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1. Introduction  

Industrial coatings are functional multilayer thin-films of less than 150 µm that provide a 
wide range of applications. They are useful to prevent corrosion, to enhance electrical 
isolation, weather resistance, ultraviolet and infrared protection, decorative purposes etc. 
Common examples are in everyday commercial products such as in plastics, woods, 
cosmetics, automotive coatings etc. and in the packaging and security industries (Lewis, 
1988; Pfaff & Reynders, 1999; Tracton, 2006). A fundamental issue concerns colour 
appearance and the consecution of striking visual effects. For this purpose, the introduction 
of new special-effect colorants has provided a wide range of colour effects that imitate those 
found for example in Morpho butterflies etc. (Kinoshita et al., 2008). Industrial colour 
coatings can mimic the surface colour appearance of metals (usually called metallic 
coatings), the mother pearl effect or pearlescent coatings as well as iridescence or the ability 
to change the colour as a function of the illumination and the viewing angle (Klein, 2010; 
Lewis, 1988; McCamy, 1996). 

Optical characterization of these industrial coatings demands novel instrumentation and 
new approaches for precise color formulation in the laboratory and then, for non-destructive 
testing within the assembled line (Klein, 2010; Völz, 2001). Here I will focus on metallic and 
pearlescent coatings for automotive paint finishes, one of the largest colour markets in the 
world. In colour technology, principal-component analysis (PCA) is a standard procedure to 
uncover the spectral bands of the colorants when they are mixed together (Fairman & Brill, 
2004; Kohonen et al., 2006; Liszewski et al., 2010; Ohta, 1973; Tzeng & Berns, 2005), to 
estimate the number of colorants (Tzeng & Berns, 2005), to simplify the bi-directional 
reflectance distribution function (BRDF) into few detector positions (Takagi et al., 2005), to 
indentify the presence of special-effect pigments (Medina, 2008), to evaluate the scattering 
performance of pigments (Medina & Díaz, 2011), and to develop computer-assisted colour 
rendering tools for colour styling (Seo et al., 2011). The purpose of this chapter is double. 
First, I will provide a basic introduction to automotive coatings and paint composition. The 
standard optical instrumentation will be also presented as well as a basic introduction to 
colorimetry or how the fundamental attributes of the human colour perception depend on 
the physical spectra (Wyszecki & Stiles, 1982). And second, I will use PCA in a new and 
different perspective that consists to examine colour variability for in-line inspection and for 
pigment identification. There are a considerable number of errors that can modify the final 
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appearance of metallic coatings during the different paint application processes. Accurate 
colour quality control in the laboratory and in the production line has a fundamental 
importance for colour recipe correction and fast diagnosis of colour batch production. Here I 
will show that trial-to-trial variability of reflectance spectra of metallic coatings during the 
paint application process can be mapped into a stochastic diffusion process. I will use PCA 
to uncover and to classify the underlying long-range structure of variability and to analyze 
how this affects to the different types of pigments. An estimation of the Hurst exponent will 
be given from the eigenvalue spectra (Gao et al., 2003). The Hurst exponent is a measure of 
the dispersion that has been widely used in the study of anomalous diffusion from the 
statistical point of view such as in hydrology, finance, etc. (Mandelbrot, 2001). The new 
approach based on PCA is especially important to better understand the global dependence 
of colour coating formulations from different car parts manufacturers (Streitberger & 
Dössel, 2008). 

2. Automotive coatings 

Typical automotive coatings have four different layers (Streitberger & Dössel, 2008). Fig. 1A 
represents a schematic representation of the cross-section of a car coating. The electrocoat 
and the primer surfacer fix the coating to the substrate and prevent against corrosion. After 
that, the base coat or binder constitutes the principal element and provides the fundamental 
characteristics related with colour, elasticity, brightness, dispersion and chemical resistance. 
Finally, the outermost layer is the clear coat or the transparent lacquer that protects the 
binder from the exterior. Different types of pigments are included in the binder. Their 
selection depends on the nature of the resin (polyesters, acrylics, etc.) and the paint 
application technology such as solvent-based, water-based (environmentally friendly) or 
powder coatings. 

 
Fig. 1. (A) Schematic representation of the cross-section of a typical car coating and related 
layer thickness (in µm). (B) Optical micrograph of a metallic blue coating containing 
aluminium flakes and conventional absorption blue pigments in the base coat. Bright field 
illumination (20x). 

www.intechopen.com



 
Principal Component Analysis in Industrial Colour Coating Formulations 

 

161 

The principal functions of pigments are to obtain a specific opacity or hiding power, to give 
remarkable colour effects, to provide stability against direct sunlight exposition and to 
provide resistance against different factors that affects corrosion. Some pigments are organic 
in nature and others are inorganic. Regarding special-effect pigments, they are metal-like 
(e.g. aluminium), pearl-like and interference flakes. They have, on average, a greater size 
(typically in µm) in comparison with conventional absorption pigments (in nm) and are 
often used to produce unusual colour variations in relation to the viewing angle (Klein, 
2010; Lewis, 1988; Pfaff & Reynders, 1999; Tracton, 2006). Fig. 1B shows an optical 
micrograph of a typical metallic blue coating containing lenticular aluminium flakes covered 
by organic blue (indanthrone) pigment nanoparticles in the base coat. Chemical pigments 
scatter the light in all directions or diffusive scattering. Further, they selectively absorb the 
incident radiation and can be formulated in accordance with the laws of subtractive colour 
mixing. Aluminium flakes, however, act like reflectors and scatter the light at the corners. In 
a different type of pigments, bright iridescent colours are often produced by thin-film 
interference pigments that obey the laws of additive colour mixing (Klein, 2010; Lewis, 1988; 
Pfaff & Reynders, 1999; Tracton, 2006). Very popular interference pigments in automotive 
coatings are those containing mica flakes coated by different metal oxides such as titanium 
dioxide (TiO2) (Klein, 2010; Lewis, 1988; Pfaff & Reynders, 1999; Tracton, 2006). For a detail 
description of the deposition of pigments in the base coat in car coatings see (Streitberger & 
Dössel, 2008). 

Fig. 2A shows an optical micrograph of the metallic green coating containing yellowish-
greenish interference pigments as indicated in example selected by the red square. In a 
perfect regular multilayer stack as the ideal case represented in Fig.2B, light at the interface 
of a tiny mica flake is partially reflected and partially transmitted producing a phase shift 
from a low-to-high refractive index media. Angle-dependent colour effects can arise from 
constructive interference (usually called goniochromism) (McCamy, 1996). In accordance 
with the Bragg condition, the reflected light is wavelength dependent and obeys the 
following equation (Hecht & Zajac, 1974; Klein, 2010; Lewis, 1988): 

   1
2 ndcos = m+

2
  

 
 

 (1) 

where m is an integer and ǌ is the wavelength. The Bragg condition is also dependent on the 
refractive index of the material n, the thickness d, as well as the angle of refraction  

between the illumination and the normal to plane of the sample. By selecting the 
appropriate thickness, tunable interference colours can de designed. The reflected rays are 
parallel to each other and the perception of colour (in our particular case yellowish) depends 
on the viewing angle (Klein, 2010; Lewis, 1988; Pfaff & Reynders, 1999). The transmitted 
light through mica pigments corresponds to the complementary colour (i.e. bluish) and can 
interact with the substrate (black or white) (Klein, 2010; Lewis, 1988; Pfaff & Reynders, 
1999). In real mica-based pigments thickness is not a constant parameter and different 
colours can be observed inside the same flake as revealed in Fig. 2A. The control of the 
spatial dispersion of special-effect pigments is an important factor to obtain the desired 
colour effect. Both aluminium and interference flakes are, on average, oriented parallel to 
the substrate (Klein, 2010; Lewis, 1988; Streitberger & Dössel, 2008). The flake orientation 
distribution can follow a Gaussian-type function with a long right tail (Kirchner & 
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Houweling, 2009; Sung et al., 2002). An important topic in car coatings is the concept of 
“colour harmony” or no perceptual colour differences between the different external parts 
of the car. Fig.3 shows an example of colour harmony. 

 
Fig. 2. (A) Optical micrograph of a metallic green coating containing greenish-yellowish 
interference pigments, aluminium flakes and opaque green absorption pigments. Darkfield 
illumination (20x). (B) Schematic representation of the cross-section of a mica flake coated by 
titanium dioxide (TiO2) with thickness d and refraction index n. 

 
Fig. 3. Example of colour harmony in a silver-like coating containing aluminium flakes. 
Current colour designs must achieve no perceptible colour differences between the different 
external parts that integrate the car such as the car body and the fenders. 

The analysis of colour harmony is a complex issue because bumpers, fenders, wings etc. are 
often provided by different manufacturers, each of them with similar paint procedures, and 
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the car parts should be assembled all together in a specific automotive production line 
(Streitberger & Dössel, 2008). I will show below that PCA can be applied to examine the 
intricate variability of the paint application processes during colour batch production and, 
thus, it can be used to study colour harmony. 

3. Spectroscopic instrumentation 

Spectrophotometer-based systems provide an estimation of the spectral reflectance 
distribution function, which describes the ratio of the reflected radiance to the incident 
irradiance from a surface for a specific illumination and detection positions (Klein, 2010; 
Völz, 2001; Wyszecki & Stiles, 1982). Actually the CIE (Commission Internationale de 
l’Éclairage, International Commission on Illumination), promotes and regulates the 
standards conditions for reflectance and colour measurements. The measurement of the 
spectral reflectance and the colorimetric analysis of thin-films based on conventional 
chemical pigments and dyes have greatly simplified because matte and glossy surfaces have 
residual or no angular dependence. This is not the case of automotive coatings containing 
special-effect pigments and they require the estimation of the spectral reflectance function in 
the hemisphere centre at the sample or the BRDF. 

The BRDF provides the spectral reflectance function of a surface measured in spherical 
coordinates using directional illumination. The complete characterization of the BRDF often 
assumes many positions or degrees of freedom (Baba & Arai, 2003). This complicates the 
acquisition of reflectance spectra with a large number of readings at specific illumination 
and detection positions and their subsequent colorimetric evaluation in automotive 
coatings, a problem that has not been solved yet. Few standards of gonioappearance have 
appeared in the last years and portable multi-angle spectrophotometers are now using for 
testing and colour quality control. Fig. 4 shows a schematic representation of the detection 
geometries recommended for metallic coatings. 

 
Fig. 4. Schematic representation of the cross-section of a metallic coating and the directional 
illumination at 45º and the 5 angular detection configuration at the aspecular angle γ of 15º, 
25º, 45º, 75º and 110º. 
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For a fixed illumination angle (usually 45º off from the normal of the measured surface), a 
set of predetermined detector angles is often defined from the specular reflection. DIN (The 
Deutsches Institut für Normung) recommends the use of three angles of 25°, 45°, 75°, and 
optionally 110° from the specular (usually called the “aspecular angle” γ) (DIN 6175-2, 
2001), whereas the ASTM (American Society for Testing Materials), prescribes three angles 
of 15°, 45°, and 110° (ASTM E2175-01, 2001). However, previous studies in pearlescent 
coatings have probed that these measurement geometries are not enough due to the angular 
dependence of the interference pigments on the illuminant position (see Eq. 1) (Cramer, 
2002; Nadal & Early, 2004). New industrial rules have been proposed (ASTM E2539-08, 
2008) and novel scientific instrumentation is coming soon. Here I will restrict the PCA of 
reflectances using simultaneously those geometries compatible with the DIN (DIN 6175-2, 
2001) and the ASTM (ASTM E2175-01, 2001). 

4. Colorimetry: Basic concepts and definitions 

The goal of colorimetry is to provide a simplified analysis of the illuminants and 
colouring surfaces using a three-dimensional colour space, which is a theoretical 
construction for classification and precise representation of colour properties (Wyszecki & 
Stiles, 1982). Given a directional illumination source characterized by the energy 
distribution  S  , a testing surface with spectral reflectance  R  and a observer (e.g. the 
human eye) located at a fixed detection position, colour properties of the surface can be 
labelled in the colour space using the colour coordinates. By the trichromatic principle 
(Wyszecki & Stiles, 1982), the colour coordinates can be defined in the CIE standard 
colorimetric system by the tristimulus values X, Y and Z (Klein, 2010; Völz, 2001; 
Wyszecki & Stiles, 1982): 

 

     
     
     

10

10

10

X = k S x d

Y = k S y d

Z = k S z d

R

R

R

   

   

   





 (2) 

Where      10 10 10x ,y ,z   are the CIE-1964 colour matching functions. The CIE-1964 
colour matching functions define the spectral sensitivity of human eye for a standard 
observer that subtends a 10º field of view. Spectral integration in Eq. 2 is often done between 
400-700nm. The constant k defines a normalization factor so that for a perfect white 
reflectance surface of  R 1  , the tristimulus value Y, which is related with the luminance 
content, equals to 100 for every illuminant (Klein, 2010; Völz, 2001; Wyszecki & Stiles, 1982): 

    10

100
k =

S y d  
 (3) 

Fig.5A represents the relative energy distribution of the illuminant D65, which imitates 
daylight conditions, and the standard incandescent illuminant A. Fig. 5B represents the 
spectral shape of the CIE-1964 colour matching functions. 
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Fig. 5. (A) Relative energy distribution of the standard illuminants D65 and A recommended 
by the CIE. (B) CIE-1964 colour matching functions for the 10º standard observer. 

For pigmented thin-films as those in automotive coatings, it is more convenient to provide a 
transformation from the CIE-1964 colour space to the CIELAB perceptual colour space (Klein, 
2010; Völz, 2001). In the CIELAB colour space, the new orthogonal colour coordinates are L* 
(the luminance axis), related with the brightness sensation (i.e. the white and black 
contribution) and the chromaticity coordinates a* (red-green axis) and b* (blue-yellow axis) 
that defines the chromatic plane. From the tristimulus values defined in Eqs. 2-3, the CIELAB 
coordinates can be calculated as follows (Klein, 2010; Völz, 2001; Wyszecki & Stiles, 1982): 

 

n n n

*
3

n

*
3

n

*
3

n

X Y Z
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     
       
     
 
 
 
    
 
 
 
  

 (4) 

where Xn, Yn and Zn are the CIE tristimulus values of the reference illuminant used (Yn 
equals to 100 for all the standard illuminants, see Eqs. 2-3):  

 

n n n
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n
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X
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Y
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 (5) 
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  
 

* *

* * *

* * *

L = 116Y - 16

a = 500 X - Y

b = 200 Y - Z

 (6) 

Positive values of a* and b* represents reddish and yellowish, respectively whereas negative 
values indicate greenish and bluish, respectively (Klein, 2010; Völz, 2001; Wyszecki & Stiles, 
1982). Colour coordinates a* and b* defined in Eq.6 are reminiscent of the chromatic-
opponent physiological organization of ganglion cells at the retina (Dacey, 2000). As an 
example, Fig.6A shows the reflectance spectra measured with a multi-angle 
spectrophotometer (400- 700 nm at 10 nm steps) for a typical green metallic coating 
containing aluminium, opaque green absorption nanopigments and mica-based interference 
pigments at the aspecular angles of 15º, 25º, 45º, 75º and 110º. 

 
Fig. 6. (A) Reflectance spectra measured by a multi-angle spectrophotometer (X-Rite MA68-
II) at the aspecular angle γ of 15º, 25º, 45º, 75º and 110º. (B) CIE L*, a* and b* colour 
coordinates calculated at different the aspecular angles. The reference illuminant was D65. 

Because both aluminium and mica flakes are mainly oriented parallel to the substrate, bright 
interference colours are clearly manifested near the specular reflection at the aspecular 
angles γ of 15º and 25º, whereas reflection from diffusive multiple-light scattering and 
pigment absorption dominate far from the specular such as the aspecular angles γ of 75º and 
110º (Klein, 2010). In Fig. 6A maximum of reflectance shifts from greenish-yellowish (540 
nm) near the specular at 15º to greenish-bluish (480 nm) far from the specular at 110º. Fig. 6B 
shows the CIELAB colour coordinates L*, a*, and b* as a function of the aspecular angle γ 
under the reference illuminant D65. Lightness values change from 31.8 CIELAB units at γ= 
15º to 4.48 CIELAB units at γ= 110º. Direct visual observation with the naked eyes of the 
metallic green panel in a light booth and using a D65 daylight lamp validate the above 
colorimetric description. 

5. Principal component analysis of reflectances  

PCA is one common way to decorrelate reflectance spectra into few components that 
maximizes the variance accounted for (Fairman & Brill, 2004; Ohta, 1973; Tzeng & Berns, 2005). 

www.intechopen.com



 
Principal Component Analysis in Industrial Colour Coating Formulations 

 

167 

For this purpose, it is possible to treat the reflectance spectra of metallic coatings as vectors (as 
much dimensions as wavelengths) in the vector space of square-integrable functions L2. For 
example, given a reflectance dataset composed by N different reflectance elements between 
400- 700nm at 10nm steps (i.e. 31 dimensional vectors), it is possible to establish a linear 
decomposition of each spectral reflectance function  jR  around the mean reflectance of the 
database  R   (Fairman & Brill, 2004; Ohta, 1973; Tzeng & Berns, 2005): 

      
31

j i i
i=1

j = 1,2,…,N

R = R + b Z  

 

 
 (7) 

where the coefficients bi are the coordinates in the new reference system or the principal 
components and  iZ   are the new bases or eigenvectors in the L2 vector space. The first 
basis function  1Z   is uncorrelated with the second basis function  2Z   and its 
associated eigenvalue explains most of the variance and so on. Therefore, PCA of reflectance 
spectra of metallic coatings at each aspecular angle separately can uncover the spectral 
signature of the basis functions and permit to compare the bases across different aspecular 
angles for pigment identification (Medina, 2008). 

5.1 Anomalous diffusion assessed by principal component analysis 

Variability in the reflectance spectra and, thus, in the colour batch production of bumpers, 
fenders, wings, etc. can be mapped into a one-dimensional random walk model. The 
classical example of random walk is the irregular Brownian molecular motion of a pollen 
grain suspended in a liquid. Fig. 7A simulates a hypothetical Brownian diffusion process for  

 
Fig. 7. (A) Illustration of a random walk model for the colour batch production of metallic 
coatings. Black dots in the time series correspond to the CIELAB colour coordinates 
measured in each painted panel relative to the master panel within the production line. (B) 
Double logarithmic plot of the dispersion as a function of time for different values of the 
Hurst exponent H. Solid and dashed lines correspond to the standard Brownian and 
fractional Brownian motion processes, respectively.  
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colour production of metallic coatings. Here the position of the random walker at a single 
step refers to each painted piece in chronological order and is represented by the CIELAB 
colour coordinates relative to the reference master panel, i.e. ΔL*, Δa*, Δb* and can assume 
positive and negative values (Klein, 2010; Völz, 2001; Wyszecki & Stiles, 1982). 

In the proposed model, the mean square displacement of the colour differences can grow 
with time by a power law, 2 Ht , where H is the Hurst exponent and gives a measure of 
dispersion. A standard Brownian process has H= 0.5 and defines the reference baseline (i.e. 
no correlation) to indentify the presence of anomalous diffusion. The generalization of the 
standard Brownian motion is called fractional Brownian motion with the Hurst exponent 
taking values between zero and unity (Mandelbrot & Van Ness, 1968). When H> 0.5 colour 
coordinates differences are positively correlated suggesting the presence of persistent 
deviations, i.e., an increase in the colour coordinates differences are more probably to be 
followed by another increase later in the scale of time. When H< 0.5 colour coordinates 
differences are negatively correlated suggesting the presence of antipersistent deviations. 
That is, after an increase in the colour coordinates differences of the painted pieces relative 
to the master panel, it is more probably to obtain a decrease in the colour differences later in 
the scale of time. It has been proved that for a fractional Brownian motion process, the 
eigenvalue spectrum derived from PCA decays as a power law with exponent β. This 
exponent is related with the Hurst exponent (Gao et al., 2003): 

 2 1H    (8) 

The exponent β in Eq. 8 can also take values lower than unity (i.e. H= 0) and higher than three 
(i.e. H= 1). In the former case, it may be related with fractional Gaussian processes defined as 
the derivative of the fractional Brownian motion (Mandelbrot, 2001; Mandelbrot & Van Ness, 
1968). A different definition of the exponent β may be required and this issue remains to be 
determined. For β>3, they correspond to anomalous diffusion that grows faster than any 
traditional fractional Brownian motion process (Medina & Díaz, 2011). Therefore, a double 
logarithmic plot of the eigenvalues as a function of the basis function order is a simple and 
valuable method to uncover the existence of power laws at different aspecular angles and, 
thus, to identify the presence of anomalous diffusion in metallic coatings using the model in 
Eq.8 as the reference framework (see Fig. 7B) (Gao et al., 2003; Medina & Díaz, 2011). 

6. Example of principal component analysis in metallic coatings  

6.1 Colorimetric description 

Figs. 8A and 8B represent the reflectance spectra and the CIE L* a* b* colour coordinates of a 
typical blue metallic coating, respectively. Data correspond to the master panel at the 
aspecular angles of 15º, 25º, 45º, 75º and 110º and were taken with a conventional multi-
angle spectrophotometer (X-Rite MA68 II). White and zero calibration were done in regular 
time sequences using a white ceramic tile and a black trap, respectively. 

Near the specular reflection at 15º and 25º, maximum of reflectance is found at 460 nm 
indicating a greenish-bluish colour whereas far from the specular the peak is reduced to 
almost the same reflectance value as in 540 nm and 640 nm and promotes the perception of 
bluish-reddish. Luminance values change from 30 CIELAB units at 15º to 3.8 CIELAB units 
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at 110º. Fig. 9 shows in the CIELAB colour space a three-dimensional representation of a test 
colour batch production (blue spheres). 

 
Fig. 8. (A) Reflectance spectra of a typical blue metallic coating at the aspecular angle γ of 
15º, 25º, 45º, 75º and 110º. (B) CIE L*, a* and b* colour coordinates calculated at different the 
aspecular angles. The reference illuminant was D65. Data indicate the master panel. 

 
Fig. 9. Three-dimensional representation of the CIE L*, a* and b* colour coordinates 
corresponding to the blue metallic panels at the aspecular angle γ of 15º, 25º, 45º, 75º and 
110º. Blue spheres correspond to the different painted panels whereas red spheres indicate 
the colour coordinates of the master panel. Dark cyan and dark red solid circles represent 
the projection in the a*b* plane, respectively. The reference illuminant was D65. 

They consist of 21 successive painted panels and are representative of original equipment 
manufacturers in solventborne coatings (Streitberger & Dössel, 2008). They were painted in 
the production line of a car supplier in Europe using a colour recipe to replicate the colour 
properties of the master panel in Fig. 8. They have aluminium flakes, opaque blue and 
carbon black absorption pigment nanoparticles and also mica-based interference flakes in a 
complex binder containing polyester, melamine and wax. The lacquer was transparent and 
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was the same in all the 21 painted pieces. Reflectance spectra were measured at the end of 
the painted process at the 5 aspecular angles of 15º, 25º, 45º, 75º and 110º. Therefore, the 
reflectance database consists of a total of 105 reflectances between 400- 700nm at 10nm steps. 
Then, they were converted to the CIELAB colour space using the D65 illuminant. The 
projection in the a*b* plane is also displayed in Fig.9. Red spheres represent the colour 
coordinates of the master panel at different aspecular angles from Fig. 8B. The results 
indicate that the painted blue metallic panels occupy a characteristic colour volume and 
expand a specific colour map in the a*b* plane around the reference master panel. In the 
colour batch production, the range (maximum – minimum) of luminance variations over the 
5 aspecular angles was 35 CIELAB units whereas in the red-green axis a* and in the blue-
yellow axis b* the range was 4.6 and 22 CIELAB units, respectively. 

6.2 Basis functions  

PCA of reflectances was done over the 21 painted panels at each aspecular angle separately. 
Fig. 10 represents the first six basis functions near the specular reflection at 15º (cyan solid 
lines) and far from the specular reflection at 110º (blue solid lines). The first eigenvector or 
basis function has a peak around 410- 430 nm and its shape remains almost invariant as a 
function of the aspecular angle. It accounts for more than 98% of the total variance at the 
aspecular angle of 15º but only around 86% of total variance at 110º. It can be interpreted as 
the result of the aluminium flakes, which has a flat reflectance spectrum except at 400-420 
nm, covered by opaque absorption blue pigment nanoparticles in the binder (Baba & Arai, 
2003; Medina, 2008), in the same way as the spatial deposition illustrated in Fig 1B. That 
means that most of the variability associated with the blue metallic coatings corresponds to 
lightness and bluish changes as verified in Fig. 8B and Fig. 9. 

The second and third basis functions are peaked a different wavelengths and represents 
more than 99% of the total variance accounted for. Their shape look similar and present a 
wavelength shift from 480 nm at 15º to 410 nm at 110º in the second basis function and from 
420 nm at 15º to 480 nm at 110º in the third basis function. The effect of the aspecular angle 
on the basis functions can be interpreted as the presence of interference pigments within the 
base coat (Medina, 2008) (see also Eq. 1 and Fig. 2B). The next basis functions correspond to 
different corrections and are more difficult to interpret. This issue will be discussed further 
in the next section. In colour technology, a common procedure is to select only those basis 
functions that achieve 99% of the total variance accounted for or in some cases even more 
(Tzeng & Berns, 2005). For example, in Fig. 10 it is required six basis function to represent 
more than 99.5% of the total variability of the reflectance spectra. I will show below that this 
statistical criterion is not adequate to examine the presence of diffusion process. 

6.3 Eigenvalue spectra 

Fig. 11 represents in a double logarithmic plot, the eigenvalue spectra of the blue metallic 
coatings from PCA at each aspecular angle. Only those eigenvalues at 15º, 45º and 110º are 
displayed (the eigenvalue spectra for the aspecular angle of 25º and 75º are in intermediate 
positions). The results confirm that the eigenvalues decrease as the basis function order 
increases. Power laws were fitted using a least square procedure and the goodness-of-fit 
was assessed by the coefficient of regression R-square or R2 (Press et al., 1992). Far from the 
specular reflection at 110º (blue triangles), from the third to the nineteenth eigenvalue a 
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single power law regime is found representing 2.14% of the total variance account for. The 
coefficient of regression was R2= 0.99 and the estimated exponent was β= -3.9. This suggests 
the presence of persistence correlations that grows faster than any fractional Brownian 
diffusion processes. They can be associated with the trial-to-trial variability in the spatial 
dispersion of absorption pigments within the base coat. 

 
Fig. 10. PCA of reflectances from blue metallic coatings. Panel shows the first six basis 
functions. The percentage in parentheses indicates the cumulative variance account for from 
near-specular reflection at 15º (cyan lines) to far from the specular at 110º (blue lines). 

At 110º there is an upper cut-off that affects the first two eigenvalues and may reflect a 
finite-size effect from a small quantity of aluminium flakes and from the interference flakes 
that have a different orientation in comparison with the substrate. At all the aspecular 
angles, there is also a second limiting physical process in the eigenvalue spectrum that 
produces a lower cut-off. Interestingly, when we move from far to the specular reflection to 
an intermediate position such as at 45º (grey squares), the first six basis function deviates 
from the above power law regime at 110º, this suggesting that more eigenvalues are affected 
by the presence aluminium and interference pigments oriented quasi-parallel to the 
substrate. Near the specular reflection at 15º, reflectance data contains most of the 
contribution from the aluminium and interference flakes oriented parallel to the substrate. 
From the second to the fifth eigenvalue a new power law regime is found (R2= 0.86). The 
power law represents 1.70% of the total variance accounted and has an exponent β= -1.9. 
Since the first two basis functions in Fig. 10 are associated with the presence of mica-based 
flakes, the eigenvalue analysis suggest that trial-to-trial reflectance variability from 
interference pigments across different painted panels increase as a function of time 
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following a Brownian diffusion process or equivalently, showing neither persistent nor 
antipersitent correlations (a Hurst exponent very close to H= 0.5). The second power-law 
regime at 15º goes from the seventh to the nineteenth eigenvalue (R2= 0.99). This power law 
has a slope β= -3.8, and, thus, very similar to the contribution expected at 110º from 
absorption pigments but only represents less than 0.01% of the total variance accounted for. 

 
Fig. 11. Double logarithmic plot of the eigenvalue spectra from PCA of reflectances of the 
blue metallic coatings. Solid dark cyan circles, grey squares and blue triangles denote the 
eigenvalue spectrum at the aspecular angle γ of 15º (near-specular), 45º (intermediate) and 
110º (far from the specular), respectively. Black solid lines indicate the adjusted power laws 
at different regimes. The slope β denote the scaling exponent. Numbers in parentheses 
indicate their associate standard errors. 

7. Conclusions  

Principal component analysis of reflectance spectra is a powerful method to determine the 
possible sources of variability in surface colour appearance of industrial coatings. In 
comparison with the common statistical criterion used in colour technology that recommends 
to retain only few basis functions (Tzeng & Berns, 2005), here a new analysis is introduced to 
examine the eigenvalue spectrum by power laws (Gao et al., 2003). Therefore, it was 
investigated the trial-to-trial variability in the colour batch production of metallic coatings in 
terms of fractional Brownian diffusion process and their correlations. This is important in 
colour recipe formulation and offers a novel approach to study colour harmony between 
different paint manufacturers. The PCA made in this chapter have dealt with the reflectance 
spectra collected at different aspecular angles and is representative of automotive coatings 
containing special-effect pigments (Streitberger & Dössel, 2008). For the blue metallic coatings, 
it was concluded that the trial-to-trial variability of mica-based pigments across different 
painted panels is not correlated and follows a Brownian diffusion process with a Hurst 
exponent compatible with H= 0.5. However, persistent trial-to-trial correlations with the same 
exponent at different aspecular angles were found, this suggesting a contribution from the 
deposition of absorption pigments in the base coat (see Fig. 11). This may be related with the 
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use solventborne coatings and how the pigments are dispersed in the binder (Streitberger & 
Dössel, 2008). Therefore, it would desirable to comparable these results with similar paint 
application processes as well as in waterborne and powder coatings. Finally, the methods 
presented in this chapter are not restricted to car coatings and can be applied in the study of 
different industrial colour process and coloured thin-films. 
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