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1. Introduction

Several researches on scheduling problems have been done under the assumption that
setup times are independent of job sequence. However, in certain contexts, such
as the pharmaceutical industry, metallurgical production, electronics and automotive
manufacturing, there are frequently setup times on equipment between two different
activities. In a survey of industrial schedulers, Dudek et al. (1974) reported that 70%
of industrial activities include sequence-dependent setup times. More recently, Conner
(2009) has pointed out, in 250 industrial projects, that 50% of these projects contain
sequence-dependent setup times, and when these setup times are well applied, 92% of the
order deadline could be met. Production of good schedules often relies on management of

these setup times (Allahverdi et al., 2008). This present chapter considers the single machine
scheduling problem with sequence dependent setup times with the objective to minimize
total tardiness of the jobs (SMSDST). This problem, noted as 1|sij|ΣTj in accordance with the
notation of Graham et al. (1979), is an NP-hard problem (Du & Leung, 1990).

The 1|sij|ΣTj may be defined as a set of n jobs available for processing at time zero on a
continuously available machine. Each job j has a processing time pj, a due date dj, and a
setup time sij which is incurred when job j immediately follows job i. It is assumed that all
the processing times, due dates and setup times are non-negative integers. A sequence of
the jobs S = [q0, q1,..., qn−1, qn] is considered where qj is the subscript of the jth job in the

sequence. The due date and the processing time of the jth job in sequence are denoted as dqj

and pqj
, respectively. Thus, the completion time of the jth job in sequence will be expressed

as Cqj
= ∑

j
k=1(sqk−1qk

+ pqk
) while the tardiness of the jth job in sequence will be expressed as

Tqj
= max(0, Cqj

− dqj
). The objective of the scheduling problem studied is to minimize the

total tardiness of all the jobs which will be expressed as ∑
n
j=1 Tqj

.

Different approaches have been proposed by a number of researchers to solve the 1|sij|ΣTj

problem. Rubin & Ragatz (1995) proposed a Branch and Bound approach, which quickly
showed its limitations. It could optimally solve only small instances of benchmark files of
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2 Will-be-set-by-IN-TECH

15, 25, 35 and 45 jobs proposed by these authors. Bigras et al. (2008) have optimally solved all
instances proposed by Rubin & Ragatz (1995) using a Branch and Bound approach with linear
programming relaxation bounds. They also demonstrated and used the problem’s similarity
with the time-dependent traveling salesman problem (TSP). This Branch and Bound approach
solved some of these instances in more than 7 days. Because this problem is NP-hard, many
researchers used a wide variety of metaheuristics to solve this problem, such as a genetic
algorithm (Franca et al., 2001; Sioud et al., 2009), a memetic algorithm (Armentano & Mazzini,
2000; Franca et al., 2001; Rubin & Ragatz, 1995), a simulated annealing (Tan & Narasimhan,
1997), a GRASP (Gupta & Smith, 2006), an ant colonies optimization (ACO) (Gagné et al.,
2002; Liao & Juan, 2007) and a Tabu/VNS (Gagné et al., 2005). Heuristics such as Random
Start Pairwise Interchange (RSPI) (Rubin & Ragatz, 1995) and Apparent Tardiness Cost with
Setups (ATCS) (Lee et al., 1997) have also been proposed for solving this problem. For their
part, Sioud et al. (2010) introduce a constraint based programming approach proposing an
ILOG API C++ model.

Concerning the genetics algorithms (GA), only Sioud et al. (2009) succeeded in proposing an
efficient GA, suggesting that this metaheuristic is not well suited to deal with the specificities
of this problem. Indeed, the authors have proposed a GA integrating the RMPX crossover
operator which takes greater account of the relative and absolute position of a job. Indeed,
Armentano & Mazzini (2000); Rubin & Ragatz (1995); Tan & Narasimhan (1997) have shown
the importance of relative and absolute order positions for solving the 1|sij|ΣTj problem. The
proposed GA outdoes the performance of all the GAs found in the literature but is still less
efficient than the Tabu/VNS of Gagné et al. (2005) which represents the best approach found
in the literature.

The main purpose of this chapter is to show that GAs can be efficient approaches for solving
the 1|sij|ΣTj problem when the different mechanisms of the algorithm are specially design to
deal with the specificities of the problem. Indeed, in their respective works, Rubin & Ragatz
(1995) and Sioud et al. (2009) have shown the importance of relative and absolute order
positions for the 1|sij|ΣTj problem. Thereby, all the used crossover operators into the genetic
algorithms from literature maintain the absolute position, or the relative position or both.
So, to reach good results, the presented genetic algorithms must ensure the preservation of
both the relative and the absolute order positions while maintaining diversification during
their evolving. In this context, the presented algorithms will take this into consideration.
Indeed, we present, in this chapter, two hybrid GAs for solving the 1|sij|ΣTj where the

different mechanisms of the algorithms are specially design to deal with the specificities
of the problem. The first hybridization incorporates Constraint Based Scheduling (CBS) in
a GA. The hybridization of the CBS approach with the GA is done at two levels. Even,
the CBS is used in the reproduction and intensification processes of GA separately. The
second hybridization introduces a hybrid crossover in a GA. The proposed crossover uses
concepts from the multi-objective evolutionary algorithms and ant colony optimization. Both
hybridizations use the specificities of the problem to reach good results.

This chapter is organized as follows: Section 2 presents the used pure GA of Sioud et al. (2009).
Section 3 introduce the two hybrid algorithms. The computational testing and discussion are

presented in Section 4: we present several versions of hybridizations and compare our results
to the Tabu/VNS of Gagné et al. (2005). Finally, we conclude with some remarks and future
research directions.

200 Real-World Applications of Genetic Algorithms
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Hybrid Genetic Algorithms for the Single Machine Scheduling Problem with Sequence-Dependent Setup Times 3

2. Genetic algorithm

Based on the GA proposed by Sioud et al. (2009), we define a simple genetic algorithm.

A solution is coded as a permutation of the considered jobs. The population size is set
to n to fit with the considered instance size. Sixty percent of the initial population is
generated randomly, 20% using a pseudo-random heuristic which minimizes setup times,
and the last 20% using a pseudo-random heuristic which minimizes the due dates. A
binary tournament selects the chromosomes for the crossover. The proposed GA uses the
OX crossover (Michalewicz, 1996) to generate 30% of offspring and the RMPX crossover
(Sioud et al., 2009) to generate the rest of the child population. The RMPX crossover can be
described in the following steps : (i) two parents P1 and P2 are considered and two distinct
crossover points C1 and C2 are selected randomly, as shown in Figure 1; (ii) an insertion point
pi is then randomly chosen in the offspring O as pi = random (n - ( C2 - C1)); (iii) the part [C1,
C2] of P1, shaded in Figure 1, is inserted in the offspring O from pi, from the position 2 shown
in Figure 1; and (iv) the rest of the offspring O is completed from P2 in the order of appearance
from its first position.

C1 C2

pi

Fig. 1. Illustration of RMPX

The crossover probability pc is set to 0.8, therefore n*0.8 offspring are generated at each
generation. A mutation is also applied with a probability pm equal to 0.3. The mutation
consists of exchanging the position of two distinct jobs which are randomly chosen. The
replacement is elitist and the duplicate individuals in the population are replaced by
chromosomes generated by one of the pseudo-random heuristics used in the initialization
phase.

3. Hybrid genetic algorithms

Several researchers have attempted to relieve the metaheuristic shortcomings and limitations
by modifying the traditional executing for some problems. Indeed, to improve the
effectiveness of these methods, some researchers have used metaheuristics variations and
hybridizations (Puchinger & Raidl, 2005; Talbi, 2009). In general, hybridization combines two
or more methods in a single algorithm to solve combinatorial optimization problems. Hybrid

approaches in general and hybrid metaheuristics in particular are gaining popularity because
these approaches obtained the best results for several combinatorial optimization problems
(Jourdan et al., 2009; Talbi, 2009). Also, according to Blum et al. (2005), the hybridization
of metaheuristics is the most promising avenue for improving the quality of solutions in

201Hybrid Genetic Algorithms for the Single Machine 
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many real applications. Puchinger & Raidl (2005) divide hybrid methods into two categories
: collaborative and integrative hybridization. The algorithms that exchange information in
a sequential, parallel or interlaced way fall into the category of collaborative hybridization.
We talk about an integrative hybridization when a technique is an embedded component of
another technique. In this chapter, we introduce first a collaborative hybridization which
incorporates CBS approach with the GA at two levels. Indeed, the CBS is used in the
reproduction and intensification processes of GA separately. In fact, the CBS approach
is integrated in a crossover operator and in the intensification search space process using
additional constraints for both of them. Second, we introduce an integrative hybridization at
a new hybrid crossover, integrating concepts from two different techniques: archives as in the
multi-objective evolutionary algorithms and a transition rule as in ant colony optimization.

3.1 The collaborative hybrid genetic algorithm

Constraint solving methods such as domain reduction and constraint propagation have
proved to be well suited for a wide range of industrial applications (Fromherz, 1999).

These methods are increasingly combined with classical solving techniques from operations
research, such as linear, integer, and mixed integer programming (Talbi, 2002), to yield
powerful tools for constraint-based scheduling by adopting them. The most significant
advantage of using such CBS is to separate the model from the algorithms which solve
the scheduling problem. This makes it possible to change the model without changing the
algorithm used and vice versa.

In the recent years, the CBS has become a widely used form for modeling and solving
scheduling problems using the constraint programming approach (Allahverdi et al., 2008;
Baptiste et al., 2001). A scheduling problem is the process of allocating tasks to resources over
time with the goal of optimizing one or more objectives (Pinedo, 2002). A scheduling problem
can be efficiently encoded like a constraint satisfaction problem (CSP).

The activities, the resources and the constraints, which can be temporal or resource related, are
the basis for modeling a scheduling problem in a CBS problem. Based on representations and
techniques of constraint programming, various types of variables and constraints have been
developed specifically for scheduling problems. Indeed, the domain variables may include
intervals domains where each value represents an interval (processing or early start time for
example) and variable resources for many classes of resources. Similarly, various research
techniques and constraints propagation have been adapted for this kind of problem.

In Constraint Based Scheduling, the single machine problem with setup dependent times can
be efficiently encoded in terms of variables and constraints in the following way. Let M be the
single resource. We associate an activity Aj for each job j. For each activity Aj four variables
are introduced, start(Aj), end(Aj), proc(Aj) and dep(Aj). They represent the start time, the end
time, the processing time and the departure time of the activity Aj, respectively. The departure
time represents the needed setup time of an activity when the latter starts the schedule.

Figure 2 presents the pseudo-code for the 1|sij|ΣTj problem modeling with the C++ API
of ILOG Scheduler 6.0. The main procedure ModelSMSDST calls the two procedures
CreateMachine and CreateJob. CreateMachine procedure (lines 3 to 6) uses the class

IloUnaryResource. This allows handling unary resources, that is to say, a resource whose

202 Real-World Applications of Genetic Algorithms
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Hybrid Genetic Algorithms for the Single Machine Scheduling Problem with Sequence-Dependent Setup Times 5

L1     Modeling SMSDST :

L2

L3         procedure CreateMachine (SetupMatrix) 

L4             Create the setup matrix parameter

L5             Create the single machine and associate the setup matrix parameter

L6 end CreateMachine()

L7

L8         procedure CreateJob (ProcessingTimes, StartingTimes, type)

L9             Create a job with a type and processing time

L10            Set a starting time for the created job

L11        end CreateJob()

L12

L13       procedure ModelSMSDST(ProcessingTimes, StartingTimes, DueDates SetupMatrix)

L14 CreateMachine(SetupMatrix)

L15 Define an array for the jobs completion time C

L16           Define a variable for the total tardiness Tard

L17           for each i in NB_JOBS do

L18  job      CreateJob (ProcessingTimes, StartingTimes, i)

L19               C[i]     max(0, job.end - DueDates[i])

L20           end for

L21 Tard      Sum(C) 

L22           Minimize (Tard)

L23       end ModelSMSDST

Fig. 2. C++ API model for the 1|sij|ΣTj problem

capacity is equal to one. This resource cannot therefore handle more than one job at a time.
The use of the setup times in CBS and also with ILOG Scheduler (ILOG, 2003a) indicates that
they are resource-related and not activity-related such as is the case in our problem. It is
possible to overcome this problem by associating a type for each activity and creating setup
times associated with these types. For this purpose, we use the class IloTransitionParam which
is managing and setting setup times. The setup matrix is then associated to this class which
will be related to the unary machine (line 5). Thus, when we calculate the objective function,
it is possible to associate the setup times between two distinct types of activities. To model
the total tardiness, we must first define a variable Tard (line 16). Then we define an array
C containing the completion times Ci of the different activities times Ai during the research

phase (line 15). When we create the activities in the model, we add a constraint that combines
the activities Ai to the corresponding times Ci (line 19). After that, we add a constraint which
combines the variable Tard with the sum of the Ci in the table C (line 21). Finally, we add a
constraint that minimizes the variable Tard (line 22). Thus, we obtain the objective function
which will be added to the model.

ILOG Solver (ILOG, 2003a) provides several predefined search algorithms named as goals and
activity selectors. We used the IloSetTimesForward algorithm with the IloSelFirstActMinEndMin
activity selector. The IloSetTimesForward algorithm schedules activities on a single machine
forward initializing the start time of the unscheduled activities. The activity selector defines
the heuristic scheduling variables representing start times, which chooses the next activity

203Hybrid Genetic Algorithms for the Single Machine 
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to schedule. The IloSelFirstActMinEndMin tries first the activity with the smallest start time
and in case of equality the activity with the smallest end time. For his part, ILOG Scheduler
(ILOG, 2003b) provides four strategies to explore the search tree : the default Depth-First Search
(DFS), the Slice-Based Search (SBS) (Beck & Perron, 2000), Interleaved Depth-First Search (IDFS)
(Meseguer, 1997) and the Depth-Bounded Discrepancy Search (DDS) (Walsh, 1997) which is used
in this work.

The hybridization of an exact method such as the CBS and a metaheuristic such as the
GA can be carried out in several ways. Talbi (2002) presents a taxonomy dealing with the
hybrid metaheuristics in general. Puchinger & Raidl (2005) and Jourdan et al. (2009) present
a taxonomy for the exact methods and metaheuristics hybridizing. In this chapter we present
two different approaches of hybridization. The first approach is to integrate the CBS in the GA
reproduction phase and more precisely in a crossover operator, while the second approach is
to use CBS as an intensification process in the GA.

When we handle a basic single machine model, there is no precedence constraint between
activities as is the case in a flow-shop or job-shop where adding constraints improves the
CBS approach. The main idea of integrating the CBS in a crossover is to provide to this
latter precedence constraints between activities when generating offspring. In this work, we
consider only the direct constraints during the crossover. Therefore, the conceived crossover
promotes the relative order positions such as the PPX crossover (Bierwirth et al., 1996). The
proposed crossover operator is designated Indirect Precedence Constraint Crossover (IPCX) and
can be described in the two following steps : (i) all individuals in the current population

are considered and the indirect precedence constraints between jobs concurrently in all the
individuals are kept, as shown in Figure 3; and (ii) the CBS approach tries to solve the
problem while adding the indirect precedence constraints built in the previous step and an
upper bound consisting of the objective function value of the best parent. The upper bound
is added to discard faster bad solutions when branching during the solver process. As a
reminder, the ILOG Solver uses a Branch and Bound approach to solve a problem (ILOG,
2003b).

In the case of Figure 3,we consider a population with 4 individuals. Only the three indirect
precedence constraints (1 before 6), (8 before 2) and (9 before 7) are in the four individuals. So
these three indirect constraints are added to the model and will be propagated. Thus, they
preserve the relative positions of the pairs of activities (1,6), (8,2) and (9,7). After that, in a
potential offspring we will find this indirect precedence constraints. Finally, if no solution
is found by the IPCX crossover, the offspring is generated by one of the pseudo-random
heuristics used in the initialization phase. The IPCX crossover will be done under probability
pIPCX.

Integrating an intensification process in a genetic algorithm has been applied successfully in
several fields. The incorporation of heuristics and/or other methods, i.e. an exact method
such as the CBS approach, into a genetic algorithm can be done in the initialization process to
generate well-adapted initial population and/or in the reproduction process to improve the
offspring quality fitness. Following this latter reasoning, the strategy proposed in this section
is based on the intensification in specific space search areas. However, we can find in literature

only few papers dealing with such hybridization Puchinger & Raidl (2005); Talbi (2009).

204 Real-World Applications of Genetic Algorithms
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1

Fig. 3. Illustration of IPCX

In the same vein of the IPCX conservation precedence constraints, an intensification process is
applied by giving a generated offspring to the CBS approach and fixing a block of α positions.
Thus, the absolute order position will be preserved for these fixed positions while the relative
order position will be preserved for the other activities. Indeed, the activities on the left of
the fixed block will be scheduled before this late block, while the activities on the right will
be scheduled after this block. The fixed block size should be neither too large nor too small
: if its size is too large, the CBS approach will have no effect and if its size is too small the
CBS approach will consume more time to find a better solution. Thereby, at each time this
intensification is done, α continuous positions are fixed with 0.2*n ≺ α ≺ 0.4*n. We use to
this end two different procedures based on the CBS approach. The first one, noted as IPTARD ,
selects a generated offspring and tries to solve the problem using the CBS approach which

minimizes the total tardiness described above while adding an upper bound consisting of the
objective function value of this offspring. So as a result, the CBS approach may return a better
solution when scheduling separately the activities on the left and the right of the fixed block
activities.

Using the similarity of the studied problem with the time-dependent traveling salesman
problem (Bigras et al., 2008), the second intensification procedure, noted as IPTSP, works
like IPTARD but in this case the CBS approach minimizes the makespan. The makespan

optimization aims to minimize the setup times and then, in some specific configurations,
will give promising solutions under total tardiness optimization otherwise explore a different
areas search space. The makespan criterion is represented by an additional variable
Makespan. Its value is determined by Makespan = ∑

n
Aj=1 max(end(Aj)). The model

minimizing the makespan is similar to that in Figure 2. Indeed, we just delete the declaration
of the array C at line 15 and define an activity Makespan with time processing equal to 0 at
line 16. Then, a constraint stating that all jobs must be completed before the Makespan start
time is added in the loop. Finally, lines 19 and 21 are removed and line 22 minimizes in this
case the Makespan end time.

Thereby, an offspring is selected with a tournament under probability pIP and then, one of
the two intensification procedures IPTARD and IPTSP is chosen under probability pcip to be
applied on this offspring. Figure 4 illustrates the intensification process based on the CBS

205Hybrid Genetic Algorithms for the Single Machine 
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Population (t)

Tournament selection 
under probability pIP

Final offspring
Choose and apply an intensification 

procedure under probability pcip

fixed positions

Fig. 4. The intensification process

approach. At each generation, an offspring is selected under probability pIP with tournament
selection. After fixing α positions and choosing an intensification procedure, IPTARD or IPTSP

under probability pcip , the solver tries to find a solution. If no solution is found the offspring
is unchanged.

3.2 The integrative hybrid genetic algorithm

In this section, we introduce the integrative hybrid genetic algorithm which integrates concept
from two different techniques : archives as in the multi-objective evolutionary algorithms and

a transition rule as in ant colony. This hybridization is done in a crossover noted as ICX which
evolves in two step : (i) from the first parent, we place the cross section, which represents
the section between the two crossover points as the RMPX crossover processing; (ii) use a
transition rule to fill the remaining jobs using two lists formed from the second parent.

The transition rule is used in the ICX crossover operator as a mechanism taking into account
the problem’s properties and memory information. After defining the cross section (jobs
set from the first parent), the filling section (jobs set from the second parent) is completed
using a transition rule adapted to the 1|sij|ΣTj problem, similar to that used by the ant colony
optimization (ACO) (Dorigo & Gambardella, 1997) and inspired by the work of Gagné et al.
(2002).

From an identified cross section (section from the first parent), it is possible to insert the jobs
to the right of this section from the latest job as a classical ant or inversely to the left. First, the
number of jobs to be inserted on the right and left of the cross section are determined. Then,
two lists from the second parent are built: a job list which will be inserted on the left of the
cross section and a jobs list which will be inserted on the right. From the beginning of the
second parent, the left list is formed by the jobs not yet placed according to the jobs number
to be placed on the left, and the rest of the jobs not yet placed form the right list. In Figure 5
we consider the two parents P1, P2 and the offspring O. Both three positions remain unfilled
on the left and on the right of the cross section. Looking through the parent P2, the left list is
then formed by jobs 9, 5 and 7 while the right one is formed by jobs 3, 1 and 4.

Firstly, we consider the job insertions on the right of the cross section. The second case, very
similar to the first, requires only few changes and is subsequently treated further. From the

206 Real-World Applications of Genetic Algorithms
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Fig. 5. List construction for the transition rule step

j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

arg max

{

[

SUCCij(At)

]α

∗

[

1

sij

]β

∗

[

1

Uij

]φ
}

i f q ≤ q0

J i f q > q0

(1)

where J is chosen according to the probability pij

pij =

[

SUCCij(At)

]α

∗

[

1

sij

]β

∗

[

1

Uij

]φ

∑

[

SUCCij(At)

]α

∗

[

1

sij

]β

∗

[

1

Uij

]φ
(2)

last inserted job, the choice of the next job is made using the pseudo-random-proportional
transition rule expressed in Equations (1) and (2). As in an ACO, in Equation (1), q is a
random number and q0 is a parameter; both are between 0 and 1. The parameter q0 determines
the relative importance of the existing information exploitation and the new solutions search

space exploration. Indeed, Equation (2) states that the next job will be chosen by a greedy rule
when q ≤ q0 or by the probabilistic rule of Equation (2) when q > q0. Equation (2) describes
the biased exploration rule pij adapted to the 1|sij|ΣTj problem when inserting job j after job i.

In Equations (1) and (2), the element sij=sij/MAX sij are the relative setup times and represents
the visibility as in the ACO of Gagné et al. (2002).

We describe in the following, the other two elements of Equations (1) and (2) where two new

concepts are introduced : SUCCij(At) which represents the pheromone trail as in an ACO and

Uij which represents an heuristic for look-ahead information.

In an classical ACO, the pheromone trail contains information based on solution quality.
Indeed, in the pheromone matrix, if the intensity of the pheromone value between two jobs
i and j increases, then the probability to insert j after i increases. In our case, we construct a
matrix SUCC from an archive that stores the best solutions throughout the evolution process

207Hybrid Genetic Algorithms for the Single Machine 
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as in some cases in multi-objective evolutionary algorithms using the Pareto-optimal concept
(Zitzler & Thiele, 1999). This archive is updated at every new offspring creation. The archive
size, denoted as N, is equal to the problem size and contains the N best individuals found
during the genetic algorithm search.

If n is the number of jobs processed and the archive size, the matrix SUCC is calculated as
follows:

For every jobs pair (i, j) where i ∈ [1, n] and j ∈ [1, n]

SUCC[i][j] =
number of times that j immediatly succeeds i

n
(3)

Thereby built from the archive individuals, the SUCC matrix will contain the trail information.
Thus, the more job j succeeds job i in the archive individuals, the more important the trail is.
This information, then favors the succession of job j after job i in the transition rule. This matrix
is calculated as needed from the archive and is updated at each archive update. Consequently,
in Equations (1), SUCCij(At) represents the trail quantity that job j immediately succeeds job
i in the archive at time t.

In Gagné et al. (2002), the authors have considered a lower bound determined by the tardiness
sum of the sequenced jobs and an estimate for the not yet sequenced jobs, as proposed by
Ragatz (1993). This lower bound is used as a look ahead function to anticipate the choice of
an ant and it is incorporated in the transition rule of their ACO. In this present integrative
hybridization, we propose to use an heuristic that also anticipates the choices in the transition

rule. However, this heuristic is based on an upper bound of the total tardiness. Indeed,
considering a defined cross section in an empty job sequence, we use this heuristic noted
as Uij for successively placing the jobs on the right of the cross section first until the end of the
sequence. Placing the jobs on the right is very similar and needs only few changes.

Starting from a partial sequence where only the cross section is defined, the heuristic uses
the maximum values of processing time p(max) and setup times sij (max) and the minimum
due dates d(min) in its calculation to complete the empty positions. Thus, we consider a job
sequence Q where a cross section is defined and Q = [q0, q1,..., qn−1, qn] where qj is the subscript

of the jth job in the sequence. Thereby, the completion time of the jth job in sequence will

be expressed as Cqj (max) = ∑
j
k=1(sqk−1qk (max) + pqk (max)) while the tardiness of the jth job

in sequence will be expressed as Tqj (max) = max(0, Cqj (max) − dqj (min)). In these last two

equations, the exact values of processing time, due dates and setup times are used instead the
maximum or minimum values for the cross section jobs which are already placed. So, if we

want to place a job j immediately after the cross section last job i, then Uij will be defined as

∑
n
j=1 Tqj (max).

To better understand how this heuristic works, consider the 9-job example in Figure 6. The
first table in this figure shows the respective processing times pj and due dates dj.

The second table in Figure 6 presents a partial sequence with only the cross section composed

of jobs 2, 5 and 8. The processing time, the related setup times (s2−5 and s5−8) and due dates
of jobs 2, 5 and 8 are used to calculate ∑

n
j=1 Tqj (max). We suppose that the right list contains

jobs 1, 3, 6 and 7. So, the left list contains the two remaining jobs 9 and 4. Considering the
right section filling, we use the maximum values of processing times p (max) (the maximum
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Hybrid Genetic Algorithms for the Single Machine Scheduling Problem with Sequence-Dependent Setup Times 11

Job j 1 2 3 4 5 6 7 8 9

p j 102 100 97 99 96 102 97 107 100

d j 640 596 602 585 625 635 616 645 608

Q - - 2 5 8 - - - -

C j 120 240 360 456 568 690 812 934 1056

d j 585 585 596 625 645 602 602 602 602

0 0 0 0 0 88 210 332 454 1084

Q - - 2 5 8 1 - - -

Cj 120 240 360 456 568 680 802 924 1033

dj 585 585 596 625 645 640 602 602 602

0 0 0 0 0 40 200 322 431 993

Q 2 5 8 6

Cj 120 240 360 456 568 686 803 920 1037

dj 585 585 596 625 645 635 602 602 602

0 0 0 0 0 51 201 318 435 1005

Q 2 5 8 7

Cj 120 240 360 456 568 666 788 910 1032

dj 585 585 596 625 645 616 602 602 602

0 0 0 0 0 50 186 308 430 974

Q 2 5 8 3

Cj 120 240 360 456 568 670 792 914 1036

dj 585 585 596 625 645 602 616 616 616

0 0 0 0 0 68 176 298 420 962

 =  U ij

 =  U ij

 =  U ij

 =  U ij
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jqT

jqT

jqT

jqT
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j
jqT

1
(max)

n

j
jqT

1
(max)

n

j
jqT

1
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j
jqT

1
(max)

Fig. 6. Hij example

processing time of the right list jobs, here 102) and setup times sij (max) and the minimum due
dates d(min) (the minimum due date of the right list jobs, here 602) of the jobs in the right
list jobs. We suppose also that the maximum setup times is equal to 20. For the left section
filling the maximum values of processing times p (max) equal 100 (the maximum processing
time of the left list jobs) the maximum setup times sij (max) also equal 20 and the minimum
due dates d(min) equal 585 (the minimum due date of the left list jobs). We obtain an upper

bound ∑
n
j=1 Tqj (max) which equal 1084.

Then for each remaining job in the right list, the heuristic Uij is calculated. So, the respective

processing time, due date and setup times following the job 8 (s8−∗) are updated and the total
tardiness is calculated. For example, if we suppose that job 1 is directly inserted after the cross
section and that s8−1 is equal to 10, then we obtain the third table in Figure 6. In this partial
sequence, we update the setup times s8−1 (10 instead of 20) and the due date (640 instead
602). By inserting job 1, the heuristic Uij value equal 993. If we suppose now that job 3 is
directly inserted after the cross section and that s8−3 is equal to 5, then we obtain the last table
in Figure 6. In this partial sequence we update the setup times s8−3 (5 instead of 20) and the
minimum due date d(min) for the remaining jobs (616 instead 602). For this case, the heuristic
value Uij equal 962. The fourth and fifth tables in Figure 6 represent the insertion of the jobs 6
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and 7 directly after the cross section, respectively. The heuristic value Uij equal 1005 and 974,
respectively.

The normalized values Uij=Uij/MAX Uij are then used in Equations (1) and (2) to determine

which job will be placed. Thus, in the previous example, we obtain U8−1 = 0.98, U8−3 = 0.95,
U8−6 = 1 and U8−7 = 0.97. It is obvious that the higher the normalized value, the lower the
probability of placing job increases.

Since the cross section is already placed, placing the remaining jobs on the left of this section
can be done either from the first offspring position from left to right as a classical ant or
inversely from the first cross section position. In both cases, we will have a resulting setup
time either at the junction with the cross section if we proceed from left to right, or with the
latest job of the previous period (the initial setup time) if we proceed from right to left. During
the application of the hybrid crossover ICX, we use equiprobable one of the two methods of

left insertion.

In the case of placing jobs from right to left, we make some changes in Equations (1) and
(2). Indeed, sij and Uij are replaced by sji and U ji, respectively. Also, the matrix SUCCij(At)

is replaced by PREDij(At) = TSUCCij(At), the transposed matrix of SUCCij(At) from the
archive A. In fact, the trace must be built from relevant information related to the predecessors
in this case.

So, with these elements, this transition rule uses past, present and future information from
the archive, the visibility and the look ahead, respectively. The transition rule is used in this
way for all job insertions until the end of the sequence. Finally, the parameters α, β and φ

associated with each transition rule matrix in Equations (1) and (2), can privilege certain
elements depending on the characteristics of the problem.

4. Computational results and discussion

The benchmark problem set consists of eight instances, each with a number of jobs of
15, 25, 35 and 45 jobs, and it is taken from the work Ragatz (1993). These instances
are available on the Internet at https://www.msu.edu/~rubin/files/c&ordata.zip. The job
processing times are normally distributed with a mean of 100 time units and the setup
times are also uniformly distributed with a mean of 9.5 time units. Each instance has
three factors which have both high and low levels. These factors are due date range,
processing time variance and tardiness factor. The tardiness factor determines the expected
proportion of jobs that will be tardy in a random sequence. The second instance subset,
taken from the work of Gagné et al. (2002), consists of eight instances each with 55, 65,
75 and 85 jobs. These instances which are called ”large instances set” are available at
http://wwwdim.uqac.ca/∼c3gagne/DocumentRech/ProblemDat

aSet55to85.zip. These instances are also generated similarly as in the smaller instances. All the
experiments were run on an Itanium with a 1.4 GHz processor and 4 GB RAM. Each instance
was executed 10 times and all the algorithms are coded in C++ language and under the ILOG
IBM CP constraint environment using ILOG Solver and Scheduler via the C++ API (ILOG,
2003a;b) for the CBS approach. In order to obtain a reliable comparison, the stop criterion for
all the proposed algorithms is 50 000 evaluations. This criterion is used by the Tabu/VNS
of Gagné et al. (2005) which represents the best approach found in the literature. First, we
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CGA
IPCX

CGA
IP

CGA
COL

IGA
L-R

IGA
R-L

IGA
OrOpt

401 90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

402 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

403 3418 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0

404 1067 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

405 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

406 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

407 1861 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

408 5660 0.0 0.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0

501 261 0.0 0.4 0.0 0.5 0.0 0.0 0.0 0.0 0.0

502 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

503 3497 0.0 2.5 0.0 0.3 0.0 0.0 0.0 0.0 0.0

504 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

505 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

506 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

507 7225 0.0 1.8 0.0 0.7 0.0 0.0 0.0 0.0 0.0

508 1915 0.0 35.8 0.0 1.8 0.0 0.0 0.2 0.0 0.0

601 12 16.9 41.7 5.7 7.5 2.4 1.0 1.7 0.0 0.0

602 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

603 17587 0.2 6.5 0.8 1.1 0.2 0.0 0.0 0.0 0.0

604 19092 0.2 21.1 0.9 1.3 0.5 0.0 0.0 0.0 0.0

605 228 1.3 122.4 2.6 3.5 0.3 1.0 0.4 0.0 0.0

606 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

607 12969 0.2 17.7 0.6 1.9 0.2 0.0 0.0 0.0 0.0

608 4732 0.2 156.6 0.5 1.2 0.0 0.0 0.0 0.0 0.0

701 97 3.0 20.6 5.3 8.3 2.1 1.2 1.0 0.6 0.3

702 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

703 26506 0.2 2.8 1.2 1.8 0.7 0.0 0.0 0.0 0.0

704 15206 0.3 94.8 1.3 2.1 0.5 0.2 0.2 0.0 0.0

705 200 3.4 72.5 3.2 6.5 1.1 2.3 1.0 0.4 0.2

706 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

707 23789 0.2 20.4 1.0 1.9 0.3 0.0 0.0 0.0 0.0

708 22807 0.3 50.0 1.4 2.1 1.0 0.0 0.0 0.0 0.1

PRB OPT GA CBS TVNS
Collaborative hybridization Ingrative hybridization

Table 1. Comparison of different approaches for the small problem set

discuss the collaborative and integrative hybridization on the small instances, then only the
integrative genetic algorithm on the large instances.

Table 1 compares the results of different approaches and the best results are shaded. In this
table, PRB denotes the instance names and OPT the optimal solution found by the B&B of
Bigras et al. (2008). These authors have not given information about the execution time of
their approach. They only said that some instances have been resolved after more than seven
days. The GA column shows the results average deviation to the optimal solution of the
genetic algorithm described in the section 3.1 which gives the best results among all genetic
algorithms in the literature without an intensification process (Sioud et al., 2009). The GA
average CPU time is equal to 13.4 seconds for the 32 instances. The GA generally obtained
fairly good results only for the instances 601, 605, 701 and 705. These instances are low due
date range and large tardiness factor. Thus, for this kind of instances, "good" solutions may
not generate "good" offspring. Furthermore, considering that the tardy jobs are scheduled
at the end of the sequence, it may be sufficient to schedule the other jobs by minimizing
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the setup times. It is the aim of introducing the IPTSP intensification procedures. The CBS
column shows the deviations of the CBS approach minimizing the total tardiness defined in
Section 3.1. For this approach, the execution time is limited to 60 minutes. It can be noticed
that the CBS approach results deteriorate with increasing the instances size and especially
for the **4, **5 and **8 instances. The CGAIPCX column shows the average deviation of the
genetic algorithm in which the crossover operator IPCX is integrated. The probability pIPCX

is equal to 0.2 and the CBS approach execution time is limited to 15 seconds. The CGAIPCX

average time execution is equal to 12.8 minutes for the 32 instances. The first observation
is that the CGAIPCX algorithm is always optimal for 15 and 25 jobs instances. It should be
noted that the integration of the IPCX crossover improves all of the GA results and especially
for the instances **1 and **5 where the deviation became less than 6%. For example, the
deviation was reduced from 16.9% to 6.7% for the 601 instance. Using the direct precedence
constraints allows the PCX crossover to enhance both the GA exploration and the CBS search;
and consequently reaching better schedules.

The CGAIP column shows the average deviation of the genetic algorithm in which we include
the IPTard and IPTSP intensification procedures under probability pIP equal to 0.1. The CBS
approach execution time is limited to 20 seconds for the IPTard and IPTSP. The CGAIP average
time execution is equal to 13.5 minutes for the 32 instances. The CGAIP improves most GA
results and specially the **1 and **5 instances but gives worse results than the CGAIPCX and
this was expected because in 50% of the cases the intensification procedure minimizes the
makespan and not the total tardiness. The CGACOL column shows the average deviation
of the GAPCX algorithm where we include the IPTard and IPTSP intensification procedures.
The probabilities pIP and pcip are equal to 0.1 and 0.5 respectively like the CGAIP. The CBS
approach execution time is also limited to 20 seconds for the IPTard and IPTSP in the CGACOL.

The CGACOL average time execution is equal to 20.5 minutes for the 32 instances. This hybrid
algorithm improves all the results found by the CGAIPCX. These improvements are more
pronounced with the integration of local search procedures. The introduction of the two
intensification procedures improves essentially the **1 and the **5 instances. Also, the optimal
schedule is always reached by CGACOL for the 608 instance. The CGACOL found the optimal
solution for all the instances at least one time and this was not the case either for CGAIPCX or
CGAIP.

The convergence of both GA and the CGAIPCX algorithms are similar. Indeed, the average
convergence generation is equal to 1837 and 1845 generations for GA and CGAIPCX,

respectively. Concerning the CGAIP algorithm, the average convergence generation is equal
to 1325 generations. So, we can conclude that the two intensification procedures based on the
CBS approach are permitting a faster genetic algorithm convergence than the IPCX crossover
but achieving worse results. The CGACOL average convergence generation is equal to 825 and
compared to the CGAIPCX, the introduction of the intensification procedures speeds up the
convergence of the solution with reaching better results.

Exact methods are well known to be time expensive. The same applies to their hybridization
of them with metaheuristics. Indeed, times execution increases significantly with such
hybridization policies due to some technicality during the exchange of information between

the two methods (Jourdan et al., 2009; Puchinger & Raidl, 2005; Talbi, 2002; 2009) and this
is what has been observed here. However, in this chapter, the solution quality is our main
concern. So, we concentrated our efforts on it. Then, because the high consuming time and

212 Real-World Applications of Genetic Algorithms

www.intechopen.com



Hybrid Genetic Algorithms for the Single Machine Scheduling Problem with Sequence-Dependent Setup Times 15

memory, the collaborative algorithm will not be applied on the large problem set. Finally,
we are also aware of the fact that we can’t compare the collaborative hybridization with the
other approaches because the CBS approach executes more than the 50 000 stop criterion
evaluations.

The two row noted as IGAL−R and IGAR−L present the results of the genetic algorithm where
the hybrid crossover ICX is integrated and the filling section placement is executed by the
transition rule, respectively, on the left then on the right (IGAL−R) and on the right then on
the left (IGAR−L). The purpose of this comparison is to show the impact of the look ahead
element Uij in the transition rule.

Indeed, if the results of the two algorithms outperform those of IGA1−2, those of IGAR−L

are better than those of IGAL−R, and specially for instances of type **1 and **5. This can be

explained by two aspects: (i) in both cases, the look-ahead element Uij improves the search
for jobs to be placed, by calculating the impact of placing a job in a sequence where some jobs
are already placed; and (ii) starting to place jobs on the right allows the transition rule to be
more directive concerning the jobs in the beginning of the sequence, specially for instances
of **1 and **5 where tardy jobs are usually at the end of the sequence. Similarly, the trace
elements, SUCCij(At) and PREDij(At) built from the archive, play an important role to guide
the transition rule in order to maintain and preserve the relative order according to an already
placed job. Finally, IGAR−L finds optimal solutions at least once except for the instance 704,
which is not the case for IGAL−R.

The row noted as IGAOrOpt presents the results of the genetic algorithm IGAR−L where a
local search is applied at each offspring creation under probability equal to 0.1. The used local
search heuristic in this case is the or-opt (Or, 1976) adapted to the total tardiness. This heuristic
is also used by the Tabu/VNS of Gagné et al. (2005) whose results are summarized in the last
row in Table 1 and noted as TVNS. In this hybrid algorithm, at each call to the heuristic, we
generate a single neighborhood of size 40. The integration of the local search allows the hybrid
genetic algorithm to have similar results to those of the Tabu/VNS and improve some average
results for instances 604, 607, 701, 703, 704, 705 and 708. The Tabu/VNS achieved better
performance only for instances 601 (0.0 against 0.0) and 605 (0.0 against 1.0). Concerning the

integrative hybridization execution times, IGAL−R, IGAR−L and IGAOrOpt have an average
of 1.6, 1.6 and 2.1 minutes respectively on the small instances group.

Table 2 summarizes the comparison of different algorithms for the large instance set of

Gagné et al. (2005). The subrow noted as (B) and (M) present the best and the median
deviation of the presented algorithms, respectively. The best results of the B row are shaded
in dark gray and the best results of the M row are shaded in gray. Overall, we observe a
similar algorithm behavior as in the first group of instances. Indeed, IGAR−L, which gives
better results than HGAL−R. Indeed, placing jobs at the end of the sequence before those at
the beginning allows the hybrid crossover ICX better guiding for job placement using the look
ahead element Uij and the normalized setup times sij in the transition rule.

It should be noted that IGAR−L lowers the minimum known bound for instances 557 and
858. This can be explained by the nature of these instances and by the fact that the transition
rule uses the characteristics of the problems, including due dates and setup times, when
calculating the look ahead element Uij.
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B M B M B M B M B M

551 183 3.6 5.7 0.3 1.2 0.0 0.7 0.0 0.6 0.1 0.6

552 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

553 40540 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1

554 14653 0.3 0.5 0.1 0.3 0.1 0.1   0.0* 0.0 0.0 0.2

555 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

556 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

557 35813 0.2 0.3 0.0 0.1   0.0* 0.0   0.0* 0.0 0.0 0.0

558 19871 0.3 0.4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1

651 268 1.6 4.3 0.0 1.0 0.0 0.9 0.0 0.3 0.0 0.2

652 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

653 57569 0.2 0.3 0.0 0.2 0.0 0.1 0.0 0.1 0.0 0.1

654 34301 0.4 0.6 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1

655 2 120.0 185.3 45.0 77.8 17.0 52.0 15.0 25.0 0.0 12.5

656 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

657 54895 0.2 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1

658 27114 0.4 0.5 0.0 0.3 0.1 0.1   0.0* 0.0 0.1 0.1

751 241 3.2 4.8 0.5 2.0 0.8 1.7 0.2 0.8 0.0 0.3

752 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

753 77663 0.3 0.4 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1

754 35200 0.3 0.7 0.2 0.4 0.1 0.3   0.0* 0.0 0.1 0.3

755 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

756 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

757 59735 0.2 0.3 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.0

758 38339 0.3 0.5 0.1 0.3 0.1 0.2   0.0* 0.0 0.1 0.2

851 384 2.8 5.4 1.3 1.7 0.9 1.6 0.2 0.4 0.0 0.2

852 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

853 97642 0.3 0.4 0.1 0.2 0.3 0.1   0.0* 0.0 0.0 0.0

854 79278 0.4 0.5 0.2 0.3 0.1 0.2   0.0* 0.1 0.2 0.1

855 283 6.0 7.5 0.5 2.3 1.1 2.0 0.3 1.5 0.0 1.3

856 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

857 87244 0.3 0.4 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.1

858 74785 0.3 0.5 0.1 0.2   0.0* 0.1   0.0* 0.0 0.1 0.2

PRB OPT
GA IHGA

L-R
IHGA

R-L
IHGA

OrOpt TVNS

* New lower bound

Table 2. Comparison of different approaches for the large problem set

Nevertheless, for all the introduced algorithms, there are still significant differences for
instances **1 and **5, and especially for instance 655 where it exceeds 75%. In these cases,
this is due to the low value of the objective function.

The local search integration in IGAOrOpt allows this algorithm to find six other new minimum
values for instances 554, 557, 658, 754, 758, 853 and 854. This intensification process improves
the genetic algorithm exploitation phase. Also, except for some deviations in instances **1
and **5, IGAOrOpt improves several averages of TABU/ VNS and specially for instances 654,
657, 658, 754, 758, 854 , 857 and 858. Except for the 655 instance, where the deviation is
25% for the average result, TABU/ VNS surpasses IGAOrOpt only in 7 instances (551, 651,
751, 753, 757, 851 and 855) and this with minor deviations. Of these 7 instances, 5 of them
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are **1 and **5 instances. Finally, in addition to the 8 new minimum values found, IGAR−L

and IGAOrOpt also found the best known value for instance 551 while TABU/VNS did not
find it. Concerning instances 653, 654 and 753, the best solutions are found by the GRASP of
Gupta & Smith (2006).

Concerning the execution times, IGAL−R, IGAR−L and IGAOrOpt have an average of 3.1,
3.1 and 3.9 minutes respectively. Furthermore, these execution times are increased by the
transition rule integration in IGAL−R and IGAR−L, and the archive management. Finally, the
or-opt local search heuristic increases the execution time by 20% for both the small and the
large instance group.

5. Conclusion

In this chapter, we have introduced two hybrid GA to solve the sequence-dependent setup
times single machine problem with the objective of minimizing the total tardiness. Indeed,
using classical operator, most found GA in literature are not well suited to deal with the
specificities of this problem. The proposed approaches in this chapter are essentially based on
adapting highly specialized genetic operators to the specificities of the studied problem. The
numerical experiments allowed us to demonstrate the efficiency of the proposed approaches
for this problem. A natural conclusion of these experimental results is that GA may be robust
and efficient alternative to solve this problem.

We describe first a collaborative hybridization where both a crossover operator and
intensification process based on Constraint Based Scheduling are integrated into a GA. Indeed,
the IPCX crossover operator uses the indirect precedence constraints to improve the CBS
search and consequently the schedules quality. The precedence constraints are built from
all the individual population in the reproduction process. The intensification procedures
are based on two different CBS approaches after fixing a jobs block : the first minimizes the
total tardiness which represents the considered problem objective function while the second
minimizes the makespan which also enhances the exploration process and is well adapted to
some instances.

Then, we introduce a hybrid crossover in an integrative hybridization which uses concepts
from multi-objective algorithms and ant colony optimization to enhance the relative and
absolute job position conservation during the evolving phase. The integrative hybridization

introduce the ICX crossover which evolves in two steps. Indeed, from the first parent we
place firstly the cross section. Then, from two lists formed with the remaining jobs, we use
a pseudo-random transition rule to place these jobs. This transition rule uses past, present
and future information from the archive, the visibility and the look ahead, respectively. The
different proposed adaptations have contributed to the performance of this approach. The use
of the archive and the look-ahead information have been shown to improve solution quality
also enhancing the relative and the absolute order.

The proposed hybrid GA in this chapter represent very interesting alternatives to find good
solutions. In fact, The found results highlight the importance of incorporating specific
problem knowledge and specificities into genetic operators, even if classical genetic operators
could be used. The two hybridizations have proved effectiveness on sets of benchmark
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problems taken from literature. Specially, the integrative one which even outdoes the
performance of the best approach found in the literature.

For future work, we will work on improving the precedence constraints under the
collaborative hybridization. Indeed, it is possible to consider constraints related to a jobs set
or to intervals time. Also, it would be possible to employ a chromosome representation based
on the start times of activities. Hence, it will be possible to get more accurate combination of
start times. Concerning the integrative hybridization, we use it for other scheduling problems
in particular and other optimization problems in general, specially real-world problems.
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