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1. Introduction 

The research of polymer blends, or alloys, has experienced enormous growth in size and 

sophistication in terms of its scientific base, technology and commercial development (Paul 

& Bucknall, 2000). As a consequence two very important issues arise: the increased 

availability of new materials and the need for materials with better performance.  

Polymer blends are polymer systems originated from the physical mixture of two or more 

polymers and/or copolymers, without a high degree of chemical reactions between them. 

To be considered a blend, the compounds should have a concentration above 2% in mass of 

the second component (Hage & Pessan, 2001; Ihm & White, 1996). However, the commercial 

viability of new polymers has begun to become increasingly difficult, due to several factors. 

The advantages of polymer blends lie in the ability to combine existing polymers into new 

compositions obtaining in this way, materials with specific properties. This strategy allows 

for savings in research and development of new materials with equivalent properties, as 

well as versatility, simplicity, relatively low cost (Koning et al., 1998) and faster 

development time of new materials (Silva, 2011). 

Rossini (2005) mentions that economically and environmentally, a very viable alternative is 

to replace the recycling of pure polymers by mixtures of discarded materials.  Mechanical 

recycling causes the breakdown of polymer chains, which impairs the properties of 

polymers. This degradation is directly proportional to the number of cycles of recycling. 

Therefore, the blend of two or more discarded polymers can be a realistic alternative, since it 

can result in materials with very interesting properties, at a low cost. Besides its 

inexpensiveness, this choice is also a smart solution to the reutilization of garbage. Post-

consumption package disposal always occurs in a disorderly manner and without regard for 

the environment. The recycling process becomes increasingly more important and necessary 

to remediate environmental impact. 
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According Pang et al. (2000) apud Marconcini & Ruvolo Filho (2006) polyolefins such as 
high density polyethylene (HDPE), low density polyethylene (LDPE) and polypropylene 
(PP) and polyesters such as poly (ethylene terephthalate) (PET) are classes of thermoplastics 
that have been widely used in packaging and constitute a large part of post-consumer 
waste. The recycling of these materials and their mechanical characterization anticipating 
the possibility of a new cycle of life in the form of new products is challenging, although 
technologically and environmentally correct (Marconcini & Ruvolo Filho, 2006).  

The polymer blends can be obtained basically in two ways (Rossini, 2005): 

 By dissolving the polymers in a good solvent, common to them, and subsequently 
letting the solvent evaporate; and 

 In a mixer where the working temperature is high enough to melt or mollify the 
polymeric components, without causing degradation of the same. 

According to Wessler (2007), the polymer blends may be miscible or immiscible. The 
miscibility is the most important property to be analyzed in a blend, given that all other 
system properties depend on the number of phases, their morphology and adhesion 
between them. The miscibility term is directly related to the solubility, i.e., a blend is 
miscible when the polymers dissolve in each other mutually (Silva, 2011). The immiscible 
between the various engineering polymers is a limiting factor for its production. Thus, it is 
necessary to use compatibilization agents for their production.  

Computational modeling has become increasingly popular. The main objective of models is 
to assist process optimization with minimal investment of time and resources for 
experimental work. Most techniques are classified into two main groups: physical models 
and statistical models as shown by Malinov & Sha (2003).  

Statistical methods are chosen according to research objectives. There are several 
multivariate analysis methods for purposes quite different from each other. The desired 
value and quality of one or more product characteristics can be obtained via experiment 
analysis and DOE. These methods help determining optimal settings and controllable 
factors of a process such as: temperature, pressure, amount of reagents, operating time, etc.. 
When compared to the method of trial and error, DOE also allows a reduction of the 
number of required tests, and savings in time, labor and money. 

An important application of DOE is the optimization of experimental formulations as, for 
example, the composition of mixtures. The formulation development is a fundamental part 
of the food industry, chemicals, plastics, rubber, paints, medicines, and the like. 

In materials science, it is important to understand the correlation between material 
processing, microstructure and properties that enable the optimization of process 
parameters and compositions of materials to achieve the desired combination of properties, 
according Malinov & Sha (2003). 

The problem presented here is to determine the fraction of each polymer blend component, 
and to determine the agent or, in some cases, an agents system, when it is necessary to use 
more than one compatibilizing agent. Thus, this text studies the effect of factors, for 
example, amount of polypropylene, additive type, and amount of additive in the 
composition of polymer blends, i.e., the optimal polymer blends formulation using  
factorial design. 
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Pawlak et al. (2002) pointed out that the elongation at break and impact strength of recycled 
HDPE/PET blends has increased with the addition of EGMA or maleic anhydride grafted 
styrene-ethylene butylene-styrene (SEBS-g-MA). The best results were obtained for 
PET/HDPE/EGMA at 75%/25%/4 pph and PET/HDPE/SEBS-g-MA at 75%/25%/10 pph. 
The mechanical properties of the blends were related to the phase dispersion. The increase 
in the viscosities of the compatibilized blends was observed due to the reaction during 
blending. Carvalho et al. (2003) considered blend composition complexity as a function of 
the ideal percentage of each one of their components in their computer study for 
optimization of polymeric blends. With the objective of analyzing the mechanical behavior 
of the blend in relation to PET and to PP, the same speed test was adopted for the three 
tested materials. The results are presented in Table 1. 

 

 
Modulus of 

Elasticity 
[MPa] 

Tensile 
Strength at 

Break 
[MPa] 

Elongation at 
Rupture [%] 

PET 2230 50.2 3.2 

PET/PP 75/25 1740 31.3 17 

PP 1130 26.9 615 

Table 1. Results of the traction for PET, PP and the blend PET/PP. 

2. Design of Experiments (DOE)  

2.1 Introduction to design of experiments 

One of the most common and challenging problems in experiments concerns the 
determination of the influence that one or more variables has on the variable of interest. 
Designed experiments address these problems and also have extensive application in the 
development of new processes and design of new products. Some of its applications are 

 Characterization of a process (experiment screening): It  aims to determine which 
factors affect the response;   

 Optimization of an experiment: It aims to determine the important factors in the region 
leading to an optimal response; and 

 Product planning: It tries to determine the factors that influence the most the 
verification effort. 

A DOE is the pre-requisite for a successful experimental study (Tang et al., 2010). Assuming 
that the goal of experimentation is to find a function, or at least a satisfactory approximation 
of it, which acts on k factors producing observed responses (as outlined in Figure 1), the 
system acts like an initially unknown transfer (or modifying) function,  which operates on 
the factors, producing as output, the observed responses. Thus, a better understanding of 
the nature of the reaction under study in order to choose the best system operating 
conditions (Silva, 2011). 
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Fig. 1. System Representation 

2.2 Factorials design 

In a designed experiment, the data-producing process is actively manipulated to improve 
the data quality and to eliminate redundancy. A common goal of all experimental designs is 
to collect data as parsimoniously as possible while providing sufficient information to 
accurately estimate model parameters. By factorial experiment we mean that in each 
replication of the experiment, all possible combinations of levels are investigated. 

Multilevel designs is used to systematically vary experimental factors and then assign each 
factor a discrete set of levels. Full factorial designs (FD) measure response variables using 
every treatment (combination of the factor levels).   

Plackett-Burman designs are used when only main effects are considered significant. They 
require a number of experimental runs that are a multiple of 4 rather than a power of 2.  

Binary factor levels are indicated by ±1. The design is for eight runs manipulating seven 
two-level factors. The number of runs is a fraction 8/27 = 0.0625 of the runs required by a 
full factorial design. Economy is achieved at the expense of confounding main effects with 
any two-way interactions. 

2.2.1 Two-level designs 

Two-Level designs are often used in experiments involving several factors, in which is 
necessary to study the combined effect of factors on a response. However, several special 
cases of general factorial design are important because they are widely used in research and 
form the basis for other designs of considerable practical value. The most important of these 
special cases is of k factors, where each one has only two levels. 

When planning an experiment, one should first determine the factors and the answers 
adequate to the system under study. The factors, that is, the variables controlled by the 
experimenter, can be both quantitative (such as values of temperature, pressure or time) and 
qualitative (such as two machines, two operators, levels "up" and "down" of a factor, or 
perhaps the presence or absence of a factor). Depending on the problem, there may be more 
than a response of interest and, eventually, these responses can also be qualitative. 

After determination of the factors to be observed, it is necessary to implement the factorial 
design, i.e., the values of the factors that will be used in the experiment. All possible 
combinations of factors are investigated. Among the many advantages of factorial design, 
the following (Button, 2005) can be named: 

. 

. 

. 

Response 1Factor 1 

Response 2Factor 2 

Response yFactor k 

. 

. 

. 

System 
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a. The number of trials can be reduced without jeopardizing the quality of information; 

b. It permits simultaneous study of several variables while separating its effects; 

c. It assesses the reliability of results; 

d. It allows stepwise research realization which in general adds new tests an iterative; and 

e. It selects the variables that influence a process with a minimum number of tests; 

In factorial design, the factors and levels are pre-determined by setting and they correspond 

to a fixed effects model. This type of planning is normally used in the early stages of 

research. Since there are only two levels for each factor analysis, its assumed that the 

response variable presents a linear behavior between these levels (Button, 2005). Effects are 

defined as "the change in response down level (-) for the up level (+)" and they can be 

classified in two categories: main effect (effect on the level change of a single factor) and 

interaction effect (effect on the change in level between two or more factors at the same 

time). 

2.2.2 2
2
 factorial design 

Geometrically, the design 22 can be represented by a square where each vertex corresponds 

to an experiment. 

Figure 2 shows, geometrically, the 22 factorial design and its planning matrix. The letters A 

and B represent the factors. The levels are represented by - and +, which correspond to low 

and high levels of factors. The combination of experiments, with both factors at low level is 

represented by the number 1. The effects of interest in the 22 factorial design are the main 

effects A (represented by number 2) and B (represented by number 3). The interaction factor 

AB, also called contrast (represented by the number 4) is generated from the product of the 

signs of the columns of the main effects A and B. 

 

 

 

 

 

 

 

Fig. 2. Geometrical Notation and Planning Matrix for 22  Factorial Design. 

The main effect of A is by definition the average of the effects of A in two levels of B. The 
same happens with the main effect B, as seen in (1) and (2). 

 
2 4 1 3( ) ( )

2 2

y y y y
A y y 

 
     (1) 

Treatment 
Combinatio

n 

Effects Responses 

A B 

(1) - - y1 

2 + - y2 

3 - + y3 

4 + + y4 

1 

2 4 

3 

Level 
(+) 

Level 
(-) 

Level 
(+) 

b 

a 

ab 

(1) 

Level 
(-) 

B 

A 
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4 3 2 1( ) ( )

2 2

y y y y
B y y 

 
     (2) 

The interaction effect AB is given by: 

 
1 4 2 3( ) ( )

2 2

y y y y
AB

 
   (3) 

2.2.3 2
3
 factorial design 

23 factorial designs have three factors at two different levels, which request the performance 

of eight experimental trials (each of these experiments in which the system is subjected to a 

defined set of levels). Based on factors that you want to study and their levels, it is possible 

to build a planning matrix as shown in Table 1. The first column of the effects (A  factor) is 

filled alternating one by one the levels of factors (- + - + ...), column 2 (B factor) is filled  

alternating two by two the levels of factors (- - + + ...) and, finally, the third column (C 

factor) the first four experiments are filled with the lowest level and last four with the higher 

level (- - - - + + + +). The combination of experiments with both factors at low level (-) is also 

represented by the number 1. 

Based on the planning matrix (Table 2) it is possible to generate the table of contrast 
coefficients. This matrix is composed of three main effects (A, B and C) and four 
interaction effects (AB, AC, BC and ABC). Table 3 shows the signs of effects for the 23 
factorial design.  

 

Treatment 
Combination 

Effects 

A B C 

(1) - - - 

2 + - - 

3 - + - 

4 + + - 

5 - - + 

6 + - + 

7 - + + 

8 + + + 

Table 2. Planning Matrix 23 Factorial Design  

In conformity to Neto et al. (2003), the effects on the 23 factorial design can also be 

interpreted as contrasts geometric, whose representation is a cube, in which the eight trials 

of the planning matrix corresponding to its vertices. The main effects and interactions of two 

factors are contrasts between two planes, which can be identified by examining the 

coefficients of contrast. In general, one main effect on the planning 23 is a contrast between 

the opposite sides and perpendicular to the axis of the corresponding variable. The 

interactions between two factors, in turn, are contrasts between two diagonal planes. These 

planes are perpendicular to a third plane, defined by the axes of the two variables involved 

in the interaction. 
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Treatment 
Combination 

Effects 

I A B C AB AC BC ABC 

(1) + - - - + + + - 

2 + + - - - - + + 

3 + - + - - + - + 

4 + + + - + - - - 

5 + - - + + - - + 

6 + + - + - + - - 

7 + - + + - - + - 

8 + + + + + + + + 

Table 3. Signs of Effects for the 23 Factorial Design. 

If K is the number factors, then a general form for the effects can be given by: 

 1

1

2

T
k

ef X y , and (4) 

 
1

2

T
ef k

M X y . (5) 

2.2.4 Fractional designs  

For experiments with many factors, two-level full FD can lead to large amounts of data. For 

example, a two-level full factorial design with 11 factors requires 211 = 2048 runs. Often, 

however, individual factors or their interactions have no distinguishable effects on a 

response. This is especially true of higher order interactions. As a result, a well-designed 

experiment can use fewer runs for estimating model parameters. 

Fractional FD use a fraction of the runs required by full FD. A subset of experimental 

treatments is selected based on an evaluation (or assumption) of which factors and 

interactions have the most significant effects. Once this selection is made, the experimental 

design must separate these effects. In particular, significant effects should not be 

confounded, that is, the measurement of one should not depend on the measurement of 

another. The challenge is to choose basic factors and generators so that the design achieves a 

specified resolution in a specified number of runs. The confounding pattern shows that 

main effects are effectively separated by the design, but two-way interactions are 

confounded with various other two-way interactions. 

2.3 Response Surface Methodology (RSM) 

RSM is defined how a collection of mathematical and statistical techniques useful for the 

modeling and analysis of problems in which a response of interest is influenced by several 

process variables (termed factors) whose objective is to optimize this response 

(Montgomery, 2005; Box & Draper 1987; Myers & Montgomery, 1995 apud Tang et al., 2010). 
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Box & Draper (1987) define RSM how a collection of statistical techniques useful in 

researches, with the purpose to determine the best conditions and give greater insight into 

the nature of certain phenomena. It comprises the following three main components (Tang 

et al., 2010):  

a. Experimental design to determine the process factors values based on which the 
experiments are conducted and data are collected;  

b. Empirical modeling to approximate the relationship (i.e. the response surface) between 
responses and factors; and 

c. Optimization to find the best response value based on the empirical model. 

It can be assumed that the system under study is governed by a function which is 

described by the experimental variables. Normally this function can be approximated by a 

polynomial, which provides a good description of the factors and response. The order of 

the polynomial is limited by the type of planning used. Two-level FD, fractional or 

complete, can only estimate main effects and interactions. Factorial design with three 

levels (central point) can estimate, moreover, degree of curvature in the response. In 

general, the relationship is: 

 1 2 ky f(x ,x , ,x )   , (6) 

where the true response f is unknown and sometimes very complicated; ε represents 

disturbances  in f, such as, measurement error on the response, background noise, the effect 

of other variables, and so on. In any planned experiment, there is a strong relationship 

between the analysis of a designed experiment and a regression analysis that can be used for 

predictions of an experiment 2k. 

Because f is unknown, we must approximate it. In fact, successful use of RSM is critically 

dependent upon the experimenter’s ability to develop a suitable approximation for f. 

Usually, a low-order polynomial is sought after. 

The first-order model is likely to be appropriate when the experimenter is interested in 

approximating the true response surface over a relatively small region of the independent 

variable space in a location where there is little curvature in f.  

To describe these models in a screening study, are used simple polynomials, i.e., those 
containing only linear terms. A simple model of a response y in an experiment with two 
controlled factors x1 and x2, two polynomials is: 

 0 1 1 2 2y x x        (7) 

 0 1 1 2 2 12 1 2y x x x x         , (8) 

where x1 and x2 are main effects;  x1x2 is a two-way interaction effect;  β0 is the average value 

of all responses; ε includes both experimental error and the effects of any uncontrolled 

factors in the experiment; and  β1, β2 and β2, are, respectively, the coefficients related to the 

main variables x1 and x2,  and the coefficient for the interaction between x1 and x2. So, x1 and 

x2 should be manipulated while measuring y, with the objective of accurately estimating β0, 

β1 and β2. Equations (7) and (8) can be combined and the resulting model is given by: 
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^

y X , (9) 

where 
^

y  is the vector of responses estimated by model; X is the coefficient contrast matrix; 

and β is the coefficient of the model or regression vector. In RSM design, there should be at 
least three levels for each factor. In this way, the factor values that are not actually tested 
using fewer experimental combinations and the combinations themselves can be estimated 
(Neseli et al., 2011). The effect of a factor is defined as the variation in the response produced 
by the change in the factor level. 

3. Development and discussion 

Factorial DOE has been used to measure the influence of the following input variables: 

amount of polypropylene, additive type and amount of additive on the values of response 

variables. Relevant mechanical properties for polymeric blends PET/PP are ME, elongation 

at rupture and TS at rupture. The following experiments were accomplished by a 23 factorial 

design. Their specifications are presented in the Table 4. 

 

 PET PP 

Manufacturing Fairway Polibrasil 

Type 201050 NT TM 6100 

Apparent density [g/m3] ASTM-D 1505 0.88 0.5 

Index of fluidity [g/10 min] ASTM-D 1238 (*) 16 

Intrinsic viscosity [dl/g] 0.82 (*) 

Melting [oC]  ASTM-D 3418 > 240 160 - 175 

(*) = not available 

Table 4. Specification supplied by the manufacturers of PET and PP (Carvalho et al., 2003). 

The factors will be analyzed on two levels (top and bottom) according to data presented in 
Table 5. 

 

Main Effects Factors Level (-) Level (+) 

A Amount of polypropylene 5% 25% 

B Additive type C2 (acrylic acid) C1 (maleic anhydride) 

C Amount of additive 1% 5% 

Table 5. Planning Matrix 

The preparation of test specimens and tests were performed according to the Standard Test 

Method for Tensile Properties of Plastics - ASTM D-638 (2010). The mechanical properties of 

ME, elongation at rupture and TS were evaluated in ten executions for each test. 

Tables of contrast coefficients for ME (Table 6), contrast coefficients for study of Strain at 

Break (Table 7) and contrast coefficients for TS (Table 8) were obtained from the Table 3 and 

Table 4. All tables were composed by three main effects: A (amount of polypropylene), B 

(additive type), C (amount of additive), and the four interaction effects AB, AC, BC and 

ABC. The last column of each table contains the values of Yn (n = 1, 2 and 3, respectively, 
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ME, elongation at rupture and TS at rupture), corresponds to the average of the 

experimental results found for each test, in 10 executions.  
 

Treatment 

Combination 

Effects Y1 

(MPa) I A B C AB AC BC ABC 

(1) + - - - + + + - 1605 

2 + + - - - - + + 1448 

3 + - + - - + - + 1445 

4 + + + - + - - - 1371 

5 + - - + + - - + 1562 

6 + + - + - + - - 1355 

7 + - + + - - + - 1550 

8 + + + + + + + + 1232 

Table 6. Contrast Coefficients and average values by modulus of elasticity. 

Treatment 

Combination 

Effects Y2 

(%) I A B C AB AC BC ABC 

(1) + - - - + + + - 4.36 

2 + + - - - - + + 3.80 

3 + - + - - + - + 4.01 

4 + + + - + - - - 3.60 

5 + - - + + - - + 4.22 

6 + + - + - + - - 4.55 

7 + - + + - - + - 4.50 

8 + + + + + + + + 4.24 

Table 7. Contrast Coefficients and average values by elongation at rupture 

Treatment 
Combination 

Effects Y3 

(MPa) 

I A B C AB AC BC ABC  

1 + - - - + + + - 50 

2 + + - - - - + + 41 

3 + - + - - + - + 43 

4 + + + - + - - - 37 

5 + - - + + - - + 46 

6 + + - + - + - - 40 

7 + - + + - - + - 48 

8 + + + + + + + + 37 

Table 8. Contrast Coefficients and average values by tensile strength at rupture 

4. Calculation of effects and results interpretation 

The 8 x 8 matrix factorial design is 
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1   1   1   1   1   1   1   1

1   1   1   1   1   1   1   1

1   1   1   1   1   1   1   1

1   1   1   1   1   1   1   1
X

1   1   1   1   1   1   1   1

1   1   1 

       
       
       
       


       
     1   1   1   1   1

1   1   1   1   1   1   1   1

1   1   1   1   1   1   1   1

 
 
 
 
 
 
 
 

     
         
         

 (10) 

Tables 6, 7 and 8 include all necessary values for calculating the effects on Modulus of 

Elasticity (ME), Strain at Break and TS. The column vectors Y1, Y2 and Y3, with respective 

average values  are shown in (11) and the product of XT (1) by the respective vectors (11) 

appears in (12). 

 

 1 2 3

1605 4.36 50

1448 3.80 41

1445 4.01 43

1371 3.60 37
Y ;    Y ;    Y

1562 4.22 46

1355 4.55 40

1550 4.50 48

1232 4.24 37

     
     
     
     
     
            
     
     
     
     
          

 (11) 

 

Returning to Tables 5, 6 and 7 can be seen that in all columns except the first, have four 

positive and four negative signs. To find the global average to fairly apportion the first 

element of each of the vectors XT.Y1, XT.Y2 e XT.Y3 by 8. The other elements of the vectors 

correspond to the effects and will be divided by 4, result in (13). 

 

 T T T
1 2 3

11568 33.28 342

756 0.9 32

372 0.58 12

170 1.74 0
X Y ;    X Y ;    X Y

28 0.44 2

294 1.04 2

   102 0.52 10

   194 0.74 8

     
            
       
     
              

     
      

     
     
           

 (12) 
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1 2
1446 4.16Y Y

189 0.225A A

93 0.145B B

42.5 0.435C C
;    

7 0.110AB AB

73.5 0.260AC AC

25.5 0.130BC BC

48.5 0.185ABC ABC

     
           
      
     

                 
     
     
     
           

3
42.75Y

8A

3B

0C
;    

0.5AB

0.5AC

2.5BC

2ABC

   
      
   
   
         
    
   
   
      

 (13) 

The Gauss method, which is a direct method for solving linear systems, can be used to solve 
the system found. In this case, the elements of columns of matrix X (10), that the 
corresponding effects were divided by 2, as shown in (14). The vectors y1, y2 and y3 are the 
terms independent of the linear system. The results are the same as described in (13). 

 

-1    -1 -1 1 1 1  -11                      
2 2 2 2 2 2 2

   1 -1   -1  -1  -1   1   -11               
2 2 2 2 2 2 2

  -1    1    -1  -1   1  -1 11               
2 2 2 2 2 2 2

   1    1 -1    1 -1  -1    -11               
2 2 2 2 2 2 2X

  -11   
2










   -1 1    1   -1  -1 1             
2 2 2 2 2 2

   1   -1    1   -1 1  -1 -11                
2 2 2 2 2 2 2

  -1    1    1    -1  -1 1  -11              
2 2 2 2 2 2 2

   1    1    1 1    1 1    11                   
2 2 2 2 2 2 2

 
 













 
















 (14) 

The three tables below show data contained in the vectors (13) in order to enable analysis of 
the influence of each factor individually and the interaction of these factors on the ME, 
strain at break and tensile strength (TS).  

Table 9 shows that the three main effects, the factors of polypropylene amount, additive type and 
amount of additive reduce the ME. The amount of polypropylene is the major contributing factor 
to the reduction of elasticity. The model obtained for the ME is presented in (15). 

Average: 1446 
Main Effects:  
A (Amount of polypropylene) -189 
B (Additive type) -93 
C (Amount of Additive) -42.5 
Interaction between two factors:  
AB -7 
AC -73.5 
BC 25.5 
Interaction between three factors:  
ABC -48.5 

Table 9. Effects calculated for the modulus elasticity. 
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  1446 25.5 * B* Cmodulus of  elasticity  (15) 

Figure 3 represents the RS for the ME as a function of B and C. The additive type and 
amount of additive increase the ME. Hence, the interaction between type and amount of 
additive can improve the interaction between molecules and compatibility of the mixture.  

 

Fig. 3. Response surface for modulus of elasticity as a function of the factors B and C 

With respect to the elongation at rupture, observed in Table 10, the main effect, amount of 

additive, increases the strain at rupture. The same happens with the interaction of two 

factors AC and BC. The obtained ME model appears in (16) and (17). 

 

Average: 4.16 

Main Effects:  
A (Amount of polypropylene) -0.225 
B (Additive type) -0.145 
C (Amount of Additive) 0.435 

Interaction between two factors:  
AB -0.110 
AC 0.260 
BC 0.130 

Interaction between three factors:  
ABC -0.185 

Table 10. Effects calculated for elongation at rupture 

   4.16 0.435 * C 0.268 * A* Celongation at rupture  (16) 

   4.16 0.435 * C 0.13* B* Celongation at rupture   (17) 
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Figure 4 represents the graphic of the response surface elongation at rupture as a function of 
the factors A and C. Note that the additive type and amount of additive increases the 
elongation at rupture, fact already observed in Table 10. Figure 4 show that this factor has a 
significant effect on elongation at rupture. It is evident in the Figures (4) and (5) that the 
amount of additive is more significant than the types of additive analyzed. 

 

Fig. 4. Response surface for elongation at rupture as a function of the factors A and C 

 

Fig. 5. Response surface for elongation at rupture as a function of the factors B and C 
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In Table 11, the main effect C has no significant value for TS, since the main effects A and B 
show a reduction. Interaction BC shows an increase in TS, while the interaction between the 
three factors (ABC) reduces TS. The model obtained for the modulus of TS is presented in (17). 

 

Average: 42.75 

Main Effects:  
A (Amount of polypropylene) -8 
B (Additive type) -3 
C (Amount of Additive) 0 

Interaction between two factors:  
AB -0.5 
AC -0.5 
BC 2.5 

Interaction between three factors:  
ABC -2 

Table 11. Effects calculated for tensile strength 

Figure 6 represents the graphic of the response surface for TS as a function of the factors B 
and C. Note that the additive type and amount of additive increases the TS. 

  42.75 2.5 * B* Ctensile strenght  (18) 

 

Fig. 6. Response surface for tensile strength as a function of the factors B and C 

4.1 Geometrical interpretation of effects 

The eight trials of each of the three planning matrices correspond to the vertices of the cube. 
The effects can be identified by examining the coefficients of contrast. Figure 5 reveals that 
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the tests are all negative on one side of the cube, which is perpendicular to the axis of factor 
1 (amount of polypropylene) and is located on the lower level of this factor. The other essays 
are on the opposite side, which corresponds to the upper level. The effect of factor 1 can be 
considered, therefore, as the contrast between these two faces of the cube. The effects, 2 and 
3, also are contrasts between healthy opposite sides and perpendicular to the axis of the 
corresponding variable. The interaction between two factors, appear as contrasts between 
two diagonal planes. These planes are perpendicular to a third plane, defined by the axes of 
the two variables involved in the interaction. 

Figure 7 presents the geometric interpretation of the effects. For instance, vertex 1 has the 
following coordinates: 5% polypropylene and 1% additive, which is acrylic acid. 

 

Fig. 7. Geometric interpretation of the effects 

5. Model-based DOE (PCA-based DOE)  

Nowadays, design, monitoring and optimization of applications by means of mathematical 
models are very advantageous in process control. Nevertheless, a trustworthy model that 
complies with operation constraints is as a rule difficult to develop not trivial.  According to 
Asprey & Macchietto (2000), a wide-ranging modeling method comprises: 

 An initial analysis and structure modeling of the system based on process knowledge; 

 Designing optimal experiments according to the planned model;  

 Perform experiments; and   

 Using experimental information to estimate model parameters and accomplish model 
validation by probing available estimated parameters and existing data. 

This chapter deals with experiments designed for a specific algebraic equations (AE) system 

called model-based DOE (MBDOE) while factorial analysis based on DOE uses empirical 

models. Numerical models are often nonlinear algebraic equations (NAE), dynamic 

algebraic equations (DAE), or partial differential equations (PDE). MBDOE is done before 

any real in order to describe structure selection, to model parameter estimation, and so 

forth. Pragmatically speaking, MBDOE sets up a DOE objective function.  

3 
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From an algorithmic point of view, DOE has been combined with AE systems for a long 
time and applied to DAE systems by Zullo (1991) and Asprey & Macchietto (2002). Several 
optimal design criteria (ODC) have been suggested and considered by different case studies; 
Walter & Pronzato (1990) gave a detailed discussion of available ODC and their geometrical 
interpretations. Lately, Atkinson (2003) used DOE for non-constant measurement variance 
cases and Galvanin et al. (2007) extended the DOE territory to parallel experiment designs. 

This work focuses on a DOE global methodology relying on PCA, so that a large system can 
separated into small pieces and a sequence of experiments can be designed to avoid 
numerical problems. Moreover, the problem can be transformed into familiar ODC under 
certain assumptions and a subset of model parameters can be chosen to boost estimation 
precision without changing the objective function form. 

5.1 Parameter estimation 

Parameter estimation can be generalized into the following optimization problem: 

   
2qn

m ,i , j j i
i 1 j 1

z mim y f t,x , ,u



 

  , (19) 

subject to: 

 j iHx f t,x , ,u  

mim maxu u u   

0 ft t t   

mim maxx x x   

mim max     

where n is the number of experiments, q is the number of equations, respectively, y stands 

for measured variables and subscript m indicates a measurement. x is the state variables of 
the DAE system. For simplicity, the variables x are assumed to be measurable, thus y=x.f 
represents the DAE equations and H is used to discriminate algebraic and dynamic 

equations (the corresponding rows for AEs are zero).  stands for the model parameters and 

u has the controlled variables. Assume the control profile u is known over a predefined time 

interval [t0, tf]. In parameter estimation, the only unknown in integrating f is   and normally 

the boundary of  is defined according to the nature of the process to be modeled. The 
measurement noises is considered a multivariate normal distribution (N(0,Vm)), otherwise 
Eq. (19) needs to be rebuilt from MLE according to the specific noise distribution function. 
In most cases, normally distributed noise is a safe assumption. Eq. (19) is similar to the 

classical optimal control problem in which the objective function usually is )(min f
u

txZ  . 

This dynamic system optimization problem can be solved by sequential and simultaneous 
methods.  
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In sequential approaches, only the unknown variables (e.g.,  for parameter estimation, u for 
optimal control) are discretized and manipulated directly by the non-linear programming 
(NLP) solver. After the unknown variables are updated, the DAE is integrated given the 
initial condition x0 and integration interval [t0, tf].  

For simultaneous methods, the entries of x are discretized along t and approximated by 
polynomials between two neighboring discretization grids. Thus, the integration step is 
avoided and both state and unknown variables are changed by NLP directly with certain 
constraints. A review of these methods can be found in Espie & Macchietto (1989). After the 

NLP solver converges, the corresponding  is our best estimate 
^

( )  based on the 

measurements at hand. To evaluate the accuracy of the estimation, the posterior covariance 
matrix (parameter covariance matrix) is defined by: 

 
1^ q q 1 1

m ,rs r s 0r 1 s 1
V( , ) v J J V 


 

 
     , (20) 

where  is the design vector which typically contains the time, initial state condition, control 
variables, etc. vm,rs is the r-th term in V that can be estimated by: 

 

n ^ ^

ri r i ri r i
i 1

m ,rs

y f (x , )) (y f (x , ))

v
n 1

 


  





 (21) 

For AEs, the sensitivity matrix is 
^

/  rr fJ , evaluated at n experimental points 

(sampling times). For DAEs, V can be treated as a sequential experimental design result 

according to Zullo (1991). With Eq. (20) kept the same, Jr contains the sensitivity coefficient 

of output yr with respect to the parameter vector 
^

 evaluated at different sampling times ts: 

 

r 1 r 2 r m

r 1 r 2 r m

r

r 1 r 2 r m

y y y

y y y
J

y y y

  
  

  

      
       
 
 
      




   


1

2

At sampling time 

At sampling time 

At sampling time n

t

t

t







  

The diagonal terms of V lead to the following estimation of the confidence region: 

 ^

1 2F( ,n,m) diag(V )


    (22) 

F (, n, m) represents a probability distribution with confidence level  with n and m 

degrees of freedom. The smaller  is the better estimate 
^
 turns out to be. Moreover,  is 

closely related to V as in Eq. (22) which paves the way  to the following  m×m Fisher 

information matrix M (where m is the number of model parameters):   

 1

1 1

( , )  

 


q q

rs r s
r s

M v J J  (23) 
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In MBDOE, M helps designing a series of experiments based on the model structure. By 
carrying out these experiments, the model parameters can be estimated with the best 
accuracy. The unknown design vector  contains measured time, initial conditions, control 
variables, and so on. Minimizing V, corresponds to maximizing the absolute value of M with 
respect to . For a single parameter model, J is nx1 and V is a scalar.  Parameter estimation 
and DOE rely on the maximization of M(,) with respect to  while and  correspondingly.  
The smallest amount of experiments amounts to the best model. It corresponds to the 
objective function suggested by Espie & Macchietto (1989). 

  
f M M

0

t N N

i , j
i 1 j i 1t

F max T ,t dt
 


   

   (24) 

where 

 T
i , j i i j j i i j jT (f ( , , t) f ( , , t)) f ( , , t) f ( , , t)           , and 

NM is the number of candidate model structures. As continuous sampling is not feasible, the 

integration is replaced by Σtk. Eq. (24) gives the  that maximizes the differences among 
models fi. Thus, after getting the real experiment profile ym, the best candidate model 
predicts ym most truthfully.  

MBDOE has still some drawbacks that require further study: 

1. Now and then, it fails to find out the optimal experiment for medium and large scale 
DAE systems and it generally takes a long time even for small scale systems;  

2. There is no trivial/automatic way to classify model parameters sensibly; 
3. All criteria depend on optimizing the prediction error variance and V of M in some 

sense. When M is ill-conditioned, V cannot be numerically calculated, because M cannot 
be inverted.  A possible solution is working with M instead of V; 

4. It is difficult to handle models for DAE systems.  

5.2 Principal Component Analysis (PCA) 

PCA decomposes the data matrix from experiments X by the following expression: 

 TX T P E  ,  (25) 

according to Coelho et al. (2009), where Xm×n, with scores Tn×npc , loadings Pm×npc, 
residual E and npc is the number of principal components (PCs). Nice PCA features are: 

1. If bi is the ith eigenvalue of the covariance matrix (XT X/n-1) in descending order, then 
the columns ti of T are orthonormal and explain the relationship between each row: 

 
T

1 2

T P
B ( , ,..., )

1
mdiag b b b

n
 


. (26) 

2. The columns pi of P are orthonormal (I=PTP), and capture the relationship between 
each column of X. Because XT X is symmetric, its eigenvalues and eigenvectors  
are real. 
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The first few columns of T and P explain most of the variance in X. When npc=min(m,n), E=0. 

The Cumulative Percent Variance (CPV) is one such method of obtaining the optimal npc 

that separates useful information and from noise and the threshold for this method can be 

set to 90% (Qin & Dunia, 1998; Zhang & Edgar, 2007). 

 
1

1

( )

pcn

j
j

pc m

j

b

CPV n

bj





 
 
 

  
 
 
 




 (27) 

The relationship between PCA and Singular Value Decomposition (SVD) can be explained 
by the next equations: 

 
1

:
1

T TSVD X X WLC
n




 (28)  

      1 1
:

1 1

T
T T T T TPCA TP TP P T T P PBT

n n
    

 
 (29) 

Since XTX is a real symmetric matrix, W(mxm) contains the left eigenvectors, C(mxm) has the 
right eigenvectors and P=C=W. The related eigenvalues are in L(mxm)=B.  

5.3 PCA and Information matrix combined criterion for DOE (P-optimality)  

For the sake of simplicity, assume there is only one measured output (q=1) and the 
measurement error is vm,rs=1, such that Eq. (20) becomes: 

 1 1( , ) [ ]TV J J M      (30) 

The sensitivity matrix J can be viewed as X in the above PCA equations, and M is 

proportional to V (the scaling factor (1/n-1) in the covariance is contained in vm,rs). Assume 

the eigenvalue and eigenvector matrices of M are  and P, respectively. Inserting Eqs. (25), 

and (29) into Eq. (30) yields: 

     . .
T

T T T TM J J TP TP P P     , and (31) 

 1 1 1 1( . . ) . .T TV M P P P P          (32) 

Since PT.P=I=P-1.P, and PT=P-1, then V(,)=P-T.-1.P-1=P.-1.PT. From PCA analysis, V comes 

from M, by means of SVD or NIPALS. If the smallest eigenvalue in M is m, then  m -1 will be 

the largest eigenvalue of V, which indicates the largest variance in the prediction error 

covariance matrix. The corresponding eigenvector Pm gives the direction of the largest 

variance in the m parameter space m. 

Figure 8 shows the covariance matrix of a two-parameter system. Two eigenvectors p2, p1 
indicate the direction of largest and second largest direction of variance. The projection of 
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long axis (p2 direction) on 1 and short axis (p1 direction) on 2 is proportional to the 
coincidence region of 1 and 2, respectively. In Figure 8, when 1 is much larger than 2, the 
ellipsoid will degenerate into a line and it is reasonable to look at 2 alone. Instead, when 2 
is well known, one can only focus on shrinking the projection of both ellipsoid axes on 1 
direction: 1 1 2 2min(| | | |)p p  . In order to eliminate the absolute value and take 

advantage of the unit length of pi, we use the following expression: 

2 2
1 2 1 2

2 2
1 2 1 2

(1) (1)
min max

(1) (1)

 
 

     
             

     

p p
Q

p p
 

 

Fig. 8. Geometric interpretation of PCA combined DOE criteria 

It is reasonable to reformulate the objective function as follows: 

 2

1
min
    

 
  
 
 


pc

m

i ji
i m n

j

F b P , (33) 

where bi are eigenvalues of V in ascending order (bi=1/i) and i  is in descending order) and 

P is the corresponding eigenvector matrix. The advantage of storing eigenvalues of V in 

ascending order is that P can be used directly without transformation; otherwise, P for V 

needs to be transformed by:  

0 1

1 0
V MP P

 
    
  


  


 

j corresponds to the parameters selected to increase estimation accuracy. To improve the 
precision of all parameters (j=1:m) all the PCs are retained and Eq. (33) becomes: 

2

1
min ,
  

 
  
 
 


m

i ji
i

j

F b P  with     2

1

1
m

ji
j

P


  

When only the largest eigenvalues of V are used by PCA (i=m) and all parameters are to be 
estimated, Eq. (33) turns out to be 

p1/1 p2/2 

2 
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 2min
 

 
 
 
 
m jm

j

F b P  (34) 

When all the PCs are to be used with specific parameters to be estimated (e.g., the first s), 
Eq. (33) becomes 

 2

1
1

min
   

 
  
 
 


sm

i ji
i

j

F b P  (35) 

After obtaining the eigenvalues of the V matrix (bi), a series of experiments are designed to 
minimize b1, b2,…,bm respectively. In general, by minimizing some eigenvalues, the 
estimation of certain parameters will improve.  

When calculating npc,, the eigenvalues of either M or V can be chosen. If V is used, then the 
last npc eigenvalues (kept in ascending order such that P does not need to be transformed) 
and the corresponding eigenvectors should be used to characterize the objective function. 
When using M, if the first k eigenvalues sum to 90%, then the remaining m-k eigenvalues 
npc=m-k and eigenvectors are used in Eq. (30). In general, for most model parameters a single 
eigenvalue cannot comprise information for most parameters (some elements in pi are close 
to zero), thus retaining more eigenvalues in the objective function for the first few runs is 
better. Commonly speaking, the new criterion has the following advantages: 

For medium and large-scale DAE systems, it is easier to shrink the scale of the DOE problem 
by choosing certain parameters out of the entire set to be the focus. By introducing PCA to 
carry out both eigenvalue calculation and selecting the optimal number of eigenvalues to 
evaluate, the ill-conditioning of M is avoided. PCA automatically chooses the optimal 
number of eigenvalues to be investigated, and reduces the problem scale. P gives a clue on 
grouping the estimated parameters, so it is easy to design an experiment for improving 
specific parameter estimation, compared with conventional methods. 

6. Summary 

It is noticed that the factorial design does not determine the optimal values in a single step, 
but this procedure suitably indicates the path to reach a nice experimental design. 

Main effects and the interaction effect are calculated using all the observed responses. Half 
of the observations belong to one mean, while the remaining half appears in other mean. 
There is not, therefore, idle information’s in the planning. This is an important characteristic 
of factorial design two-level. 

Using factorial design, the calculation of the effects becomes an easy task. The formulation 
can be extended to any two-level factorial design. The system generated can be solved with 
the aid of a computer program for solving linear systems. 

Modeling focuses on mathematic equations that try to reproduce the real-world behavior 
accurately over a wide range. Still, regardless of modeling approach chosen, the resulting 
mathematical models are frequently nonlinear algebraic equations (AE), dynamic algebraic 
equations (DAE), or partial differential equations (PDE). AE and DAE systems are the most 
frequently used modeling techniques. Model parameters are in general used to describe 
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special properties such as reaction orders, adsorption kinetics, etc. Hence factorial designs 
may not be satisfactory for intricate systems. 

As a rule, model parameters are not known a priori and have to be estimated from 
measurements. Moreover, disturbing the system under study very often leads to repetitive 
measurements and does not produce new data. This leads to the problem of designing 
experiments prudently to maximize information for specific modeling purposes. An 
alternative to DOE relying on the previous assumptions is MBDOE. 

This work introduces a PCA-based optimal criterion (P-optimal) for model-based DOE that 
combines PCA with information matrix analysis proposed by Zhang et al. (2007). The main 
advantages of P-optimal DOE include ease of reducing the scale of optimization problem by 
choosing parameter subsets to increase estimation accuracy of specific parameters and avoid 
an ill-conditioned information matrix. 

Countless products are produced from the investigation of a large amount of sensors to 
mine data for analysis. In such cases, the available data maybe correlated, and PCA in 
addition to other multivariate methods are normally used. PCA is a multivariate technique 
in which a large number of related variables is transformed into a smaller number of 
uncorrelated variables (dimensionality reduction). 

7. References 

Asprey, S.P. & Macchietto, S. (2000) Statistical tools for optimal dynamic model building. 
Computers and Chemical Engineering, 24:1261-1267.  

Asprey, S.P. & Macchietto, S. (2002) Designing robust optimal dynamic experiments. Journal 
of Process Control, 12:545−556. 

ASTM D 638 (2010). Standard Test Method for Tensile Properties of Plastics, Annual book of 
American Society for Testing of Material (ASTM), U.S.A., Vol. 08.01.  

Atkinson, A.C. (2003) Nonconstant variance and the design of experiments for chemical 
kinetic models.  S. P. Asprey and S. Macchietto, editors, Dynamic Model 
Development, volume 16. Elsevier. 

Box, G.E.P. & Draper, N.R. (1987), Empirical model buiding and response surfaces. New 
York: J. Wiley, 669p.  

Carvalho, G.; Silva, M.P.R.; Machado, J.M.P. (2003). Computer Modelling for optimization 
polimeric blends, Brazilian Meeting SBPMat, 2003, Rio de Janeiro, Brazil.  

Coelho, A., Estrela, V. V. & de Assis, J. (2009). Error concealment by means of clustered 
blockwise PCA. IEEE. Picture Coding Symposium. Chicago, IL, USA.  

Espie, D.M. & Macchietto, S. (1989) The optimal design of dynamic experiments. AIChE 
Journal, 35:223−229. 

Franceschini, G.; Macchietto, S. Model-based design of experiments for parameter precision: 
state of the art. Chem. Eng. Sci. 2008 , 63, 4846 –4872.  

Galvanin, F., Macchietto, S. & Bezzo, F. (2007) Model-based design of parallel experiments. 
Ind. Eng. Chem. Res., 46:871−882. 

Galvanin, F., Boschiero, A., Barolo, M. & Bezzo, F. (2011) Model-Based Design of 
Experiments in the Presence of Continuous Measurement Systems, Industrial & 
Engineering Chemistry Research,  50 (4), pp. 2167-2175. 

Hage, E. & Pessan, L. A., (2001). Improvement in plastics technology. Module 7: polymeric 
blends. (in Portuguese).  ABPol, São Carlos. 

www.intechopen.com



 
Principal Component Analysis – Engineering Applications 

 

64

Ihm, D.J. & White, J.L., (1996). Interfacial tension of polyethylene/polyethylene terephtalate 
with various compatibilizing agents. J. of Ap. Polymer Sc., vol. 60, pp. 1–7. 

Koning, C.; Duin, M. V.; Pagnoulle, C. & Jerome, R.; (1998). Strategies for Compatibilization 
of Polymer Blends. Pmg. P&m. Sri., Vol. 23, 707-7.57 

Malinov, S. & Sha, W., (2003). Software products for modelling and simulation in materials 
science. In Proceedings of the Symposium on Software Development for Process 
and Materials Design, volume 28, Issue 2, pp. 179–198. 

Marconcini, J. M. & Ruvolo Filho, A. (2006). Thermodynamic analysis of mechanical behavior 
in the elastic region of blends of poly (ethylene terephthalate) recycled and recycled 
polyolefins. (in Portuguese). Polímeros vol.16 no.4 São Carlos Oct./Dec.  

Montgomery, D. C. (2005). Design and Analysis of Experiments: Response surface method 
and designs. New Jersey: John Wiley and Sons, Inc. 

Myers, R. H. & Montgomery, D. C. (1995) Response Surface Methodology, Wiley. 
Neseli, S.; Yaldiz, S. & Turkes, E. (2011). Optimization of tool geometry parameters for 

turning operations based on the response surface methodology. .Measurement 44 
(2011) 580–87.  

Neto, B. B., Scarminio, I. S., & Bruns, R. E., (2003). How do experiments: research and 
development in science and industry. (in Portuguese). ed. UNICAMP, Campinas, 2 ed. 

Pang, Y. X., Jia, D. M., Hu, H. J., Houston, D. J. & Song, M., (2000) Polymer, 41: 357 
Paul, D. R. & Bucknall, C. B. (Eds.) (2000). Polymer Blends Volume 1: Formulation, John 

Willey & Sons, New York.   
Qin, S.J.  & Dunia, R.H.  (1998) Determining the number of principal components for best 

reconstruction. In IFA C DYCOPS'98, Greece. 
Pawlak, A., Morawiec, J., Pazzagli, F., Pracella, M. & Galeski, A. (2002). Recycling of 

postconsumer poly(ethylene terephthalate) and high density polyethylene by 
compatibilized blending. J. Appl. Polym. Sci., 86:1,473-1,485. 

Rossini, E. L. (2005). Obtenção da blenda polimérica PET/PP/PE/EVA a partir de “garrafas 
PET” e estudo das modificações provocadas pela radiação ionizante. Tese de 
Doutorado. Instituto de Pesquisas Energéticas e Nucleares. 

Silva, W. S. (2011). Modeling and optimization of ternary of polypropylene (PP), ethylene-
propylene-diene monomer (EPDM) and scrap rubber tire (SRT). (in Portuguese). 
Master’s Thesis. Polytechnic Institut of Rio de Janeiro State University.  

Tang Q, Lau Yb, Hu S, Yan W, Yang Y, Chen T, (2010).  Response surface methodology 
using Gaussian processes: towards optimizing the trans-stilbene epoxidation over 
Co2+-NaX catalysts, Chemical Engineering Journal, 156: 423-431.  

Walter, E. & Pronzato, L. (1990) Qualitative and quantitative experiment design for 
phenomenological models - a survey. Automatica, 26:195−213. 

Wessler, Katiusca. (2007). Systems of P (3HB) and P (3HB-co-3HV) with Poly-triol: Phase 
Behavior, Rheology, Mechanical Properties and Processability. Sistemas de P(3HB) 
e P(3HB-co-3HV) com Policaprolactona-Triol (in Portuguese), Dissertation. Center 
of Technological Sciences. State University of Santa Catarina. 

Zhang, Y.; Edgar, T. F. (2008) PCA combined model-based design of experiments (DOE) 
criteria for di fferential and algebraic system parameter identification. Ind. Eng. 
Chem. Res. 2008 , 47, 7772 –7783.  

Zhang, Y. & Edgar, T.F. (2007) Online batch process monitoring using modified dynamic 
batch PCA.  ACC, pages 2551-2556, NY, IEEE. 

Zullo, L. (1991) Computer aided design of experiments. An engineering approach, PhD 
thesis, University of London. 

www.intechopen.com



Principal Component Analysis - Engineering Applications

Edited by Dr. Parinya Sanguansat

ISBN 978-953-51-0182-6

Hard cover, 230 pages

Publisher InTech

Published online 07, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book is aimed at raising awareness of researchers, scientists and engineers on the benefits of Principal

Component Analysis (PCA) in data analysis. In this book, the reader will find the applications of PCA in fields

such as energy, multi-sensor data fusion, materials science, gas chromatographic analysis, ecology, video and

image processing, agriculture, color coating, climate and automatic target recognition.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Alessandra Martins Coelho, Vania Vieira Estrela Joaquim Teixeira de Assis and Gil de Carvalho (2012).

Methodology for Optimization of Polymer Blends Composition, Principal Component Analysis - Engineering

Applications, Dr. Parinya Sanguansat (Ed.), ISBN: 978-953-51-0182-6, InTech, Available from:

http://www.intechopen.com/books/principal-component-analysis-engineering-applications/methodology-for-

optimization-of-polymer-blends-composition



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


