 8. Principal empirical orthogonal functions of winter precipitation in Portugal. 
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The analysis of the temporal principal components (T-PCs) associated to each winter spatial 
mode of precipitation variability does not reveal significant signals in relation to the red 
noise null hypothesis or even considering the white noise null hypothesis. 

Despite not being statistically significant is interesting the results of the singular spectral 
analysis (SSA) applied to the first T-PC associated to the first winter EOF mode. The method 
detects in this T-PC two oscillatory pairs that explain 39% of the total variance of the 
component. The spectral analysis of the reconstructed components (RCs) that form these 
pairs reveal obvious spectral characteristics around the same frequencies. The principal 
peaks occur in the 8 years band and the second pair presents shorter periodicity 
characteristics of about 2.8 years (Figure 9). 

Similar oscillatory components of about 9 and 2.7 years periods were detected in the annual 
precipitation variability (Antunes, 2007). The application of Monte Carlo methods reveals 
that these signals are not significant, just like in the winter variability. In the other seasons 
the precipitation variability is characterized by shorter periodic fluctuations, being the 
signals with longer period comprised between 3.4 and 4.6 years. These results show that the 
principal mode of annual variability is dominated by the principal precipitation variability 
mode in winter. 
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Fig. 9. Variance spectra of the reconstructed components (RCs) extracted by SSA from the 
first temporal principal component (T-PC) of winter precipitation in Portugal. Main 
periodicities of each RC are included. 

The analysis of winter precipitation temporal variability performed by the use of patterns 
that evolve spatially allows the detection of periodic signals similar to those already 
obtained by the methods previously presented. Moreover the consistency of the results, the 
method identifies these signals as significant, suggesting a more realistic analysis process by 
allowing the change of the EOFs configuration with time. 
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The application of the Multichannel singular spectral analysis (MSSA) to the winter 
precipitation variability reveals the existence of spatio-temporal principal components (ST- 
-PCs) that, due to their similar periodicity, can form oscillatory pairs. Figure 10 shows a pair 
of these ST-PCs that is nearly periodic and in quadrature, satisfying the conditions to 
represent an oscillation according to the Plaut and Vautard (1994) criteria. 
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Fig. 10. Temporal evolution of the 5 and 6th winter precipitation ST-PCs in Portugal. 

These components also satisfy a third more stringent condition proposed by the same 
authors which establishes the existence of the oscillatory pair: in order to guarantee that at 
least one cycle of the oscillation is coherent, a periodic behaviour in the ST-PCs cross 
correlation function is required, with the absolute values of correlation higher than 0.5 for 
the two successive extremes on each side of lag zero (Figure 11). 
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Fig. 11. Lagged cross correlation function between the 5 and 6th winter precipitation ST- 
-PCs in Portugal. 
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In Figures 12 and 13 are presented the corresponding results of another pair of components 
with shorter periodicity that satisfies the same criteria. 
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Fig. 12. Temporal evolution of the 2nd and 3rd winter precipitation ST-PCs in Portugal. 
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Fig. 13. Lagged cross correlation function between the 2nd and 3rd winter precipitation ST- 
-PCs in Portugal. 

Following the methodology presented in Section 3.2, the statistical significance of these 
oscillations was tested by Monte Carlo methods in relation to the null-hypothesis of red 
noise at the 0.05 significance level (one tailed test). Results using a base derived from data 
and a base derived from the null-hypothesis are presented in Figure 14(a) and 14(b), 
respectively. In the first case, two pairs of significant eigenvalues are detected. The 
oscillation that presents the higher spectral density reveals a period of about 2.7 years. The 
second oscillatory mode, consisting of ST-PCs 5 and 6, reveal a period of about 7 years. The 
eigenvalue associated to a period of about 9 years (ST-PC 4) could not be paired with the 
previous ones of about 7 years periodicity. The second test confirms the occurrence of a 
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significant signal with a period of about 2.7 years; a signal of 8.4 years periodicity is 
however near the superior limit of the significance level. 
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Fig. 14. (a)- Monte Carlo significance tests for winter precipitation oscillations. Diamonds 
show the data eigenvalues projected onto the data-adaptive basis. The vertical bars indicate 
the 0.05 significance level (one-tailed test) for the red-noise null-hypothesis. Periodicities of 
significant eigenvalues for this hypothesis are also shown. 
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Fig. 14. (b)- Monte Carlo significance tests for winter precipitation oscillations. Diamonds 
show the data eigenvalues projected onto the null-hypothesis basis. The vertical bars 
indicate the 0.05 significance level (one-tailed test) for the red-noise null-hypothesis. 
Periodicities of significant eigenvalues for this hypothesis are also shown. 

Although the second, more conservative significance test, just reveals the oscillation with 
shorter period as significant, the detected periodicity of about 7/9 years must be taken into 
account. In fact, the same analysis applied to the annual precipitation in Portugal also 
detects a periodic signal about the 9 years in its variability (Antunes et al, 2006.). In this case 
it corresponds to the first variability mode, which presents the higher spectral density, 
explaining 21% of the total annual spatio-temporal variance. 

Figure 15 shows the space-time evolution of the winter ST-EOF associated to the ST-PC 
presenting the 9 years periodicity, for one-year steps during 16 years. 
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Fig. 15. Space-time evolution of the precipitation winter ST-PC with 9 years periodicity for 
one year-lags during 16 years. The units are arbitrary. 
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The most frequent pattern is, as in the PCA, the occurrence of precipitation anomalies of the 
same sign in the whole region. The spatial evolution of this mode is towards the occurrence 
of precipitation above the mean during a period of about 4 years following a period of the 
same duration with precipitation below the mean plus, when existing, a transition period of 
1 year to complete the 9 years cycle. A complete period in the figure is identified, for 
example, by years (t + 7 ) to (t + 10 ) with precipitation below the mean, following 
precipitation above the mean from year (t + 11 ) to (t + 14 ) and a transition year represented 
by the (t + 15 ) time step. In transition years, the patterns present a same sign zone oriented 
NW/SE or SW/NE and the opposite sign in the rest of the region.  

6. Relations between pressure and precipitation winter variability in Portugal 

The possibility of reconstructing the original field for a period equal to the series under 
consideration based on their spatio-temporal characteristics has advantages over the use of 
the ST-PCs that are shorter series, with length equal to the time series subtracted by the 
width of the window. In order to analyse the relations between the pressure in the Atlantic 
and the precipitation in Portugal, the reconstruction of these fields was performed using a 
successively larger number of space-time components that successively explain more 
variance of the fields. These components are reconstructed in the case of pressure to a grid 
point (40° N, 7.5° W) in Portugal near Lisbon and in the case of precipitation to the point 
located in Lisbon. The reconstruction performed using 20 components explains 85.5% of the 
total variance of the winter pressure field in the North Atlantic and the reconstruction of 
precipitation with the same number of components explains 93.8% of the winter variability.  

The use of a great number of reconstructed components (RCs) allows the higher zero lag 
correlations. However, whatever the number of components in the analysis, these 
correlations are always significant, ranging between -0.6 and -0.8. As can be seen in Fig 16 
there are also significant cross-correlations, with the same sign, for lags of 8 years, which 
means that there is a periodic correlation of almost sinusoidal type about 8 years between 
the principal variability modes of pressure and precipitation. Related to the same modes 
other significant correlations of opposite sign are detected to lags of ±4 and ±12 years. Other 
significant correlations that occur for other lags result from the sum of components with 
different frequencies. 

The analysis of the same figure reveals that for lags different than the null, it verifies higher 
correlations (in module) when is used a smaller number of components. However, the 
smaller the number of components considered, the lower the variance explained of the field.  

As a result from the lagged cross correlation functions analysis it can be concluded that the 
winter pressure field can be used as a good predictor of the precipitation field in the same 
season in Portugal, since the field itself is capable to be forecasted.  

It is also interesting the joint analysis of the pressure and precipitation oscillatory spatio-
temporal modes that present the higher spectral density and associated to the 9 years 
periodicity (fig. 4.a) and 2.7 years (fig. 14.a), respectively. The cross correlation function 
between these modes reveals significant and positive values for the null lag (Fig.17). The 
positive signal is important in interpreting the relations between the evolution modes 
presented in Figure 18, for simultaneous years. 
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Fig. 16. Lagged cross correlation functions between reconstructed component groups of 
North Atlantic winter pressure and of Portugal winter precipitation. Confidence intervals of 
the 0.05 significance level are also presented. Positive lag values correspond to delays of the 
precipitation reconstructed component groups. 
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Fig. 17. Lagged cross correlation function between the first winter pressure and precipitation 
ST-PCs and confidence intervals of the 0.05 significance level. 

In the major part of the considered time steps it appears, for the same year, the occurrence of 
the NAO in positive phase and precipitation below the mean value in Portugal and vice-
versa, that is, the occurrence of the NAO negative phase and precipitation above the mean. 
These relations can be observed in the same figure taking into account the significant 
correlation obtained for 4 years lags and considering the negative value of this correlation.  
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Fig. 18. Space-time evolution of the first pressure variability mode in North Atlantic and of 
the first precipitation variability mode in Portugal, in winter during 12 years. 
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7. Conclusions 

The North Atlantic mean sea level pressure and the Portuguese precipitation winter 
variability fields were analysed using several methods including the spatio analysis (PCA), 
the temporal analysis (SSA) and the spatio-temporal analysis (MSSA). 

The application of the multichannel singular spectral analysis in the space–time study 
allowed the detection of significant modes of variability with periodicity behaviour, both in 
pressure and in precipitation. These periodic behaviours were previously detected in the 
temporal principal components extracted from the principal component analysis but, in the 
time domain, were found as not statistically significant. 

In the North Atlantic pressure field variability the detected signals revealed a periodicity of 
about 9 years. The representation of this mode shows that the oscillation is not quasi-
meridional but has different orientations, rotating in a cycle, from the positive North 
Atlantic oscillation (NAO) phase through the negative NAO phase and again to the positive 
phase. This principal variability mode only behaves like the traditional NAO pattern in 
extreme high and low NAO index phases. 

The precipitation variability in Portugal reveals periodicity signals of the same order of 
those detected in the pressure analysis. The representation of the space–time evolution of 
one of modes reveal that the most frequent pattern is the occurrence of precipitation 
anomalies of the same sign in the whole region, that is, precipitation above or below the 
mean. The spatial evolution is towards the occurrence of precipitation above the mean 
during a period of about 4 years following a period of the same duration with precipitation 
below the mean plus, when existing, a transition period of 1 year to complete the 9 years 
cycle. In transition years, the patterns present a same sign zone oriented NW/SE or SW/NE 
and the opposite sign in the rest of the region. 

It were also detected similar signals of shorter periodicity, about 2.7 years periodicity, on 
variability of both fields. However, these are precisely the signals that remain as statistically 
significant when a more conservative significance test is applied.  

The relations between the North Atlantic mean sea level pressure and the Portuguese 
precipitation winter variability fields were analysed using groups of reconstructed 
components estimated by the multichannel singular spectral analysis. The results reveal 
significant correlations for null lags, even when just a few components are used, meaning 
that the pressure field can be a good predictor of the precipitation field, since the field itself 
is predictable and may be forecasted.  

The space-time simultaneous evolution of the pressure and precipitation modes with higher 
spectral density reinforce the importance of this relationship revealing for the same time 
step the occurrence of the NAO positive phase and precipitation below average in Portugal 
and vice-versa, the occurrence of the NAO negative phase and precipitation above the 
mean. 
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