
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



 

 

5 

Application of Principal Component  
Analysis in Surface Water Quality Monitoring 

Yared Kassahun Kebede and Tesfu Kebedee 
Ethiopian Institute of Agricultural Research 

Ethiopia 

1. Introduction 

Surface water systems such as rivers, lakes and ground water are affected by the natural 

processes such as erosion of minerals and dissolution of nutrients from the overlying rocks 

as well as anthropogenic influences from urban, industrial and agricultural activities. These 

degradation of surface water quality resulted in altered species composition and decreased 

overall health of aquatic communities (Ouyang et al., 2002). Therefore, in view of the spatial 

and temporal variations in the physico-chemical, hydrological and biological attributes of 

surface water systems, regular monitoring programs are required for reliable estimates of 

the water quality.  

Rivers are the only ecosystem characterized by strong and predominantly unidirectional 

flows of materials that intimately connect the upstream and downstream reaches 

(Thompson & Lake, 2010) and thus, rivers play a major role in assimilation or carrying off 

the municipal and industrial wastewater and nutrient removal from agricultural fields and 

mineral rocks by surface runoff are responsible for river pollution. The municipal and 

industrial wastewater discharge constitutes the constant polluting source, whereas, the 

surface run-off is a seasonal phenomenon, largely affected by climate in the basin (Sing et al. 

2004; Vega et al., 1998). Therefore, since rivers are the most important inland water 

resources for human consumption, it is imperative to have reliable information on 

characteristics and trends of water quality for effective water management.  

The usual program of water quality assessment is the periodic measurement of multiple 
parameters in different monitoring stations which resulted in a complex data matrix of a 
large number of physico-chemical parameters that should be assessed to evaluate water 
quality (Chapman, 1992; Dixon & Chiswell, 1996). To simplify the problem of data reduction 
and to draw meaningful conclusion, several researchers used water quality indices (WQI) to 
verify the influence of waste discharges on water quality of streams and rivers (e.g. Cao et 
al., 1996; Pesce & Wundelin, 2000). However, WQI are often specific to the type of pollution 
or the geographical area involved (Rosenbeg & Resh, 1993) and has difficulty in universal 
applications. In addition, they do not provide evidences on the pollution sources (Pesce & 
Wundelin, 2000). Similarly, univariate procedure is a common technique applied in river 
water quality monitoring which does not adequately characterize simultaneous similarities 
and differences between samples or variables (Dixon & Chiswell, 1996). In addition, the 
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intrinsic values of analytical data are inadequate for the investigation of multivariate data 
table as the variables are correlated (Vega et al. 1998). Therefore, the indirect relationship 
between analytical parameters should be taken in to account for complete understanding of 
surface water quality.  

Multivariate statistical methods have been widely applied in environmental data reduction 
and interpretation of multiconstituent chemical, physical biological measurements 
(Ramzakh et al., 2010; ter Braak & Verdonschot, 1995; Wenning and Erickson, 1994). These 
techniques have been applied for identification factors that influence water systems for 
reliable management of water resources as well as for rapid solution for pollution problems 
(Reghunath et al., 2002; Simeonov et al., 2004). In this regard, PCA is a very powerful 
multivariate statistical analysis method technique which is applied to reduce the 
dimensionality of a data set consisting of a large number of inter-related variables, while 
retaining as much as possible the variability present in data set (Jianqin et al. 2010; Sing et al. 
2004). In addition, it allows to assess the association between variables, since they indicate 
participation of individual chemicals in several influence factors (Vega et al., 1998). 

Since certain correlations exist among multi-indicators, PCA attempts to transform a large 
set of inter-correlated indicators into a smaller set of composite indicators, uncorrelated 
(orthogonal) variables called principal components (PCs), and simplifies the structure of the 
statistical analysis system (Jianqin et al. 2010). In this way, the correlation coefficient matrix 
measures how well the variance of each constituent can be explained by relationship with 
each of the others (Liu et al., 2003) and PC provides information on the most meaningful 
parameters, which describe the whole data set affording data reduction with minimum loss 
of original information (Helena et al., 2000; Vega et al., 1998). The characteristic root 
(eigenvalues) of the PCs is a measure of associated variances and the sum of the eigenvalues 
coincides with the total number of variables (Razmkhah et al. 2010). Correlation of PCs and 
original variables is given by loadings, and individual transformed observations are called 
scores (Wunderlin et al., 2001). Liu et al. (2003) classified the factor loadings as ‘strong’, 
‘moderate’ and ‘weak’, corresponding to absolute loading values of >0.75, 0.75-0.50 and 
0.50-0.30, respectively. However, loading reflects the relative importance of a variable 
within the component and does not reflect the importance of the component itself (Davis, 
1986 cited in Ouyang, 2005). 

A rotation of principal components can achieve a simpler and more meaningful 
representation of the underlying factors by decreasing the contribution to PCs of variables 
with minor significance and increasing the more significant ones (Vega et al. 1998). 
However, rotation might have resulted in an increase of the number of factors necessary to 
explain the same amount of variance of the original data set. However, it allows the 
association of small groups of variables and individual rotated factors with a clearer 
hydrochemical meaning (Vega et al., 1998) which greatly helps in data interpretation 
(Helena et al., 2000; Morales et al., 1999; Simeonov et al., 2003; Vega et al., 1998).  

2. Application of PCA in physico-chemical water quality monitoring  

The main problem in regular water quality monitoring programmes is the generation of 
large physico-chemical data matrix in a relatively short period of time which necessitate 
effective data handling mechanism for interpretation of results, association of variables and 
meaningful conclusion. 
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2.1 Anthropogenic and seasonal effects on water quality 

Vega et al. (1998) applied exploratory data analysis for the assessment of the seasonal and 
polluting effects on water quality of Pisuerga river (Duero basin, Spain). These authors 
reported that the overall component loadings (i.e., no seasonal loading provided) for 22 
experimental variables. PC1 explained 46.1% of the variance and PC2 explains 19.0% of the 
variance and it is highly participated by the variables related to anthropogenic pollution like 
BOD, COD, phosphorous or nitrogen. However, VF1 explained 37.2% of the total variance 
and is highly participated by mineral component of the river water (calcium, chloride, 
conductivity, dissolved solids, hardness, bicarbonate, magnesium, sodium and sulphate). 
VF2 contained 16.7% of the variance and include BOD, COD and ammonia. Therefore, these 
two verifactors identified the natural (mineral) component of pollution from anthropogenic 
organic pollution.  

However, the study conducted by Vega et al. (1998) has not address seasonal effects which 
are known to have significant effect on water quality and might have affected the results of 
the study when interpreted for the different seasons. Ouyang et al. (2006) addressed the 
seasonal changes in surface water quality of the Lower Saint John River (LSJR) by the 
application of PCA. The authors found that PC1 explained 56.8% of the total variance 
measure the preponderance of physical (i.e., color, DO, and BOD) and organic-related (i.e., 
TKN, TOC, and DOC) water quality parameters over the mineral (i.e., alkalinity, salinity, 
and EC) and inorganic nutrient (i.e.,TNH3, DNOx,TP, and PO4-3) related water quality 
parameters while component 2 explained 26.8% of the total variance distinguished the 
importance of anthropogenic inputs and physical parameters (e.g., temperature and 
turbidity) over the natural inputs (e.g., pH, alkalinity, and salinity) during the spring season. 
However, unlike the cases for PC1 in spring and summer, the PC1 in fall which explained 
54.2% of the total variance was positively contributed by mineral inorganic nutrient-related 
parameters and was negatively participated by the physical and organic-related parameters. 
Overall, their results revealed a high seasonal variation of water quality parameters in the 
dynamic river system and showed their significance (seasonal variation) when establishing 
the pollutant load reduction goals (PLRGs) and developing the total maximum daily loads 
(TMDLs). In a separate study, Ouyang (2005) applied PCA for evaluation of river water 
quality monitoring stations (22) in the same stream. Results showed that the first component 
accounted for about 94.6% and the second component accounted for about 4.5% of the total 
variance in the data set. PC1 is, therefore, the only one major source of data variation and 3 
monitoring stations were identified as less important (non-principal) in explaining the 
annual variance of the data set. The authors attributed the very high variation explained by 
PC1 to the use of monitoring stations rather than water quality parameters in. In fact, it is 
expected that the water quality parameters which are controlled by hydrological, chemical 
and biological conditions to have higher correlations than water quality parameters which 
are solely controlled by hydrological conditions.  

Numerous studies also confirmed that multivariate statistical techniques served as an 
excellent exploratory tool in understanding their temporal and spatial variations on water 
quality (Sing et al, 2004). The application of PCA by Razmkhah et al. (2010) discriminate the 
anthropogenic and “natural’’ influences on Jajrood river in Iran. PCA has allowed 
identification of a reduced number of mean 5 varifactors, pointing out 85% of both temporal 
and spatial changes. Rotation of the selected factors explained that VF1 (mineral contents) 
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and VF2 (mineral and anthropogenic contamination) in spring time identified sites with 
worst water quality (high mineral content and higher organic pollution) and 43% of the 
existing variance was briefly contributed by minerals (temporal variations) whereas 26% by 
anthropogenic factors (spatial variations). However, PCA extracted 3 VFs for the summer 
season and 15.5% of the variance is contributed to by organic factors, 15.5% by minerals and 
55% by both and identified the most polluted rivers. Performing PCA in the autumn season 
found that 39% of the variation was due to temporal factors, 10% due to organic factors and 
36% was the result of both sources. PCA extracted 4 VFs for winter season and 38% was due 
to minerals, 12% due to organics and 31% developed by both sources. Overall, every season 
revealed the presence of either mineral or anthropogenic or both sources of pollution.  

Recently, Fan et al. (2010) applied PCA for spatial water quality assessment and pollution 
sources identification in Northern, Western and Eastern part of Pearl River delta (China). 

The results of the PCA suggested the parameters responsible for water quality variations 
in North River region was mainly related to organic related parameters (DO and CODMn ), 

inorganic nutrients (NH3-N and TP) and metal Hg; but in East River region, it was mainly 
related to organic related parameters (BOD5) and inorganic nutrients (NH3-N and TP), 

and in West River Region, mainly related to organic related parameters (CODMn ) and 
inorganic nutrients (NH3-N and TP). Therefore, PCA offer a useful tool for assessment of 

water quality and management of water resources in some regions with a large number 
complex water quality datasets involved. Similarly, Sing et al. (2004) applied multivariate 

statistical techniques for evaluation of temporal and spatial variations in water quality in 
Gomti river (India). A varimax rotation (raw) of the PCs to six different VFs of eigenvalue 

> 1which are considered significant (Kim & Mueller, 1987; Liu et al., 2003) explained 
about 71% of the total variance. VF1 explained 17.6% of total variance and has strong 

positive loadings on EC, chloride, potassium and sodium and this VF represents a mineral 
component of the river water. VF2, explained 16.2% of total variance and has strong 

positive loadings on BOD and COD which represent anthropogenic pollution sources. 
Overall, these results from temporal PCA suggested that most of the variations is 

explained by the set of soluble salts (natural) and organic pollutants (anthropogenic). 
However, this finding is in contrast to other studies (e.g. Fan et al., 2010; Vega et al., 1998) 

as PCA does not result in much data reduction, as it still need 14 parameters (about 60% 
of the 24 parameters) to explain 71% of the data variance. Parinet et al. (2004) successfully 

reduced the number of analytical parameters from 18 to 4 (pH, conductivity, UV 
absorbance at 254 nm and permanganate index for raw water) in a study of 10 tropical 

lakes in Ivory Coast without notably impairing the quality of the PCA representation. 
However, this difference might be related to the difference in the water system (river vs. 

lake) and geographical factors. Overall, simplification of water quality parameters to 
easily quantifiable ones eases water quality monitoring programmes.  

3. Changes in biological community structure 

Kebede et al (2010) applied PCA to detect changes in community composition of 
macronvertebrates arising from wet coffee processing effluents in major coffee producing 
region of Ethiopia by comparing upstream sites (control sites without any impact from the 
effluent and other possible pollutants because of their location above processing stations) 
with downstream locations (locations below coffee processing stations which are effluent 
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receivers). The relationships between the environmental and biological data were assessed 
using canonical multivariate analysis with the software program CANOCO 4.5 (ter Braak, 
Smilauer 2002). First, detrended correspondence analysis (DCA) of square-root transformed 
taxa abundance, with down weighting of rare taxa, detrending by segments and non-linear 
rescaling was used to determine the biological turnover, or gradient length, of the species 
data set. DCA for taxa (species) abundance of the first axis was less than 3, implying that 
taxa abundance exhibit linear response to environmental gradients (Leps & Smilauer, 2003). 
Therefore, principal component analysis (PCA) was used in the ordination of taxa 
abundance, and sampling sites by focusing scaling on inter-sample distances, 
standardization the species score (species score divided by the standard deviation), log 
transformation and centring by the species. In addition, to check the influence of 
environmental variable in explaining the variation among response variables (species), a 
PCA analysis of the response variable was run by using the physico-chemical data as 
supplementary environmental variable.  

3.1 Physcico-chemical parameters 

There was a highly significant variation between BOD values of the study sites (p < 0.01). 
BOD levels extend from 0.8 mg/l at upstream site of Urgessa river to 1900 mg/l and 1700 
mg/l at downstream sites of Bore and Fite rivers, respectively. Similarly, there was a 
significant variation between DO values of the study sites as expected (p < 0.05). The 
upstream sites showed good oxygen content as the DO values were above 5mg/l. However, 
DO value is totally depleted at the downstream site of Bore river which is in agreement with 
the high BOD value recorded for the site. Conversely, a slight reduction in pH values on 
average (7.03 to 6.74) might be attributed to the high assimilation capacity of water. The 
relatively higher amount of TDS at the upper site of Chiseche river might be attributed by 
the high mucilage coming out from coffee processing stations which are located around 
Chiseche river while the variation in temperature could be related to daily temperature 
variation during sampling period. A general pattern of NO3 and NH4+ increment at 
downstream sites compared the upstream sites was observed during the sampling periods. 
Overall, the result of the physico-chemical analysis supports similar findings such that the 
main ecological effect of organic pollution in a watercourse is the decrease in oxygen content 
(Murthy et al., 2004; von Enden & Calbert, 2002). 

3.2 Descriptive analysis of macroinvertebrates 

To assess the downstream water quality (river water that receive discharge from wet coffee 
processing stations), 6047 macroinvertebrate individuals representing 27 different taxa were 
collected and identified from riffle sampling sites at the upstream and downstream locations 
(Table 2). 

Species abundance is generally believed to be a useful measure of the severity of pollution 
(Sheehan, 1984). The total number of individuals found at the downstream sites was 5459 
which was compared to 588 individuals collected from their respective upstream sites. The 
highest number of individuals was found at the lower course of Guracho river (2166 
individuals) while the lowest number was recorded at the upper course of Chore river with 
a total of 3 individuals. Almost all the sampling sites displayed higher number of 
individuals at the downstream sites than the upper ones (Table 3). The highest number of  
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Table 1. Mean physico-chemical characteristics of water samples of rivers of Jimma zone at locations

effluent discharge points. All units except pH and temperature (°C) are in mg/l. (Data from Kebede et
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Table 2. Macroinvertebrate community identified from each sampling sites with their given codes. N

given in Table 1. –indicates absence of the species from the site during the sampling period. 
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Table 3. Descriptive analysis of the macroinvertebrate community, summary of diversity, equitabilit

study sites 
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species found was 13 in Songa lower with 32 individuals. The upper and lower course of Sunde 
river and the upper course of Chiseche and Chore rivers had only 3 species, respectively. The 
maximum number of individuals which belong to the same species was found at the 
downstream site of Gurracho river (1602 individuals of the Chironomidae family). The general 
increment in total number of individuals at the downstream sites might be attributed to the 
enrichment of downstream sites from coffee processing wastewater, which provides 
physiologically adapted organisms to exploit the excess nutrients available despite low oxygen 
tension and this response of macroinvertabrates to organic pollution has been well documented 
(Cao et al., 1996; Hilsenhoff, 1988; Johnson et al., 1993). However, the general increment in species 
richness at the downstream sites was not supported with species diversity. Hence, the 
downstream site of Gurracho river which had 2166 individuals were found to contain only 5 
species while the upstream sites of Chore river which had 3 individuals were belong to different 
species. This finding is consistent with Johnson et al. (1993) in that pollution tolerant species like 
Chironomidae species dominate the impacted sites.  

3.3 Biotic and diversity indices 

In order to understand the effect of wet coffee processing discharge on the biotic environment 
of the rivers, different diversity indices were tested (Table 3). These indices would indicate the 
environmental impact of coffee processing activities on the surrounding environment. The 
highest Shannon index was found at the upstream site of Songa river while the lowest 
Shannon index was found at the downstream sites of Bore and Urgessa river (Table 3). 
Similarly, Shannon index decreased from 0.57 at the upstream sites to 0.44 at the downstream 
sites. But the Equitability index which describes the evenness of species distribution within the 
site showed a different pattern. The highest and lowest Equitability indices were found at the 
upstream and downstream sites of Songa and Bore rivers, respectively. High values of 
diversity indices and equitability at the downstream sites of Songa river despite its presence 
below coffee discharge points, were unimpacted by coffee processing effluent. This finding of 
biological data is also supported by physicochemical data. Its good river water quality might 
be related to efficient coffee effluent control mechanism (lagoon) and the relative placement of 
the stations at a higher distance from the rivers i.e. large area possessed by the station enabled 
the construction of efficient pits to the containment of both coffee wasterwater and pulp. In 
general, Equitability index decreased from 0.336 at the upstream sites to 0.268 at the 
downstream sites and more than 50% of the sites had an Equitability index of less than 0.3 and, 
thus, few species had dominated these sites.  

The highest number of Ephemenoptera, Plecoptera and Tricoptera (EPT) individuals was 

found at the upper course of Janje river followed by Urgessa river, while the lowest EPT taxa 

were found in almost all of the downstream sites and upstream site of Funtule rivers. The total 

number of EPT taxa at the upstream sites was 171 and declined to 83 at the downstream sites. 

However, the number of Chironomidae (CHR) sharply increased from 264 at the upstream 

sites to 4240 at the downstream sites (Table 3), which is about 16 times higher than the 

upstream sites. The low diversity at the upstream sites of Fite and Funtule rivers was mainly 

related to the dominance of these sites by Chironomidae family. It comprises more than 76% of 

all the individuals found in at these sites. The situation is also the same at the upper course of 

Funtule river. It had three species which was highly dominated by Chironomidae taxa. Many 

reports have shown a significant decrease in species diversity indices associated with pollution 
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(Norris & Georges, 1993; Sheehan, 1984). Similarly the high EPT taxa at the upstream sites of 

Urgessa and Janje is related to their low BOD values. 

With regard to the Hiselhof Family Biotic Index (HFBI) evaluation, the upper course of Bore 

(1.933) river had the lowest HFBI score; whereas Funtule river had the highest HFBI value 

followed by the lower course of Sugo rivers. Similarly, the family biotic index increased 

from 5.585 at the upstream sites to 7.306. In fact 14 of the 22 downstream sites had HFBI 

values above 6.51. . The abundance of pollution tolerant Oligochaeta taxa and Syrphidae 

species at the downstream sites of Sugo and Funtule rivers resulted in high FBI score. Blood-

red chironomids and other dipterans (e.g., Ceratopogenidae and Chaoboridae) that are 

considered indicators of severely polluted sites were found at the downstream sites in high 

abundance than upstream sites. In fact, a benthic community dominated by one or few taxa 

is often indicative of environmental stress.  

3.4 Principal component analysis 

The separate analysis of environmental variables and biological indicators resulted in a 

slight difference results in depicting the pollution gradient along the study rivers. In fact this 

is expected since the abundance of species at a given site is more a reflection of past 

environmental conditions (Richard et al., 1997), while measurements of physical and 

chemical factors may be more of an indication of present conditions. However, the 

combination of both environmental variables (Table 1) and biological indicators (Table 2) by 

PCA was able to clearly define and explain the pollution gradients.  

3.4.1 Community composition of macroinvertebrates  

Based on the species data of the PCA analysis (Fig.1), the first axis described 56.7% of the 

variation in the species composition while the second axis described 11.7% of the variation. 

Therefore, the first two axes were responsible for 68.4% of the variation in the dataset.  

The dissimilarity between sites ( 12-2) dominated by Chaoboridae (CHA), Ceratopogenidae 
(CER), Chironomidae (CHR), Oligocheata (OLI) on the right side of the first axis with those sites 
(15-8) at the top left of the diagram was high as shown by the distance in the PCA analysis.  

The distribution of Chaoboridae, Ceratopogenidae Chironomidae were centered at sites 10 

(Urgessa lower), 22 (Chore lower), 14 (Fite lower), 2 (Sugo lower) and 16 (Gurracho lower). 

The distribution of Chironomidae, the most abundant taxa, at the downstream sites 

indicated the impact of coffee processing effluent on the community compositon of these 

particular sites. Similarly, many reports have documented a significant increase by 

Chironomidae taxa following toxic exposure (eg. Clements, 1994). On the contrary, 

Hydropsychidae (HYD), Baetidae (BAE), Heptagenidae (HEP), Perlidae (PER), and 

Psychodidae (PSY) was found at the negative of the first axis. These species have been used 

as indicators of good water quality (Cao et al., 1996; Legesse, 2001). In general, the PCA 

rendered three classifications: the extremely impacted downstream sites at the right side of 

the first axis and the two classes located at the right and negative side of the second axis 

which mostly constitute the upstream sites and their separation is attributed to their 

difference in species composition.  
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Fig. 1. PCA biplot of samples and macroinvertebrates based on the first two axes. Name of 
sampling points are given in Table 1 and full name of abbreviation codes of 
macroinvertebrate taxa is given in Table 2.  

 

Fig. 2. PCA triplot of samples, macroinvertebrates and environmental variables based on the 
first two axes. 
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The species and environmental variables together described about 41% of the variation in 

the data set and the first two axes are responsible for 70% of these variations or 28.7% of the 

total variation (70% X 41%) suggesting that the relative importance of the first two axes in 

describing the variation in taxa separation and environmental variables.  

In the ranking of the projection points, the origin (0, 0) indicates the global average of the 
variable. Therefore, TDS, Temperature and PO4 did not change much (short arrow length) 
and hence their influence were minimal as compared to BOD, TSS, NO3, pH, and DO 
environmental lines which displayed the maximum rate of change across the diagram. 
Therefore, variations in macroinvertebrate composition were strongly correlated with these 
environmental variables. The high oxygen weighted average for oxygen loving species of 
Hydropsychidae (HYD), Baetidae (BAE), Heptagenidae (HEP), Perlidae (PER) and 
Psychodidae (PSY) is as expected since Heptagenidae is in Ephemeroptera family while 
Hydropsychidae, Perlidae and Psychodidae are in Trichoptera family. Ephemeroptera, 
Trichoptera and Plecoptera are considered to be abundant in oxygen rich water, very 
sensitive for pollution and used as a water quality monitoring index in Ethiopia (Kebede et 
al., 2010; Legesse, 2001). Therefore sites 8 (Sugo lower), 6 (Chiseche lower), 7 (Songa upper), 
11 (Janje upper), and 15 (Gurracho upper) had higher DO values than the rest sites. 

On the contrary, organically polluted sites were found to be dominated by pollution tolerant 

species of Chaoboridae (CHA), Oligochaeta (OLI), Ceratopogenida (CER) and 

Chironomidae (CHR) taxa and except the taxa of Oligochaeta, all the species are in the 

Diptera family. The special characteristics of the above mentioned taxa are their ability to 

flourish in very low oxygen (high BOD) level and dominate the entire site with great 

abundance. Sites 14 (Fite lower) and 2 (Sugo lower) and 20 (Bore lower) had the highest 

BOD values than the rest of the sites. Therefore the species-site-environment PCA triplot 

diagram clearly discriminated unimpacted sites from the severely impacted ones. 

3.4.2 Sporulation pattern of aquatic hyphomycetes 

Recently, Kebede applied PCA for discrimination of the sporulation pattern of aquatic 

hyphomycetes (aquatic fungi) communities on oak leaves immersed in a low order stream 

for up to 12 weeks in Candal stream (Central Portugal; 40° 4t 44u N and 8° 12t 10u W). In this 

study, the significance of the sporulation temperature at the peak of sporulation (Table 4), 

day 28 at 20°C (T4_20), day 42 at 10°C (T6_10) & 15°C (T6_15) and day 56 at 5°C (T8_5), was 

evaluated using PCA.  

The non metric dimensional scaling (MDS) was applied in Winkyst program by using the 

Bray-Curtis distance matrix for producing the species axes (coordinates) that were  

used as a species data in principal component analysis (CANOCO 4.5; ter Braak &  

Smilauer, 2002).  

The response of the dominant species at the four temperature values is shown in Fig. 3. The 

stress value (fit of regression) of 0.038 depicted the excellent representation of the coordinate 

axes in discriminating the samples (sampling dates and incubation temperature) in the 

ordination diagram. The supplementary species data indicate the species of Clavariopsis 

aquatica (AQU) and Mycocentrospora acerina (ACE) were associated with the discrimination 

of the positive side of the axis (right side) by over-dominating the sporulation at 5°C. 
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Conversely, the species of Tetrachaetum elegans (ELE) and Articulospora tetracladia (TET) 

and to a lesser extent Alatospora acuminata (ACU) and Clavatosppora longibrachiatum (LON) 

were associated with the discrimination of the negative side of the axis (left side). These 

species highly dominate the sporulation at 10, 15 and 20°C. In addition, the PCA diagram 

shows a pattern of species dominance (longer arrow length) mainly due to ELE and ACE 

during the study period. Overall, the PCA analysis showed the species specific response 

to temperature variation by the dominant species. This is particularly pronounced during 

the peak period of sporulation with ACE, AQU, ELE and TET preferentially sporulate at 

5°C, 10°C,  15°C and 20°C, respectively. This pattern revealed by PCA appears to be due 

primarily to the differential response by the late colonizer ACE and early colonizer ELE to 

low and high temperatures, respectively. This finding adds to similar changes in 

community composition induced by temperature (Bärlocher & Kendrick 1974, 

Suberkropp, 1984; Gessner et al. 1993; Bärlocher et al. 2008; Dang et al., 2009; Fernandes et 

al., 2009; Ferreira & Chauvet, 2011).  

 
 
 
 

 
 
 
 

Fig. 3. PCA diagram of the sporulation temperature constructed on the species axes. The 
original species data was used as a supplementary variable.  
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Species 
T8_5 T6_10 T6_15 T4_20 

1 2 3 1 2 3 1 2 3 1 2 3 

Anguillospora filiformis (FIL) 0 0 3 1 2 0 0 0 0 0 0 0 

Alatospora acuminate (ACU) 5 0 1 22 32 1 0 22 7 12 65 10 

Alatospora pulchella (PUL) 0 0 0 0 0 0 3 0 2 8 5 0 

Articulospora tetracladia (TET) 0 1 1 3 13 0 15 8 8 4 32 40 

Clavariopsis aquatica (AQU) 33 3 24 17 17 33 3 15 79 0 9 13 

Clavatosppora longibrachiatum 

(LON) 
4 0 5 60 48 4 13 7 5 0 0 0 

Mycocentrospora acerina 

(ACE) 
70 1 27 0 2 0 0 2 0 0 0 0 

Stenocladiella neglecta (NEG) 0 0 0 0 0 0 5 1 0 2 1 5 

Tetrachaetum elegans (ELE) 10 0 13 89 38 10 157 83 58 17 106 134 

Tricladium angulatum (ANG) 0 0 0 0 0 0 1 0 0 0 0 1 

Table 4. Abundance of aquatic hyphomycetes conidia associated with oak leaves during 
the peak period of sporulation at three replications. T4, T6 and T8 represent 4, 6 and 8 
weeks of incubation period in weeks while 5, 10, 15 and 20 represent incubation 
temperatures (°C).  

4. Conclusions 

The usual program of water quality assessment depends on the periodic measurement of 
multiple parameters in different monitoring stations which resulted in a complex data 
matrix of a large number of physico-chemical parameters. Therefore, to simplify the 
problem of data reduction and draw meaningful conclusion multivariate statistical 
techniques have been widely used. In this regard, PCA, a powerful multivariate statistical 
technique, is applied to reduce the dimensionality of a data set while retaining as much as 
possible the variability present in data set and allows to assess associations between 
variables. PCA has been applied for the assessment of the seasonal and polluting effects on 
water quality, evaluation of monitoring stations, temporal and spatial variations on water 
quality and pollution source identification with in the river basin. Recently, PCA was 
applied to assess the water quality of rivers impacted by organic pollution. The combination 
of both environmental variables and biological indicators in PCA was able to clearly define 
and explain the pollution gradients. Similarly, PCA enabled to identify the distinct 
sporulation pattern of aquatic hyphomycetes communities incubated at four different 
temperatures. Therefore, the use of PCA to detect changes in community structure, 
ecological integrity of surface water systems and environmental impact assessment will 
enable to understand an integrative health condition of surface water systems due to 
chemical, physical and biological stressors.  
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