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1. Introduction 

The preimplantation period of mammalian development hosts very important cellular and 

molecular events. This period starts with the fertilization of oocyte by sperm, a process that 

reprograms the highly differentiated nuclei of these germ cells, and leads to the generation 

of a totipotent one-cell embryo. Then, the embryo performs cleavage divisions with short 

cell cycles to quickly increase its cell number. During this period, the genome of the 

preimplantation embryo manifests profound changes in nuclear and chromatin 

organization, histone modifications, and transcriptional activity. These genome alterations 

are also coupled to cell signaling pathways and their regulatory effects. The final product of 

the preimplantation development is a multi-cellular blastocyst containing three types of 

cells, epiblasts, hypoblasts, and trophoblast cells [1].   

To study and understand the biology of preimplantation embryos, different techniques have 
been used. The paucity of cells and the difficulties associated with the preparation and 
production of preimplantation embryos have been the main limiting factors for the 
application of a wide range of experimental techniques. Thus, what is known about early 
embryos today is mainly the results of the use of a few experimental techniques and their 
adapted modifications. These include DNA and RNA amplification techniques, transcript 
labeling, in situ hybridization of DNA and RNA, gene manipulation studies, and light, 
electron, and immunofluorescence microscopy techniques.      

The application of each technique has revealed a specific aspect of preimplantation 
developmental biology. Table 1 summarizes and compares the contributions of different 
experimental techniques applied on preimplantation mammalian embryos. In the rest of this 
chapter, I will focus on the immunocytochemical staining of embryos and its different 
applications in preimplantation development.    

2. Contribution of immunocytochemistry to understanding the biology of 
preimplantation mammalian embryos 

Application of immunocytochemistry (ICC) on preimplantation embryos has provided 
invaluable information on different aspects of preimplantation development. I will briefly  
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Technique Knowledge contribution 
Example 

references 

Conventional and 
quantitative RT-PCR 

Evaluation of the transcription of 
individual genes 

[2-8] 

Gene expression 
profiling (microarray) 

Large-scale evaluation of the expression 
of genes 

[9-14] 

Electron microscopy 
techniques 

Studying the ultrastructural organization 
of the embryonic cells 

[15-19] 

Labeling of nascent 
transcripts 

Quantification of transcriptional activity [20-24] 

In situ hybridization 
of DNA and RNA 

Intracellular localization of chromosomes 
and transcripts 

[25-28] 

Gene knockout and 
knock down 
techniques 

Studying the function of individual 
genes 

[29-38] 

Immunocytochemistry Intracellular localization of proteins 
Quantitative evaluation of the expression 
of proteins 
Identification of protein modifications 
Evaluation of the activity of certain 
signaling pathways 
 

[20, 31, 39-45] 

Table 1. The major Experimental techniques applied to study the preimplantation embryos. 

review the applications of ICC for localization of proteins, for studying the modifications of 
chromatin and alteration of chromatin organization, and for analyzing cell signaling 
pathways in preimplantation embryos.  

2.1 Cellular and intra-cellular localization of proteins  

During preimplantation development, it is very important to identify whether a given 

protein is expressed, where in the cell it is localized, in which blastomeres it is expressed, 

and when its expression is eliminated. All of this information relate to the function of 

protein during preimplantation development. Immunocytochemistry has been an 

indispensable technique to reveal this information. Application of an alternative Western 

blotting will not provide any information on the intracellular localization of the protein or 

the types of expressing cells.  
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Looking at more than two decades of research on Oct4 clearly shows that what we know on 

the role of this transcription factor in pluripotency, has all started from this 

immunocytochemical observation that this protein is differentially expressed in the mouse 

preimplantation embryonic cells [46].  While it had been previously revealed that it has a 

strong transcriptional activator effect in the inner cell mass of the preimplantation embryo 

[47] and it is transcribed in these cells [48], it was its protein localization (using specific 

antibodies and ICC procedure) that convincingly illustrated its relationship to stemness and 

pluripotency.  A number of later functional studies also used ICC to reveal the function of 

Oct4 during preimplantation development and pluripotency [49, 50]. The same route of 

discovery has been traveled for other stemness genes [51].    

Using immunocytochemistry and confocal microscopy we have been able to reveal the 
subcellular distribution and to analyze the relative amount of ten isozymes of PKC (alpha, 
betaI, betaII, gamma, delta, epsilon, eta, theta, zeta, iota/lambda) and a PKC-anchoring 
protein, receptor for activated C-kinase 1 (RACK1), between the two-cell and blastocyst 
stages of mouse preimplantation development [39]. In a functional study, we used the same 
principle to analyze the relative amount of each PKC isozyme within each blastomere and 
relate this to the transcriptional activity of the 4-cell mouse embryo [20]. Thus for a given 
protein in the preimplantation embryo, ICC technique can be applied to study its 
differential expression between embryonic blastomeres, to identify its intracellular 
localization within individual blastomeres, and also to semi-quantitate its expression. 
Recently, using fluorescently-labeled specific antigen binding fragments (Fabs), it has been 
shown that it is possible to monitor the distribution and global level of endogenous histone 
modifications in living blastomeres without disturbing cell growth and embryo 
development [52].  

2.2 Identification of histone modifications and the study of nuclear organization 

The last two decades has witnessed a considerable number of research efforts using ICC to 
identify a variety of post-translational modifications on histones and to analyze the 
expression of chromatin-remodeling factors in preimplantation embryos (Table 2). 
Immunocytochemical detection and localization of nuclear subdomains (Figure 1), histone 
modifications, enzymes responsible for these modifications, different histone variants, 
distinct chromatin remodeling factors, and the status of transcription in preimplantation 
stages of development (Figure 2), has provided ample evidence and knowledge on the 
biology of chromatin during preimplantation development (Table 2). 

In a very close subject, ICC procedure has also been applied to investigate the organization 
of chromatin, the architecture of nucleus, and the formation of sub-nuclear compartments by 
ultra-structural studies in preimplantation embryos. In fact, the correlative fluorescence and 
electron microscopy technique has allowed the ultra-structural identification of nuclear 
entities which are identified and tagged by immunocytochemistry [15, 53, 54] (Figure 3). As 
it has been shown in the figure, immunocytochemical detection of a chromocenter domain 
immuno-stained with CREST antibody is indispensable for finding and imaging it under the 
electron microscope. The same principle has been used to identify a sub-nuclear 
compartment immunocytochemically, and to study its ultra-structure, e.g. localizing 
fibrillarin by ICC to identify nucleolus in the nucleus of preimplantation embryos for ultra-
structural analysis [19, 55-57].            
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Fig. 1. Immunocytochemistry and confocal imaging of a two-cell mouse embryo to evaluate 
the function of nucleus. Top row contains confocal images from an optical slice of a two-cell 
mouse embryo which has been immunolabeled and stained with different antibodies and 
imaged in different channels. The bottom row contains the merged images of the top 
nucleus in different channels. A two-cell embryo (A; DIC image) contains two nuclei that are 
not very chromatin-condensed by DAPI staining (B). Nucleoli (n) in the magnified nucleus 
in F (the merged image of A and B) show very thin rim of fairly condensed chromatin. 
Immunolabeling of RNA polymerase II (phosphorylated at serine 5 of its CTD) shows a 
hyperactive transcription (C). A highly transcribed region of nucleus has been marked in G 
(the merged image of B and C). Immunolabeling with CREST antibody reveals centromeres 
(D), which are mainly located at the edge of nucleoli in H (the merged image of B and D). 
White arrow in H, shows a CREST-labeled spot. Immunolabeling with the antibody against 
acetylated lysine of H3 histone reveals regions of “open” chromatin (E) which are 
distributed throughout the nucleus (I, the merged image of B and E).  

 
 

 
 

Fig. 2. Immunocytochemical  localization of hyperactive transcription domains in a two-cell 
stage mouse embryo. A) DIC image; B) Immunolabeling with the antibody against the 
acetylated lysine of histone H3; C) Immunolabeling with the antibody against RNA 
polymerase II (phosphorylated at serine 5 of its CTD); D) A merged image of B and C. The 
yellow color in D represents nuclear domains which contain acetylated H3K9 and RNA pol 
II, indicating that transcription is occurring in chromatin domains with a relaxed state, 
where a large number of acetylated histone H3K9 moieties are present.    
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Fig. 3. Chromatin organization in the two-cell stage preimplantation mouse embryo. A) 
Fluorescence image of a physical section spanning through the nucleus (shown by the white 
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box) of a two-cell stage embryo. White arrows point to the centromeres which are 
immunostained with CREST antibody. B) The rectangular region in panel A has been 
imaged by low magnification electron spectroscopic imaging (ESI; 155 keV phosphorus-
enriched)[15, 53, 54, 58, 59]. Three different-sized nucleoli with very homogenous mass are 
noticeable in this nucleus. Arrows 'a' and 'b' point to the centromeres designated similarly in 
panel A. The scale bar is 2 nm. C) Different regions of the nucleus in panel B have been 
imaged with higher magnification ESI. Columns P, N, PN, and PN' denote images of 
phosphorus map, nitrogen map, overlay of phosphorus and nitrogen maps, and higher 
magnification overlays of phosphorus and nitrogen maps, respectively. The segmentation of 
signals in PN and PN' permits the visualization of chromatin fibers as yellow, while non-
chromosomal proteins due to their relatively low N:P ratio content are in blue color. White 
arrowheads point to the representative gold-tagged histone H3 (methylated at lysine 9) 
molecules which are accumulated at different areas of the nucleus. Scale bars for columns P, 
N, and PN are 500 nm, and scale bar for column PN' is 200 nm. (C-I) Nucleoli comprise a 
homogeneous structure with scarce amounts of ribonucleoprotein (weak signal in P map), 
but large amounts of protein (strong signal in N map).  A more condensed patch of 
chromatin at the edge of nucleolus (arrow a) is highly positive for K9-methylated H3, while 
a very thin layer of chromatin at the edge of nucleolus (arrow c) does not show 
accumulation of this signal. The area shown by 'arrow a' which is designated similarly in 
panels A and B corresponds to a chromocenter.  (C-II)  A very thin layer of condensed 
chromatin (as 30nm fibers) at the nuclear envelope which in some parts is positive for K9-
methylated H3 blends in with the open lattice of 10nm chromatin fibers (shown by arrow d). 
The open lattice is filled with large amounts of non-chromosomal proteins shown as blue in 
PN image. The relation of chromatin and non-chromosomal proteins is better visualised in 
the higher resolution/magnification image of PN'. (C-III) Patches of condensed chromatin 
at the edge of nucleolus and in the vicinity of nucleolus (white arrowheads) are positive for 
K9-methylated H3, but only the area at the edge of nucleolus (shown by arrow b) 
corresponds to the chromocenter 'b' in panels A and B. (C-IV) Non-centromeric condensed 
chromatin (as 30 nm fibers and positive for K9-methylated H3) is surrounded by dispersed 
network of 10nm fibers. 

2.3 Evaluation of the activity of certain signaling pathways 

Immunocytochemsitry has also been used to discover the presence of many components of 
signaling pathways including Wnt, hedgehog, receptor tyrosine kinase, and PKC in 
preimplantation embryos. These studies based on imaging and localization of specific 
proteins has clearly established a framework for future functional studies. In Table 3 some 
of these studies have been summarized.  

3. Immunocytochemistry of oocytes and preimplantation mammalian 
embryos 

3.1 Harvesting oocytes and preimplantation embryos 

Depending to the species, oocytes can be acquired and preimplantation embryos can be 
produced in different ways. In mouse, it is very easy to harvest from oviduct and uterus, the 
oocytes and embryos grown in vivo to certain stages of preimplantation development. It is 
also possible to harvest embryos at early cleavage stages and grow them in culture medium 
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Findings Implication Example 
references 

Lack of the constitutive heterochromatin 
markers histone H4 trimethyl Lys20 
(H4K20me3) and chromobox homolog 5 
(HP1┙); the presence of heterochromatin 
markers, H3K9me3, 5-methyl cytosine 
(5MC), HP1┚, H3K27me3, H4K20me1 and 
H4K20me2 
 

Heterochromatin is in an immature 
state in mouse preimplantation 
embryos 

[60] 

Presence of the acetylated forms of H3K9 
and H3K27  
 

H3K27 acetylation is important for 
normal embryonic development 

[52] 

Relatively higher expression in oocytes and 
early cleavage stage embryos of methionine 
adenosyltransferase 1A protein up to the 8-
cell stage compared with the morulae and 
blastocyst stages 
 

nutrient-sensitive epigenetic regulation 
and perturbation may be performed 
through specific enzymes at the 
earliest stages of preimplantation 
development 

[61] 

Embryos at 2-, 4-, and 8-cell stages lack 
macroH2A except in residual polar bodies. 
MacroH2A protein expression reappears in 
embryos after the 8-cell stage and persists in 
morulae and blastocysts, where nuclear 
macroH2A is present in both the 
trophectodermal and inner cell mass cells. 
 

Normal embryos execute three to four 
mitotic divisions in the absence of 
macroH2A prior to the onset of 
embryonic macroH2A expression. 
Embryos made by somatic nuclear 
transfer utilize the same chromatin 
remodeling mechanisms. 

[62, 63] 

HDAC1 is expressed in preimplantation 
embryos , where its expression inversely 
correlates with changes in the acetylation 
state of histone H4K5 during 
preimplantation development 
 

HDAC1 is involved in the formation of 
a chromatin-mediated transcriptionally 
repressive state that initiates in the late 
two-cell embryo 

[31] 

ICC of late zygotes shows that constitutive 
heterochromatin is only maternally labeled 

by H3K9me3 and HP1 

In early embryos, Suv39h-mediated 
H3K9me3 constitutes the dominant 
maternal transgenerational signal for 
pericentric heterochromatin formation 
 

[34] 

After fertilization, level of H3K79me2 and 
H3K79me3 modifications rapidly decrease, 
and the hypomethylated state is maintained 
at the interphase (before the blastocyst 
stage), except for a transient increase in 
H3K79me2 at mitosis (M phase). H3K79me3 
is not detected throughout preimplantation, 
even at M phase 
 

Elimination of H3K79 methylation 
after fertilization is involved in 
genomic reprogramming 

[64] 

p150CAF-1 is expressed in preimplantation 
embryos and loss of p150CAF-1 function 
leads to early developmental arrest and 
alteration of heterochromatin organization 
 

Chromatin assembly machinery is 
involved in controlling the spatial 
organization and epigenetic marking 
of the genome in early embryos 

[42] 

Table 2. Immunocytochemical identification and analysis of some histone modifications and 
chromatin remodeling factors in preimplantation embryos. 
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Findings Pathway* Example 
references 

Expression of protein kinase C 
isoforms in each stage of 
preimplantation development 
 

Activation of PKC through 
G-protein coupled receptors 

[39, 65] 

Expression of Hh receptor PTCH1 
and co-receptor SMO 

Signaling events mediated 
by the Hedgehog family 

[66] 

Expression of -catenin Wnt signaling network [67-69] 

Presence of Aurora C in cleavage-
stage embryos 

Signaling by Aurora kinases [70] 

Expression of proteins in MAPK 
pathway 

p38 MAPK signaling 
pathway 

[71] 

IRS-1 is expressed in all cell lineages 
of the peri-implantation mouse 
embryo and mediates some effects of 
insulin and IGFs at this stage. 

Insulin pathway [72] 

Expression and localization of beta 1, 
beta 5 and alpha 6 integrins and ZO-
1 and E-cadherin proteins 

E-cadherin signaling 
pathway & integrin family 
cell surface interactions 

[73, 74] 

Strong expression of c-MYC signal in 
the nucleus of growing and fully 
grown oocytes as well as in 
preimplantation embryos before the 
morulae stage 
 

C-MYC pathway [75] 

The p 85 and p110 subunits of PI3K 
and Akt are expressed from the 1-cell 
through the blastocyst stage of 
murine preimplantation embryo 
development 

The PI3K/Akt pathway [76] 

*Name of pathways have been adapted from NCI-Nature Pathway Interaction Database [77] 

Table 3. Components of signaling pathways immunocytochemically identified in 
preimplantation embryos. 

(in vitro culture; IVC). In addition, the early embryos could be produced by in vitro 
fertilization (IVF) of oocytes, and subsequently cultured in vitro. The most practical method 
to acquire bovine embryos is through IVF followed by IVC.  

Superovulation of female mouse:  In mouse, whether we need oocytes, in vivo grown 
embryos, or in vitro fertilized and cultured embryos, the female mice required to be 
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superovulated. In response to a hormonal regimen, 3 weeks-old female mice produce the 
highest number of oocytes (metaphase II stage) and embryos. This is believed to be related 
to the lack of reproductive cycles and an inactive state of hypothalamic-hypophysial-
gonadal axis at this age.  The acquired number of harvested oocytes and embryos after 
superovulation is also largely affected by the strain and maintenance (nutritional and light-
dark cycle) conditions.  

To induce superovulation of female mice, the following steps need to be taken. 

1. Mice should be kept in a 12 hour light-dark cycle in a properly ventilated room with a 
temperature of 22-26°C.  

2. Administration of hormones is performed by intra-peritoneal injection of female mice at 
3-weeks age. If the mice are bred in the same facility, then the first injection time would 
be two days after weaning from mother. However, if mice will be transferred to the 
facility from another location, then the first injection time would be after a two-day 
acclimatization period. 

3. Human chorionic gonadotropin (hCG) and pregnant mare serum gonadotropin 
(PMSG), which are in the lyophilized powder form, should be dissolved in sterile saline 
solution (0.9% NaCl) under a laminar hood. The final concentration is 5 IU per 0.1 ml. 
Once all the powder in each vial has been dissolved, 0.5 ml of each solution should be 
drawn into individual insulin syringes and immediately placed in -80°C freezer.  

4. Each 3 weeks-old female mouse is injected intra-peritoneally at 14pm on day -3 with 0.1 
ml of PMSG (5 IU). The syringe containing the hormone should be removed from 
freezer and brought to the ambient temperature 15 minutes before injection.  

5. On day -1 at 12pm (46 hours after PMSG injection), each injected mouse will be injected 
again with 0.1 ml of hCG (5 IU) intra-peritoneally. If harvesting of embryos is intended, 
each female mouse after injection should be placed in the cage of individual males 
(Note 1) for overnight mating. However if oocyte recovery is anticipated, the females 
are returned to their own cage after second injection.    

Harvesting oocytes: In the morning of day 0, oocytes can be recovered from oviducts of 
injected females. Oviducts are flushed with M2 medium (Sigma-Aldrich, St Louis, MO, 
USA) as previously described [78]. It should be noted that the oocytes at this stage are 
surrounded by layers of granulosa cells. Thus, to perform ICC and properly localize and 
image specific proteins in oocytes, the granulosa cells need to be digested away. Otherwise, 
it will not be possible to properly image oocyte itself, especially when an epi-fluorescence 
microscope is used for imaging.   

Harvesting embryos: To harvest embryos, the injected female is placed in male’s cage for 
overnight mating. Presence of a copulation (vaginal) plug the next morning (on day 0), 
would be an indication for mating. Embryos at different stages of preimplantation 
development can be harvested at different time points.  Table 4 represents approximate time 
points for the recovery of embryos at different stages of mouse development. 

3.2 Immunocytochemistry 

Oocytes or embryos do not attach to the slides or coverslips. Thus, the ICC procedure on 
harvested oocytes or embryos is somewhat different from the ICC procedure performed on 
cells grown on coverslips or cells attached to slides. During the procedure, oocytes and  
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Stage Day Time  

One-cell stage 0 
(The day after 
hCG injection 
and mating*) 

10-12 am 

Two-cell stage 
(most likely at G2 phase of cell 
cycle)[79] 

1 9 am 
(45 hours after hcG injection) 
(33 hours post coitum*) 

Four-cell stage 
(G1 or S phase of the cell 
cycle)[79] 

1 4 pm 
(52 hours after hcG injection) 
(40 hours post coitum) 

Eight-sixteen cell stage 
 

2 9 am 
(69 hours after hcG injection) 
(57 hours post coitum) 

Morulae stage 2 4 pm 
(76 hours after hcG injection) 
(64 hours post coitum) 

Early blastocyst 3 9 am 
(93 hours after hcG injection) 
(81 hours post coitum) 

* When male and females are placed in a cage for mating in an evening, the 12:00 midnight is arbitrarily 
chosen as the time of mating. 

Table 4. Approximate time points for the recovery of embryos at different stages of mouse 
preimplantation development. 

embryos should be manually transferred between different media containing fixative, 

permeabilizing agent, or antibodies. Use of depression slides as container and a 

stereomicroscope would facilitate the procedure. Pipettors (e.g. 20 l) or mouth-controlled  

pipet devices [78] are used for the transfer, while embryos are watched under the 

stereomicroscope.  

The following procedure is a prototype to perform ICC (using fluorescent secondary 
antibodies) on oocytes and embryos. For simplicity, only embryos (not oocytes) are referred 
to in the procedure.  

1. Washing: Wash embryos in 200 l of PBS twice. This will involve the quick transfer of 
the harvested embryos into the depression slides containing PBS. Under the 
stereomicroscope, the embryos could be counted and screened for fragmented or 
abnormal morphology.  
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2. Fixation: Transfer embryos into 200 l of 4% paraformaldehyde in PBS and incubate at 
room temperature for 20 minutes. After fixation, the embryos are washed in PBS three 
times (of 5 minutes each) at room temperature. At this step, the embryos can be stored 
in PBS at 4°C overnight. 

3. Permeabilization (Note 2): Transfer fixed embryos into 200 l of 0.5% Triton X 100 in 
PBS and incubate for 5 minutes at room temperature. Wash the permeabilized embryos 
in PBS three times (of 5 minutes each) at room temperature. 

4. Incubation in primary antibody: Transfer embryos into 200 l of primary antibody 
(diluted in PBS). Incubate in a humid chamber for 2 hours at room temperature or 
overnight at 4°C. Wash the embryos in PBS three times (of 5 minutes each) at room 
temperature (Note 3). 

5. Incubation in secondary antibody: Transfer embryos into 200 l of secondary antibody 
(diluted in PBS). Incubate in a humid chamber for 1 hour at room temperature or 
overnight at 4°C. Wash the embryos in PBS three times (of 5 minutes each) at room 
temperature. If the antibody is conjugated to a fluorescent tag, then the incubation and 
washing steps should be performed at dark (Note 4). 

6. Mounting: During the mounting procedure, the embryos should be placed in a small 

volume (20 l) of mounting medium in the circle on the slide (Figure 4) (Note 5). First, 
place the mounting or anti-fade medium in the circle. Then, transfer the embryos into 
the middle of medium. Eyelash probe could be used to move embryos into the middle 
of circle. Let the embryos sink to the bottom of the medium. Place a coverslip very 
carefully on the circle on the slide, trying not to move embryos toward the edges of the 
circle. Seal around the edges of coverslip with nail polish. The mounted embryos can be 
examined right away or stored at 4°C.  

 

Fig. 4. Making circles of nail polish on the slide for mounting of immunostained embryos. 
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7. Microscopic examination: Depending to the type of secondary antibody used and the 
available equipment, the embryos can be imaged using light, epi-fluorescence, or 
confocal laser scanning fluorescence microscopy.  

3.3 Notes 

Note 1. Male mice reach sexual maturity at the age of 8 weeks. It is important that after 
weaning the individual male pups to be kept in separate cages. It is believed that keeping 
several male pups together in one cage, except in the dominant male, may suppress their 
hormonal maturity. It is also important to place one injected female in the male’s cage. Male 
mouse should not be placed in female’s cage. Only one female and not more should be 
placed in the male’s cage. The day after mating males and females should be separated 
again.  

Note 2. Permeabilization is only necessary when an intracellular antigen or protein is to be 
detected. For immunocytochemical detection of proteins or antigens which are localized on 
the cellular membrane, a permeabilization step is not performed. 

Note 3. Permeabilization and incubation of embryos in primary antibody causes them to 
sink toward and occasionally adhere the bottom of depression slides. This makes the 
transfer of embryos between different containers very difficult. Eyelash probe (commercially 
supplied or homemade by gluing an eyelash to a needle) would be an indispensible device 
for these situations. With this device under a stereomicroscope, it would be very easy to 
detach the embryos from the bottom of depression slides and guide them toward the 
transfer pipette.   

Note 4. Different secondary antibodies may be used. If the secondary antibody is conjugated 
to biotin, alkaline phosphatase, or horseradish peroxidase, different substrates are used to 
reveal antigen-primary antibody-secondary antibody complexes and different procedures 
are followed before the mounting step.  

Note 5. Placing coverslip directly onto a slide with embryos in between will cause the 

physical rupture and burst of embryos. Thus, it is very important to produce a space 

between slide and coverslip. For this purpose, small circles (with a diameter of 5mm) are 

made on the slide by nail polish. We use an insulin syringe (attached to its needle) filled 

with nail polish to make the circles with defined edges. When the circle of nail polish is 

dried, the space in the middle will be used for mounting of embryos.          

4. Conclusion 

The mammalian preimplantation development contains a highly regulated series of cellular 
and molecular events that are necessary for normal cell growth, cell division and 
differentiation. Our understanding of the mechanisms involved in these events has 
significantly increased in recent years, while much remains to be learned about the 
mechanisms involved in controlling growth and proliferation, transcriptional control and 
cell fate decisions. Immunocytochemistry has had and remains to have a significant role for 
the discovery of these events. In this chapter, its contribution to our current understanding 
of the different aspects of preimplantation development has succinctly reviewed. In 
addition, the ICC procedure has been elaborated.      
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