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1. Introduction  

Evolution strategies, implemented in numerical codes, provided researchers with powerful 
optimization tools capable of finding optimal solutions for a variety of real-world problems. 
One of the most popular representatives of this family is the Genetic Algorithm (GA) 
(Barricelli, 1957), which has already been well recognized by the electromagnetic (EM) 
community (Haupt, 1995; Johnson & Rahmat-Samii, 1997; Weile & Michielssen, 1997; 
Rahmat-Samii & Michielssen, 1999; Haupt & Werner, 2007; Hoorfar, 2007). 

The most attractive features of GA, which are also intrinsic to other evolutionary algorithms 
(EA), are as follows: they can be applied given limited information about the problem, they 
do not require initial guesses, and they are able to produce non-intuitive solutions. These 
capabilities are provided thanks to a two-fold strategy that combines a stochastic global 
exploration and a local exploitation implemented in the form of an iterative modification 
and reproduction of already known individuals. The key to success here is the effective 
division of labour between both.  

Different EAs use different ways of balancing between the global and local search, based on 
the corresponding evolutionary model. A possible bottleneck here is that as soon as a new 
evolutionary model is introduced, one starts thinking in terms and within the bounds 
dictated by the analogy used, whereas these bounds are not absolute. They arise from 
specific tasks addressed by nature and therefore are inherently adapted to “boundary 
conditions” of specific scenarios. For instance, genetic strategy (Barricelli, 1957) is oriented 
towards a huge population of diverse individuals and almost unbound time frames. This 
strategy is rather slow but it aims at the ultimate goal of finding the very best of all possible 
solutions. This is in contrast to the ant colony (Colorni et al., 1991) and particle swarm 
(Kennedy & Eberhart, 1995) strategies that naturally serve finding a reasonably good 
solution during a limited timeframe. Nevertheless, in spite of the formal differences, all 
population-based EAs have much in common. They share the same goal of finding the 
global extremum among multiple local ones; they operate with subsets of trial solutions; 
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they rely on stochastic decision-making mechanisms; and they manipulate with the 
probability in order to guide the optimization process. The latter is controlled by the 
selected evolutionary model and evaluation principles, which define the chances of each 
individual to survive and reproduce in later generations. In addition, all EAs favour 
improvement of the whole population instead of promoting a single leader. This protects 
EAs from being trapped in local minima but handicaps the solution convergence rate and 
may cause stagnation at the later stage of optimization. This also makes sharp distinction 
between stochastic global techniques and deterministic local ones. Contrary to global ones, 
local search techniques use cost function gradients to govern the search process. Although 
criticized for being slow and dependent on the initial guess, local techniques are the only 
means of learning (Paszkowicz, 2006; Elmihoub et al., 2006). This makes them 
complementary to EAs and highlights the importance and strong potential of hybridized 
optimization algorithms, which combine elements of different evolutionary and 
deterministic models. Such algorithms have been strongly advocated in a number of papers, 
e.g. (Renders et al., 1996; Haupt & Chung, 2003; Elmihoub et al., 2006); nevertheless they are 
still rarely used in electromagnetics.  

In this chapter, we provide an insight into the general logic behind selection of the GA 
control parameters (Section 2), discuss the ways of boosting the algorithm efficiency 
(Section 3), and finally introduce a simple global-local hybrid GA capable of fast and reliable 
optimization of multi-parameter and multi-extremum functions (Section 4). The 
effectiveness of the proposed algorithm is demonstrated by numerical examples, namely: 
synthesis of linear antenna arrays with pencil-beam and flat-top patterns (Section 5).  

2. Global and local skills of genetic algorithms 

Genetic algorithm (same as any other population-based EA) can be compared with a two-
handed machine that uses one hand for random selection of individuals from a given pool 
of possible solutions and another hand for “cheating” the first one. The cheating is realized 
in the form of manual weighting the probability of a favourable event to happen. In 
particular, this is used to promote local search in the neighbourhood of previously found 
fittest solutions. Different evolutionary strategies incorporate different cheating capabilities 
whose strength is adjusted by varying algorithms control parameters. A few examples 
provided below illustrate how the GA skills can be adapted in the favour of either global or 
local search. Similar mechanisms can be easily identified in other EAs as well.  

The terminology used hereafter is borrowed from (Johson & Rahmat-Samii, 1997) whereas a 
recommended source for detailed information about the properties of GA operators is 
(Haupt & Haupt, 2004). 

In most cases, GA starts with a random seed of a finite number of individuals that constitute 
the initial population. At this moment any solution within the given design space can be 
selected and probability of this event to occur equals reverse of the pool volume (the total 
number of all possible solutions or combinations of parameters). The situation changes for 
the second and subsequent generations. Here, the number and locations of potential 
offspring are limited and determined by the previous population. This happens because 
offspring always preserve properties of parents (at least partially) and therefore they can 
occur in a limited number of locations dictated by their parents and the crossover/mutation 
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schemes used (Haupt & Haupt, 2004, Chapter 5). Thus, except for the initial step, one never 
deals with a complete pool of solutions. Instead, as soon as the initial population is 
randomly generated, one has access only to a subset which includes the current population 
and its potential offspring. During optimization this trial subset is gradually transformed in 
a way to include individuals from the most promising regions of the original design space.  

To reach this goal, the following sequence of operations is performed at each step of the 
optimization process. First, the trial subset is expanded by adding new individuals 
produced via reproduction of already known ones or randomly generated. Then, the quality 
of new individuals is evaluated and all individuals are ranked according to their cost 
function values. Finally, the worst individuals are discarded. Hopefully, each iteration 
moves search towards a region holding the global extremum, thanks to the continuous 
discarding of individuals which belong to less promising parts of the original design space.  

Convergence of this process depends on two factors: (i) the rule that defines interrelation 
between a population at hand and the corresponding trial subset, and (ii) the criteria used 
for estimating the individuals’ quality, which affects chances of individuals to survive and 
reproduce. To boost convergence, an additional weighting of individuals in populations can 
be introduced based on the cost function value or some additional criterion, e.g. taboo (Ji & 
Klinowski, 2009) or penalty (Paszkowicz, 2009) principles.  

The influence of different factors on the GA convergence rate is discussed below.  

The role of the population size seems obvious: the larger the size, the more uniform the 
exploration (or sampling) of the design space is provided. On the other hand, an oversized 
population slows convergence due to degeneracy of individuals that causes a strong 
offspring dispersion. This hinders local search because offspring often escape the parent 
solution’s basin. Therefore some optimal size always exists, although it depends on the 
landscape of the fitness function and properties of the GA operators used. Useful hints on 
this subject are given in (Linden, 1999).   

Two main GA operators are crossover and mutation. They define the size and structure of 
the trial subset accessible at each step. For instance, if a single-point crossover is 
implemented in a binary GA, all possible offspring are limited to a few choices that occur 
along the lines coinciding with the edges of a hyper rectangle with two parents on opposite 
vertices. The size of this hyper rectangle depends on the distance between parents, whereas 
sampling density is proportional to the number of crossing points. For instance, the number 
of potential offspring increases if a double-point crossover is used, whereas a uniform 
sampling can only be provided if uniform crossover is implemented.  For numerical 
examples the reader could refer to (Haupt & Haupt, 2004, Chapter 5).  

Mutation operators also suffer from the problems related to non-uniform sampling (Haupt 
& Haupt, 2004; Paszkowicz, 2006). Although usually positioned as a source of new genetic 
material, in practice a binary mutation operator (similarly to the crossover operator) is 
capable of producing only a finite number of offspring, called mutants, confined to 
orthogonal lines parallel to the axes. Furthermore, the strength of mutation (spread of 
mutants’ locations) cannot be controlled easily because the change of a single bit in the 
binary string used for storing optimization parameters (called chromosome) has a different 
impact on the parameters values depending on the bit position. A partial remedy for the 
latter is in the Gray coding (Taub & Schilling, 1986) or a continuous representation of 
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variables. But this remedy has a side effect because a non-uniform distribution of potential 
offspring produced by standard binary crossover and mutation operators has its own 
hidden sense: it provides denser distribution of potential offspring and mutants in the 
neighbourhood of their parents that enhances local skills of the algorithms. 

Finally, a weighting mechanism is implemented in GA in the form of selection principles that 
define chances of the fittest individuals to survive and reproduce. Among the popular 
selection principles (Johnson & Rahmat-Samii, 1997; Haupt & Haupt, 2004), the strongest one 
(local-search oriented) is the roulette wheel with cost-function weighting. This scheme heavily 
promotes the best individuals and stimulates local search in their neighbourhood. This 
increases chances for population degeneracy and thus may negatively affect optimization 
process by premature convergence to a local extremum. To counterbalance this, a permanent 
inflow of new genetic material should be provided. This is usually done by choosing a larger 
population size, higher mutation rate, and/or periodic injection of randomly generated 
individuals. Sharing the GA searching efforts among several most promising individuals can 
be realized if a so-called tournament principle is used. This scheme deals with randomly 
selected sub-groups (instead of the whole population) and in such a manner improves chances 
of next-to-the-best individuals to survive and reproduce in later generations.  

Summarizing the discussion, we would like to highlight the following. Although there are 
many factors affecting the GA performance, they all serve the same reason: to effectively 
share the algorithm efforts between the stochastic global exploration and local exploitation. 
Thus variation of any control parameter can be considered as a contribution towards the 
enhancement of either global or local skills of the algorithm. This simplification helps a lot 
when adjusting GA control parameters for a specific problem at hand. Finally, one should 
remember that GA control parameters constitute a system of counterbalances; therefore 
variation of any parameters usually requires some adjustment of the others (e.g. a smaller 
population size should be compensated by a larger inflow of new genetic material, etc.).  
The additional opportunities for boosting the algorithm efficiency are discussed in the 
following section. 

3. On boosting the algorithm efficiency  

There are two complementary approaches for boosting the performance of an optimization 
algorithm. The first one is based on adaptation of the algorithm control parameters during 
optimization. The second one is based on the amelioration of the design space landscape. 
The advantages proposed by each approach are summarized below.  

3.1 Adaptation of the algorithm control parameters  

As it was discussed in Section 2, selection of the algorithm control parameters (e.g. crossover 
and mutation schemes and rates) and selection mechanisms affects the global and local skills 
of GAs. Thus, adaptation of these parameters during simulations enables one to gradually 
shift the search efforts from the global exploration to local exploitation. The adaptation can 
be carried out based on different time-varying quantities such as iteration number, 
population diversity, solution quality, or relative improvement. The numerical examples 
revealing the capabilities of this approach, as well as an exhaustive review of the literature 
on this subject, can be found in (Eiben et al., 1999; Boeringer et al., 2005).  
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3.2 Hybridization of different optimization techniques 

An additional degree of freedom for adjusting the algorithm capabilities for global and local 
search can be gained via hybridization of different optimization techniques. Both global-
global and global-local hybrids have been reported so far. The former are typically used to 
compensate for intrinsic weak points of evolutionary algorithms that come from their 
natural analogues (Robinson et al., 2002; Salhi & Queen, 2004; Paszkowicz, 2006; Grimaccia 
et al., 2007); whereas the latter are used for boosting the algorithm efficiency at the later 
stage of optimization and/or learning purposes (Chelouah & Siarry, 2003; Ishibuchi, 2003; 
Haupt & Chung, 2003; Elmihoub et al., 2006; Paszkowicz, 2006; Ngo et al., 2007; Quevedo-
Teruel et al., 2007; Boriskin & Sauleau, 2011a).  

The great potential of global-local hybrids is explained by the distinction and 
complementarity between the local and global search techniques. Both these features come 
from the decision-making mechanism implemented in local and global search techniques. 
The former defines direction where to go (based on the cost function gradient), whereas the 
latter relies on the elimination principle implemented in the form of a successive dismissal 
of less promising individuals. In such a way, EAs give preference to the gradual 
improvement of the entire population instead of promoting a single individual. This is 
contrary to the local gradient-based algorithms that start from a given initial guess and 
perform a down-hill movement towards a nearest minimum following the shortest 
trajectory. Finally, local techniques are the only means of learning. If hybridized with EAs, 
they can supply the latter with information about cost function gradients, which can be used 
for introducing additional weights for individuals with better potential for improvement.  

The aforementioned tactics are not new. Their pros and cons are well described in 
(Elmihoub et al., 2006). Nevertheless, the importance of global-local hybridization is still 
often underestimated, although the marriage of two is a simple and elegant way to achieve 
the optimal balance between the global and local skills of GA (or another EA).  

3.3 Multi-extremum search capabilities 

An important feature of EAs is their intrinsic capability for the multi-extremum search. On 
the way to an optimal solution, EAs sequentially investigate a number of local extrema. 
Most often, this information is lost as soon as the corresponding individuals are discarded 
due to lower fitness values or achievement of a stopping criterion. However, some of the 
next-to-the-best individuals can belong to basins of optimal solutions (or at least the most 
feasible ones due to some technical constraints not accounted for in the mathematical 
model). Therefore, search for multiple extrema and proper usage of the optimization history 
opens the door for development of advanced global optimization algorithms (Moret et al., 
1998; Chelouah & Siarry, 2003).  

3.4 Modification of the design space landscape  

A deciding factor for the solution convergence rate of any optimization problem is a 
landscape of the corresponding fitness function. Usually it is accepted as something 
predefined and therefore invariable, although this is not true. Definitely, above all the 
landscape depends on the problem at hand, but it can also be affected by the style of 
parameter representation. This includes the chromosome structure (Weile & Michielssen, 
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1997) and parameter encoding (ODonnell et al., 2003; Boriskin & Sauleau, 2011a). Therefore 
adjustment of the fitness function landscape can also be considered as a part of the 
optimization strategy. Indeed, the landscape can be easily modified via mapping (not 
obviously identical) accounting for the problem-specific information. If properly done, a 
new design space becomes more optimization-friendly thanks to a reduced dimensionality, 
smaller size, and/or smoother landscape.  

Note that mapping does not require any modifications of the cost-function itself. This  
constitutes an important distinction compared to (Ioan et al., 1998) and (Farina & Sykulski, 
2001), where it was proposed to reduce the computational load by replacing the original cost 
function by a simplified or approximated cost function. Instead, the mapping only assumes 
a change in the way of storing optimization parameters that facilitates integration of such an 
algorithm with external electromagnetic solvers, even those operating in a “black box” 
mode. Such an approach can be especially effective if many identical parameters are 
involved, e.g. geometrical parameters describing an antenna topology (Fernandes, 2002; 
Robinson et al., 2002; Godi et al., 2007; Boriskin et al., 2010; Rolland et al., 2010; Boriskin & 
Sauleau, 2011b) or phase/amplitude weights in the antenna aperture (Johnson & Rahmat-
Samii, 1997; Pérez & Basterrechea, 2007). A few examples of mapping realized on the basis 
of different encoding schemes are given in Section 5.  

3.5 Summary: Recipe for an efficient global optimizer  

Summarizing the discussion, a general recipe for an efficient global optimization algorithm 
can be outlined as follows. Start with an EA, whose control parameters are selected in a way 
to promote an exhaustive global exploration. Then gradually shift the algorithm efforts in 
the favour of the pseudo-local search. This can be done via a gradual adaptation of the 
algorithm control parameters and /or via a switching between different selection 
mechanisms. In addition, the learning capabilities of local optimizers can be used for 
determining the improvement potentials of selected individuals, based on the cost function 
gradients. This knowledge can be used to guide the selection process. If the optimization 
process shows signs of stagnations, a switching between different EAs can be performed. 
Finally, top-N individuals (if possible, selected from different solution basins) should be 
extracted and fine-tuned using a local gradient-based optimizer. Such a complementary 
strategy offers an optimal division of labour between the global and local search, as well as 
reaching the very bottom of all identified extrema. The latter is very useful for collecting the 
problem-specific information. To illustrate the discussion, a simple global-local hybrid GA is 
introduced in Section 4. 

4. Hybrid genetic algorithm 

In this section we present a global-local hybrid genetic algorithm (HGA) built in line with 
recommendations outlined in Section 3.5. The algorithm combines a binary GA and a 
steepest descent gradient (SDG) algorithm. The former is used for the global exploration, 
whereas the latter is used for tuning the top-N individuals produced by GA (hereafter 
labelled as “GA top-runners”) and considered as initial guesses for local optimization.  

A distinctive feature of the proposed algorithm is that it aims not only at a single best 
solution but instead identifies a given number of GA top-runners that are investigated at the 
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later stage with the aid of the gradient-based SDG optimizer. Such a two-step approach 
enables us to reduce significantly the GA stagnation period at the later stage of optimization 
and also to guarantee achievement of the very bottom of multiple extrema whose basins are 
identified by GA. The final solution is then selected among those produced by SDG.   

A flowchart of the proposed HGA is shown in Fig. 1. The purpose of each block of the 
algorithm is discussed below.  

 
Fig. 1. Flowchart of the HGA 

4.1 Global optimizer 

The global-local hybridization enables us to let GA concentrate mostly on the global 
exploration. For this purpose, GA parameters are selected in the following extreme manner 
that, on the one hand, enhances its global-search capabilities and, on the other hand, 
strongly promotes pseudo-local search around best individuals: small population size; high 
mutation rate; periodic injection of randomly generated individuals; no identical individuals 
(so-called twins) allowed; double-point crossover; uniform mutation. As a counterbalance in 
the favour of the GA local-searching capabilities, the elitism principle and the roulette wheel 
cost-function weighted selection mechanism are implemented. The logic behind such a 
selection of the GA control parameters was discussed in Section 3.  

4.2 Local optimizer 

For the reported study, the local optimizer is used only for tuning a given number of GA 
top-runners. To simplify comparison with a standard binary GA, we make SDG algorithm 
move using the same mesh as for GA, where it is defined by the binary representation of 
optimization parameters. For simplicity, we disable the “learning function” of the SDG, 
which means that there are no additional weights introduced in GA selection mechanism 
and there is no feedback between SDG and GA algorithms after switching between the two.  

4.3 Decoder  

An important feature of the proposed HGA is a decoder, which is used for communication 
between GA and EM solver. In contrast to a binary decoder which is an essential part of any 
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binary EA, this additional decoder is used for mapping between the original design space 
and a new one, which appears due to implementation of specific encoding schemes used for 
representation of optimization parameters. The decoder is not used for communication 
between the local optimizer and EM solver because at the final stage of optimization one 
needs access to the complete pool of parameter combinations corresponding to the original 
design space. 

4.4 Stack 

Finally, to avoid the recalculation of the cost function for already known individuals, a stack 
has been implemented in the form of an array storing parameters of the recently evaluated 
individuals and their cost function values. This is in line with recommendations given in 
(Linden, 1999). The optimal size of the stack depends on the complexity of the optimization 
problem. Our experience shows that a stack with size of three to five populations is usually 
sufficient. The content of the stack can be updated cyclically: each time a new individual 
appears it replaces the oldest one in the stack.  

4.5 Summary 

A combination of the aforementioned features guarantees a high efficiency and reliability of 
the proposed HGA when solving various optimization problems. It is worth being noted 
that the performance characteristics of HGA are boosted by letting each algorithm do what 
it is best suited for, rather than trying to push the optimization process by implementing 
some deterministic rules, which may cause a conflict with the stochastic nature of the 
evolutionary strategy. This makes the proposed algorithm very stable and universal. In 
addition, the performance of the algorithm is strongly facilitated by the amelioration of the 
design space landscape and elimination of redundant simulations. The effectiveness of the 
algorithm is demonstrated by solving two multi-parameter optimization problems, typical 
for EM synthesis (Section 5).   

5. Linear antenna array synthesis using HGA 

The optimization of antenna arrays has already become classics of the electromagnetic 
synthesis due to a simple formulation and practical importance, e.g (Haupt, 1995; Johnson & 
Rahmat-Samii, 1997; Weile & Michielssen, 1997; Rahmat-Samii & Michielssen, 1999; Isernia, 
et al., 2004; Boeringer et al., 2005; Haupt & Werner, 2007).  

To illustrate the performance of the developed HGA, two simple linear array optimization 
problems are considered, namely phase-only optimization aimed at the minimum side-lobe 
level (Sections 5.1) and amplitude-phase optimization aimed at a flat-top beam pattern 
(Section 5.2). In both cases the HGA features are adjusted in a way to let GA perform an 
exhaustive global search, aiming to identify 10 top-runners to be used as initial guesses for 
the SDG algorithm. The control parameters are selected as follows: (i) double-point 
crossover, (ii) uniform mutation with linearly decreasing rate of 20% to 10%, (iii) cost-
function-weighted roulette wheel selection mechanism, and (iv) permanent inflow of 
randomly generated individuals with a rate of 10%. Furthermore, we avoid twins which are 
replaced by randomly generated individuals each time when identical offspring appear. 
Finally, to preserve the continuous progress, a few best individuals (~5%) are stored from 
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previous generations (elitism principle). This set of parameters has been approbated on 
several standard test functions and found to be suitable for various optimization scenarios 
(these data are skipped for brevity).  

In the reported study, we approbate three different encoding schemes, namely: “direct”, 
“relative”, and “envelope” ones. The former is a standard encoding scheme when 
optimization parameters are stored as they are. In the relative scheme, optimization 
parameters are encoded as differences between neighbours. For most practical cases, this 
difference does not exceed a half of the parameter variation range. Thus the search domain 
for new parameters can be reduced by a factor of 2, which means reduction of the entire 
design space by 2N parameter combinations, where N is the number of optimization 
parameters. In case of the envelope encoding scheme, optimization parameters are 
represented using an envelope line, defined by a polynomial. For the current study the 
envelope line is  constructed as a sum of a few Gaussians. This enables us to replace the 
original design space with N dimensions by a new one with 3M dimensions, where 3M 
parameters are the amplitude, central value, and half-width of each Gaussian, and M is the 
number of Gaussians used. An empirical rule for selecting the latter parameter is 
M = NINT (N/10), where NINT returns the nearest integer value of the argument. For high-
dimensional problems (N ≥ 10), the reduction of the design space becomes really significant, 
which strongly facilitates the search for the global extremum.   

It is important to note, that in both non-direct encoding schemes the reduction of the design 
space is obtained via truncation of the original space according to some template defined by 
the encoding scheme used. Thus it is important to assure that this template “filters” poor 
solutions and preserve better ones. Definition of such a template is a tricky question. To 
some extend this is similar to guessing for a class of optimal solutions. It might look like the 
introduction of a template brings us back to a deterministic optimization scenario, criticised 
for its strong dependence on the quality of the initial guess, but it does not. As it will be 
shown below, the selected encoding schemes preserve flexibility sufficient for identification 
of optimal solution basins for various optimization problems. Once identified, these basins 
can be effectively studied using a gradient-based local optimizer. 

5.1 Test-case 1: Low-sidelobe via phase tapering 

The first test problem is the synthesis of a linear array aimed at reduction of the array factor 
(AF) side-lobe level (SLL) via phase weights optimization. A symmetrical linear array of 31 
equally spaced feeds with uniform amplitude weights is considered. The cost function 
returns a square of difference between the AF SLL for a given phase taper and its desired 
value. The elements of the array are spaced 0.5λ apart and phase weights are symmetric 
about the centre of the array with the central element having a phase of zero. Quantization 
of the phase weights is 4-bit. A trustable reference solution for this test problem can be 
found in (Haupt, 2007), whereas the one found by the proposed HGA is shown in Fig. 2.  

To assess the efficiency of HGA, its performance is superimposed with that of a binary GA 
whose control parameters are selected in line with general recommendations (Johnson & 
Rahmat-Samii, 1997). For convenience, parameters of both algorithms are summarized in 
Table 1.  
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A typical run of HGA is illustrated in Fig. 3. Here the best and average cost function values 
are denoted by solid thick lines, whereas cost function values of each individual at each 
iteration step are denoted by circles. Switching between GA and SDG occurs after 40 
generations. The family of ten colour lines shown after 40th generation illustrates the process 
of tuning the ten GA top-runners by means of the SDG algorithm. 
 

Control parameter HGA GA 

Population size 50 50 
Probability of crossover Linearly increasing: 65 → 75 % 90 % 

Probability of mutation 
Linearly decreasing: 20 → 10 

% 
5 % 

Inflow of random individuals 10 % -- 
Number of preserved best 

individuals 
5 % 5 % 

Selection mechanism 
Cost-function weighted  

roulette wheel 
Tournament with sub-
population size of 10% 

Stopping criterion 
40 iterations for GA +  

as much as needed for SDG 
200 iterations 

Table 1. Control parameters of HGA and GA algorithms 
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Fig. 2. Optimal solution found by HGA: (a) Array factors of the cophased and optimized 
arrays, (b) phase weights corresponding to the optimized solution. 

The same optimization run represented in terms of AF SLL is shown in Fig. 4. Here it is 
superimposed with the curve which represents the averaged solution produced by a 
standard GA. As we can see, the standard GA quickly reaches the AF side-lobe level of 
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approximately -15 dB and spends twice more time to improve solution for another half dB. 
Such behaviour is typical for GA that continues to explore the entire design space (more or 
less exhaustively) during all simulation time. This protects GA from “hanging” in local 
minima but slows down the convergence rate at the later stage of optimization. The 
proposed HGA is free from this drawback because here GA is used only to identify the 
optimal solution basins whereas their exploitation is performed in a straight-forward 
manner using the SDG algorithm, whose performance is based on the cost function gradient. 
Indeed, we can see that at the initial stage, while HGA is focused on the global exploration, 
standard GA performs better. Nevertheless, as soon as HGA switches for local optimizer, it 
catches up and outruns GA in a very few steps.  
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Fig. 3. A typical run of HGA when applied for the linear array synthesis aimed at minimum 
AF SLL. The AF pattern of the optimized array are shown in Fig. 2.  

 
Fig. 4. Comparison between HGA and a standard GA when applied for the linear array 
synthesis aimed at minimum AF SLL. The HGA run is the same as shown in Fig. 3 but 
represented in terms of AF SLL. The GA curve is averaged over 20 trials. The inset zooms in 
on the local optimization stage of HGA. 

As already explained, in the proposed hybrid algorithm, GA is used to generate a few best 
solutions (top-runners) to be then refined using the SDG algorithm. To this end, it is 
interesting to note that refinement of only the best GA solution (let’s label it as a “GA 
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winner”) usually does not give much advantage. This is because the winner often belongs to 
a wide and gently slopping basin, which is optimization-friendly and thus already well 
examined by GA, whereas most promising solutions are usually located on sides of deep 
and narrow valleys whose exploration using GA is troublesome. An illustration to such a 
situation is given in Fig. 4. As we can see, the bottom of the winner’s solution basin is 
reached in four iterations with no significant improvement achieved, whereas the 3-rd, 8-th, 
and 9-th top-runners demonstrate much better improvement. In particular, refinement of 
the 9-th top-runner resulted in SLL of -15.4 dB which is approximately 1 dB lower than the 
final solution found with the GA winner taken as the initial guess.  

To get more statistical data, 20 trials have been performed with the same set of parameters 
(Fig. 5). The obtained data clearly evidence that GA winners rarely appears to be the best 
initial guess for local search. Therefore evaluation of several top-runners is strongly 
recommended in order not to waste GA efforts in a hunt for a single winner, which often 
belongs to a local solution basin. Note that this recommendation remains valid for all tree 
encoding schemes. 

 
Fig. 5. Number of trials when each of ten GA top-runner, tuned by SDG, finished with the 
best or second-best result. The total number of trials is 20.   
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Fig. 6. The final solutions found by HGA in 20 trials applied with three different encoding 
schemes.  The reference solution is borrowed from (Haupt, 1997).  
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Finally, the impact of different encoding schemes on the algorithm performance is 
illustrated in Fig. 6. As one can see, the relative and envelope (i.e. Gaussian with M=2) 
encoding schemes provide much better grouping of final solutions around an improved 
average value. The better quality of the final solution and the significant reduction of cost 
function evaluations (see Table 2) are of the primary importance for the EM synthesis 
because solution of direct EM problems is usually very time consuming.  
 

Algorithm 
type 

No. of  
optimization 
parameters

No. of bits 
per 

parameter

GA encoding 
scheme 

No. of 
iterations * 

(SDG) 

Cost function 
evaluations *  
(GA + SDG) 

Final 
solution * 
(SLL, dB) 

GA 15 4 Direct -- 10000 -15.18 
HGA 15 4 Direct 9.6 3895 -15.32 
HGA 15 3 Relative 10.7 4216 -16.73 
HGA 6 4 Gauss (M = 2) 11.0 4300 -16.83 

* Data averaged over 20 trials 

Table 2. Statistical data: HGA vs. standard GA. 

5.2 Test-case 2: Flat-top beam via complex weighting 

The second test problem is the synthesis of a linear array with a flat-top beam via joint phase 
and amplitude weights optimization (Fig. 7). This time an even symmetrical linear array of 
30 isotropic feeds spaced half lambda apart (d = 0.5λ) is considered. The weights have 4-bit 
quantization and are symmetric about the centre of the array with the central elements 
having phase of zero. The pattern template is defined as follows: the flat-top beam 
parameters are θ1 = 28° and θ2 = 30°, the ripples level in the main beam is restricted by  
F1=–2 dB, and the highest allowed SLL is -20 dB. The cost function equals the sum of 
penalties charged for crossing the given corridor (Fig. 7b): 
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where K is the number of sampling points, K = 90.  

The radiation pattern of the optimized array and its amplitude/phase weights are shown in 
Fig. 8, and a reference solution is available in (Galan et al., 2011). 

To demonstrate the efficiency of the HGA for the considered optimization problem, we 
compare its performance with that of a standard GA. Parameters of the algorithms are the 
same as shown in Table 1, except the following: (i) for HGA, the switching between GA and 
SDG occurs after 50 iterations, (ii) population size for the standard GA has been increased 
up to 200 individuals in order to compensate for the larger number of optimization 
parameters (i.e. total of 29, which corresponds to 15 amplitude weights and 14 phase 
weights). The number of trials has been also increased up to 100.  

The statistical data presented in Fig. 9 clearly demonstrate that the proposed HGA 
significantly outperforms a standard GA in terms of the final solution quality even if the 
same direct encoding is used, whereas implementation of the advanced encoding schemes 
leads to further improvement of the stability in the algorithm performance evidenced by the 
improved quality and superior grouping of final solutions. Once again, the best efficiency is  
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(a) 

  
 (b) 

Fig. 7. Linear antenna array under consideration: (а) geometry and notations of the problem, 
(b) template for the flat-top beam radiation pattern.  
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Fig. 8. Optimal solution found by HGA: array factor of the 30-element linear array with 
optimized phase and amplitude weights. Dashed line denotes the pattern template.  
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observed for the envelope encoding scheme. Note that this time parameters of two types are 
involved (i.e. phase and amplitude), therefore the envelope lines for the phase and 
amplitude weights are reconstructed independently, which explains the increase of the 
number of optimization parameters up to 12 (two envelope lines build of two Gaussians 
each). Finally, it is worth being mentioned that the overall computational time (measured in 
terms of a number of cost function evaluations) is nearly the same for all runs (Table 3), 
which means that the improved performance is achieved thanks to a more effective 
optimization strategy. 

 
Fig. 9. Final solutions found in 100 trials by a standard GA and HGA with three different 
encoding schemes. The average values of the final solutions produced are shown nearby. 

 

Algorith
m type 

No. of  
optimizati

on 
parameter

s 

No. of 
bits per 
paramet

er 

GA 
encoding 
scheme 

No. of 
iterations 
* (SDG) 

Cost 
function 

evaluations 
*  

(GA + SDG) 

Final  
solution * 

(cost 
function) 

GA 29 4 Direct -- 20000 367.9 
HGA 29 4 Direct 26 17062 21.5 
HGA 29 3 Relative 34 21541 11.8 

HGA 12 4 
Gauss 
(M = 2) 

37 23226 11.3 

* Data averaged over 100 trials 

Table 3. Statistical data: HGA vs. standard GA. 

6. Conclusion  

In this chapter, the factors affecting the performance of genetic algorithms have been 
discussed and a few hints on boosting the algorithm efficiency have been provided. In 
particular, three complementary options have been outlined, namely: adjustment of the 
algorithm control parameters, hybridisation of different global and local algorithms, and 
amelioration of the design space implemented in the form of mapping. The discussion has 
been illustrated by presentation of a global-local hybrid genetic algorithm, whose efficiency 
in solving multi-parameter problems has been demonstrated through numerical examples. 
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The main benefits achieved thanks to hybridization of a binary GA and a SDG algorithms 
are as follows: (i) improved convergence rate, (ii) better quality of the final solution, and (iii) 
the possibility to investigate multiple local extrema during a single run of the algorithm. 
These features are of the primary importance for the electromagnetic synthesis. Although 
the optimal values of the algorithm control parameters may vary for different optimization 
problems, the general recommendations regarding the logic behind the selection of these 
parameters are applicable for various optimization scenarios and different evolutionary 
algorithms.  
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