
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

19

A Stochastically Perturbed
Particle Swarm Optimization for Identical

Parallel Machine Scheduling Problems

Mehmet Sevkli1 and Aise Zulal Sevkli2

1King Saud University, Faculty of Engineering, Department of
Industrial Engineering, Riyadh

2King Saud University, College of Computer and Information Sciences, Department of
Information Technology, Riyadh

Kingdom of Saudi Arabia

1. Introduction

Identical parallel machine scheduling (PMS) problems with the objective of minimizing

makespan (Cmax) is one of the well known NP-hard [1] combinatorial optimization

problems. It is unlikely to obtain optimal schedule through polynomial time-bounded

algorithms. Small size instances of PMS problem can be solved with reasonable

computational time by exact algorithms such as branch-and-bound [2, 3], and the cutting

plane algorithm [4]. However, as the problem size increases, the computation time of

exact methods increases exponentially. On the other hand, heuristic algorithms generally

have acceptable time and memory requirements, but do not guarantee optimal solution.

That is, a feasible solution is obtained which is likely to be either optimal or near optimal.

The well-known longest processing time (LPT) rule of Graham [5] is a sort of so called list

scheduling algorithm. It is known that the rule works very well when makespan is taken

as the single criterion [6]. Later, Coffman et al. [7] proposed MULTIFIT algorithm that

considers the relation between bin-packing and maximum completion time problems.

Yue [8] showed that the MULTIFIT heuristic is not guaranteed to perform better than LPT

for every problem. Gupta and Ruiz-Torres [9] developed a LISTFIT algorithm that

combines the bin packing method of the MULTIFIT heuristic with multiple lists of jobs.

Min and Cheng [10] introduced a genetic algorithm (GA) that outperformed simulated

annealing (SA) algorithm. Lee et al. [11] proposed a SA algorithm for the PMS problems and

compared their results with the LISTFIT algorithm. Tang and Luo [12] developed a new

iterated local search (ILS) algorithm that is based on varying number of cyclic exchanges.

Particle swarm optimization (PSO) is based on the metaphor of social interaction and

communication among different spaces in nature, such as bird flocking and fish schooling.

It is different from other evolutionary methods in a way that it does not use the genetic

operators (such as crossover and mutation), and the members of the entire population are

maintained through out the search procedure. Thus, information is socially shared among

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

372

individuals to direct the search towards the best position in the search space. In a PSO

algorithm, each member is called a particle, and each particle moves around in the multi-

dimensional search space with a velocity constantly updated by the particle’s experience,

the experience of the particle’s neighbours, and the experience of the whole swarm.

PSO was first introduced to optimize various continuous nonlinear functions by Eberhart

and Kennedy [13]. PSO has been successfully applied to a wide range of applications such

as automated drilling [14], home care worker scheduling [15], neural network training

[16], permutation flow shop sequencing problems [17], job shop scheduling problems [18],

and task assignment [19]. More information about PSO can be found in Kennedy et al.

[20].

The organization of this chapter is as follows: Section II introduces PMS problem, the way

how to represent the problem, lower bound of the problem and overview of the classical

PSO algorithm. The third section reveals the proposed heuristic algorithm. The

computational results are reported and discussed in the fourth section, while the fifth

section includes the concluding remarks.

2. Background

2.1 Problem description

The problem of identical parallel machine scheduling is about creating schedules for a set J

={J1, J2 , J3 ,..., Jn} of n independent jobs to be processed on a set M={M1, M2, M3,..., Mm} of m

identical machines. Each job should be carried out on one of the machines, where the time

required for processing job i on a machine is denoted by pi. The subset of jobs assigned to

machine Mi in a schedule is denoted by
iMS . Once a job begins processing, it must be

completed without interruption. Furthermore, each machine can process one job at a time,

and there is no precedence relation between the jobs. The aim is to find a permutation for

the n jobs to machines from set M so as to minimize the maximum completion time, in other

words the makespan. The problem is denoted as P||Cmax , where P represents identical

parallel machines, the jobs are not constrained, and the objective is to obtain the minimum

length schedule. An integer programming formulation of the problem that minimize the

makespan is as follows: [5]

min y

subject to:

1

1
m

ij
j

x
=

= , 1 i n≤ ≤ , (1)

1

0
n

i ij
i

y p x
=

− ≥ , 1 j m≤ ≤ (2)

where the optimal value of y is Cmax and xij=1 when job i is assigned to machine j, otherwise

xij=0.

www.intechopen.com

A Stochastically Perturbed
Particle Swarm Optimization for Identical Parallel Machine Scheduling Problems

373

2.2 Solution representation and lower bound

The solution for the PMS problem is represented as a permutation of integers Π= {1,..., n}

where Π defines the processing order of the jobs. As mentioned in the text above, three

versions of the PSO algorithm are compared in terms of solution quality and CPU time.

In continuous based PSO by Tasgetiren et al. [17], PSOspv , particles themselves do not present

permutations. Instead, the SPV rule is used to derive a permutation from the position values

of the particle. In discrete PSO by Pan et al.[21] and the proposed algorithm (SPPSO), on the other

hand, the particles present permutations themselves.

Jobs 1 2 3 4 5 6 7 8 9

pi 7 7 6 6 5 5 4 4 4

Table 1. An example of 9-job × 4-machine PMS problem

For all of the three algorithms, the process of finding makespan value for a particle can be

illustrated by an example. Namely, let’s assume a permutation vector of Π= {1 8 3 4 5 6 7 2

9}. By considering 4 parallel machines and 9 jobs, whose processing times are given in Table

1, the makespan value of the given vector is depicted in Figure 1.

Fig. 1. Shedule generated from random sequence

According to the schedule, each value of the vector is iteratively assigned to the most

available machine. First four elements of the permutation vector (1,8,3,4) are assigned to the

four machines respectively. The remaining jobs are assigned one by one to the first machine

available. For instance, 5 goes to second machine (M2), since it is the first machine released.

If there is more than one available machine at the time, the job will be assigned randomly

(ties can be broken arbitrarily). The makespan value of the given sequence is Cmax(Π)=14, as

can easily be seen in figure 1.

The lower bound for P||Cmax is calculated as follows [22]:

 { }max
1

1
() max ; max

n

i i
i

i

LB C p p
m =

  
=   

  
 (3)

It is obtained by assuming that preemption is not allowed. If Cmax(Π)=LB(Cmax), the current

solution(Π) is optimum. So, lower bound will be used as one of the termination criteria

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

374

throughout this chapter. The lower bound of the example presented in Table 1 can be

calculated as:

{ }
9

max
1

1
() max ; max max(12;7) 12

4
i i

i
i

LB C p p
=

  
= = =  

  


2.3 Classic Particle Swarm Optimization

In PSO, each single solution, called a particle, is considered as an individual, the group
becomes a swarm (population) and the search space is the area to explore. Each particle has
a fitness value calculated by a fitness function, and a velocity to fly towards the optimum.
All particles fly across the problem space following the particle that is nearest to the
optimum. PSO starts with an initial population of solutions, which is updated iteration-by-
iteration. The principles that govern PSO algorithm can be stated as follows:

• n dimensional position (1 2(, , ...,)i i i inX x x x=) and velocity vector (1 2(, ,...,)i i i inV v v v= for

ith particle starts with a random position and velocity.

• Each particle knows its position and value of the objective function for that position.

The best position of ith particle is donated as 1 2(, ,...,)i i i inP p p p= , and the best position of

the whole swarm as, 1 2(, ,...,)nG g g g= respectively. The PSO algorithm is governed by

the following main equations:

1

1 1 2 2

1 1

() (),t t t t t t
in in in in i in

t t t
in in in

v wv c r p x c r g x

x v x

+

+ +

= + − + −

= +
 (4)

where t represents the iteration number, w is the inertia weight which is a coefficient to
control the impact of the previous velocities on the current velocity. c1 and c2 are called
learning factors. r1 and r2 are uniformly distributed random variables in [0,1].

The original PSO algorithm can optimize problems in which the elements of the solution
space are continuous real numbers. The major obstacle for successfully applying PSO to
combinatorial problems in the literature is due to its continuous nature. To remedy this
drawback, Tasgetiren et al. [17] presented the smallest position value (SPV) rule. Another
approach to tackle combinatorial problems with PSO is done by Pan et al. [21]. They
generate a similar PSO equation to update the particle’s velocity and position vectors using
one and two cut genetic crossover operators.

3. The proposed Stochastically Perturbed Particle Swarm Optimization
algorithm

In this chapter, a stochastically perturbed particle swarm optimization algorithm (SPPSO) is
proposed for the PMS problems. The initial population is generated randomly. Initially, each
individual with its position, and fitness value is assigned to its personal best (i.e., the best
value of each individual found so far). The best individual in the whole swarm with its
position and fitness value, on the other hand, is assigned to the global best (i.e., the best
particle in the whole swarm). Then, the position of each particle is updated based on the
personal best and the global best. These operations in SPPSO are similar to classical PSO

www.intechopen.com

A Stochastically Perturbed
Particle Swarm Optimization for Identical Parallel Machine Scheduling Problems

375

algorithm. However, the search strategy of SPPSO is different. That is, each particle in the
swarm moves based on the following equations.

1

1

2 1

3 2

1
1 2 3

()

()

()

(; ;)

t t
i

t

t
i

t

t
i

s w X

w w

s c P

s c G

X best s s s

η

β

η

η

+

+

= ⊕

= ⋅

= ⊕

= ⊕

=

 (5)

At each iteration, the position vector of each particle, its personal best and the global best are

considered. First of all, a random number of U(0,1) is generated to compare with the inertia

weight to decide whether to apply Insert function(η) to the particle or not.

Insert function(η) implies the insertion of a randomly chosen job in front (or back

sometimes) of another randomly chosen job. For instance, for the PMS problem, suppose a

sequence of {3, 5, 6, 7, 8, 9, 1, 2, 4}. In order to apply Insert function, we also need to derive

two random numbers; one is for determining the job to change place and the other is for the

job in front of which the former job is to be inserted. Let’s say those numbers are 3 and 5

(that is, the third job will move in front of the fifth. In other words, job no.6 will be inserted

in front of job no.8 {3, 5, 6, 7, 8, 9, 1, 2, 4}). The new sequence will be {3, 5, 7, 8, 6, 9, 1, 2, 4}.

If the random number chosen is less than the inertia weight, the particle is manipulated with

this Insert function, and the resulting solution, say s1, is obtained. Meanwhile, the inertia

weight is discounted by a constant factor at each iteration, in order to tighten the

acceptability of the manipulated particle for the next generation, that is, to diminish the

impact of the randomly operated solutions on the swarm evolution.

The next step is to generate another random number of U(0,1) to be compared with c1,

cognitive parameter, to make a decision whether to apply Insert function to personal best of

the particle considered. If the random number is less than c1, then the personal best of the

particle undertaken is manipulated and the resulting solution is spared as s2. Likewise, a

third random number of U(0,1) is generated for making a decision whether to manipulate

the global best with the Insert function. If the random number is less than c2, social

parameter, then Insert is applied to the global best to obtain a new solution of s3. Unlike the

case of inertia weight, the values of c1 and c2 factors are not increased or decreased

iteratively, but are fixed at 0.5. That means the probability of applying Insert function to the

personal and global bests remains the same. The new replacement solution is selected

among s1, s2 and s3, based on their fitness values. This solution may not always be better

than the current solution. This is to keep the swarm diverse. The convergence is traced by

checking the personal best of each new particle and the global best. As it is seen, proposed

equations have all major characteristics of the classical PSO equations. The following

pseudo-code describes in detail the steps of the SPPSO algorithm.

It can be seen from the pseudo-code of the algorithm that the algorithm has all major
characteristics of the classical PSO, the search strategy of the algorithm is different in a way

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

376

that the new solution is selected among s1, s2 and s3, based on their fitness values. The
selected particle may be worse than the current solution that keep the swarm diverse. The
convergence is obtained by changing the personal best of each new particle and the global
best.

Fig. 2. Pseudo code of the proposed SPPSO algorithm for PMS problem

4. Computational results

In this section, a comparison study is carried out on the effectiveness of the proposed SPPSO

algorithm. SPPSO was exclusively tested in comparison with two other recently introduced

PSO algorithms: PSOspv algorithm of Tasgetiren et al. [17] and DPSO algorithm of Pan et al.

[21]. Two experimental frameworks, namely E1 and E2, are considered implying the type of

discrete uniform distribution used to generate job-processing times. That is, the processing

time of each job is generated by using uniform distribution of U[1,100] and U[100,800] for

experiments E1 and E2 respectively. All SPPSO, PSOspv and DPSO algorithms are coded in C

and run on a PC with the configuration of 2.6 GHz CPU and 512MB memory. The size of the

population considered by all algorithms is the number of jobs (n).

For SPPSO and DPSO, the social and cognitive parameters were taken as 1 2 0.5c c= = , initial

inertia weight is set to 0.9 and never decreased below 0.40, and the decrement factor β is

fixed at 0.999. For the PSOspv algorithm, the social and cognitive parameters were fixed at

1 2 2c c= = , initial inertia weight is set to 0.9 and never decreased below 0.40, and the

decrement factor β is selected as 0.999. The algorithms were run for 20000/n iterations. All

the there algorithms were applied without embedding any kind of local search.

The instances of problems were generated for 3, 4, 5, 10, 20, 30, 40, 50 machines and 20, 50,
100, 200, and 500 jobs. In order to allow for the variations, 10 instances are generated for
each problem size. Hence, the overall number of instances added up to 350. The measures
considered in this chapter are mainly about the solution quality. The performance measure

www.intechopen.com

A Stochastically Perturbed
Particle Swarm Optimization for Identical Parallel Machine Scheduling Problems

377

is a relative quality measure, C/LB, where C is the result achieved (makespan) by the
algorithm and LB is the lower bound of the instance which is calculated in Eq.(3). Once C
catches LB, the index results 1.0, otherwise remains larger.

 PSOspv DPSO SPPSO

m n min avg max min avg max min avg max

3 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 20 1.000 1.001 1.005 1.000 1.001 1.005 1.000 1.001 1.005

 50 1.000 1.000 1.002 1.000 1.000 1.000 1.000 1.000 1.000

 100 1.000 1.000 1.001 1.000 1.000 1.000 1.000 1.000 1.000

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 20 1.050 1.091 1.168 1.050 1.091 1.168 1.050 1.091 1.168

 50 1.000 1.002 1.004 1.004 1.005 1.008 1.000 1.001 1.004

 100 1.000 1.001 1.002 1.002 1.003 1.005 1.000 1.000 1.002

 200 1.001 1.002 1.002 1.001 1.002 1.002 1.000 1.001 1.001

 500 1.001 1.001 1.002 1.001 1.001 1.001 1.000 1.000 1.001

20 50 1.015 1.026 1.050 1.033 1.043 1.053 1.009 1.024 1.050

 100 1.007 1.009 1.013 1.025 1.029 1.037 1.004 1.009 1.013

 200 1.006 1.007 1.010 1.013 1.015 1.018 1.004 1.006 1.008

 500 1.004 1.006 1.007 1.006 1.007 1.009 1.002 1.003 1.005

30 50 1.066 1.154 1.266 1.076 1.161 1.266 1.066 1.154 1.266

 100 1.013 1.022 1.028 1.043 1.061 1.072 1.019 1.029 1.039

 200 1.009 1.017 1.021 1.032 1.037 1.043 1.014 1.017 1.020

 500 1.009 1.011 1.015 1.011 1.016 1.021 1.008 1.009 1.011

40 50 1.282 1.538 1.707 1.282 1.538 1.707 1.282 1.538 1.707

 100 1.033 1.047 1.067 1.084 1.115 1.142 1.042 1.055 1.061

 200 1.021 1.028 1.034 1.054 1.067 1.075 1.028 1.035 1.042

 500 1.016 1.019 1.022 1.025 1.030 1.031 1.016 1.020 1.026

50 100 1.070 1.088 1.114 1.156 1.184 1.220 1.070 1.097 1.140

 200 1.036 1.044 1.053 1.081 1.096 1.106 1.049 1.057 1.065

 500 1.023 1.027 1.030 1.034 1.043 1.046 1.028 1.032 1.035

Average 1.019 1.033 1.046 1.029 1.044 1.058 1.020 1.034 1.048

Table 2. Results for experiment E1:p~U(1,100)

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

378

 PSOspv DPSO SPPSO

m n min avg max min avg max min avg max

3 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 20 1.000 1.001 1.001 1.000 1.000 1.001 1.000 1.000 1.001

 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 20 1.001 1.002 1.003 1.001 1.002 1.003 1.001 1.001 1.002

 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 20 1.046 1.071 1.128 1.040 1.068 1.128 1.040 1.068 1.128

 50 1.001 1.003 1.005 1.003 1.006 1.010 1.001 1.002 1.003

 100 1.000 1.001 1.001 1.003 1.004 1.004 1.001 1.001 1.001

 200 1.000 1.000 1.001 1.001 1.002 1.003 1.000 1.001 1.001

 500 1.000 1.000 1.000 1.000 1.001 1.002 1.000 1.000 1.001

20 50 1.022 1.067 1.113 1.026 1.037 1.054 1.011 1.019 1.025

 100 1.012 1.016 1.021 1.012 1.023 1.029 1.006 1.006 1.007

 200 1.002 1.005 1.010 1.011 1.014 1.017 1.003 1.003 1.004

 500 1.000 1.001 1.002 1.005 1.007 1.009 1.001 1.002 1.003

30 50 1.080 1.122 1.195 1.096 1.128 1.195 1.080 1.123 1.195

 100 1.016 1.029 1.043 1.038 1.055 1.065 1.012 1.015 1.016

 200 1.012 1.017 1.022 1.027 1.033 1.037 1.008 1.010 1.012

 500 1.005 1.006 1.007 1.012 1.015 1.017 1.005 1.007 1.008

40 50 1.268 1.378 1.534 1.268 1.378 1.534 1.268 1.378 1.534

 100 1.024 1.069 1.095 1.077 1.093 1.102 1.022 1.029 1.036

 200 1.016 1.022 1.028 1.046 1.057 1.066 1.015 1.019 1.021

 500 1.009 1.010 1.011 1.022 1.025 1.027 1.011 1.012 1.014

50 100 1.034 1.052 1.084 1.121 1.154 1.166 1.047 1.060 1.084

 200 1.007 1.011 1.022 1.076 1.086 1.099 1.026 1.032 1.035

 500 1.001 1.003 1.007 1.034 1.039 1.044 1.015 1.019 1.022

Average 1.016 1.025 1.038 1.026 1.035 1.046 1.016 1.023 1.033

Table 3. Results for experiment E2:p~U(100,800)

www.intechopen.com

A Stochastically Perturbed
Particle Swarm Optimization for Identical Parallel Machine Scheduling Problems

379

 PSOspv DPSO SPPSO

 p~U(1,100) p~U(100,800) p~U(1,100) p~U(100,800) p~U(1,100) p~U(100,800)

m n nopt CPU nopt CPU nopt CPU nopt CPU nopt CPU nopt CPU

3 20 10 0.008 10 0.266 10 0.014 10 0.308 10 0.005 10 0.241

 50 10 0.015 10 0.571 10 0.008 10 0.077 10 0.003 10 0.029

 100 10 0.038 9 2.020 10 0.010 10 0.091 10 0.005 10 0.023

 200 10 0.310 9 8.054 10 0.044 10 0.239 10 0.019 10 0.062

 500 10 3.172 10 57.143 10 0.259 10 1.437 10 0.083 10 0.180

4 20 10 0.112 1 1.007 10 0.201 3 0.383 10 0.096 4 0.406

 50 10 0.013 2 0.836 10 0.055 7 0.294 10 0.024 10 0.202

 100 10 0.027 9 1.676 10 0.059 8 0.355 10 0.019 10 0.126

 200 10 0.202 9 4.391 10 0.115 7 0.865 10 0.053 10 0.239

 500 10 3.169 10 11.438 10 1.085 10 3.635 10 0.234 10 0.485

5 20 7 0.206 0 0.603 8 0.218 0 0.363 9 0.233 0 0.430

 50 9 0.084 8 0.678 10 0.134 1 0.274 10 0.052 5 0.286

 100 8 0.028 5 2.308 10 0.199 3 0.424 10 0.072 9 0.255

 200 9 0.408 9 4.877 10 0.397 2 1.023 10 0.127 9 0.357

 500 6 3.177 9 15.739 10 2.502 3 4.576 10 0.453 9 0.720

10 20 0 0.414 0 0.429 0 0.374 0 0.401 0 0.559 0 0.449

 50 5 0.799 0 0.922 0 0.322 0 0.329 8 0.344 0 0.399

 100 4 0.778 1 2.853 0 0.512 0 0.542 8 0.354 0 0.435

 200 0 0.208 1 10.314 0 1.189 0 1.259 5 0.630 0 0.673

 500 0 3.194 5 52.414 0 4.869 0 5.207 2 1.347 0 1.439

20 50 0 0.960 0 1.514 0 0.438 0 0.446 0 0.450 0 0.471

 100 0 2.840 0 2.883 0 0.627 0 0.650 0 0.510 0 0.551

 200 0 10.385 0 10.671 0 1.397 0 1.451 0 0.806 0 0.862

 500 0 52.525 0 67.284 0 5.334 0 5.643 0 1.750 0 1.853

30 50 0 1.636 0 1.631 0 0.459 0 0.469 0 0.485 0 0.504

 100 0 2.842 0 2.898 0 0.643 0 0.674 0 0.561 0 0.607

 200 0 10.495 0 11.330 0 1.455 0 1.532 0 0.906 0 0.972

 500 0 59.247 0 66.154 0 5.550 0 5.940 0 1.978 0 2.324

40 50 0 1.684 0 1.636 0 0.497 0 0.522 0 0.518 0 0.590

 100 0 2.984 0 2.873 0 0.699 0 0.742 0 0.620 0 0.726

 200 0 10.625 0 10.531 0 1.568 0 1.667 0 1.022 0 1.164

 500 0 59.573 0 65.551 0 5.829 0 6.292 0 2.244 0 2.548

50 100 0 3.658 0 3.626 0 0.813 0 0.861 0 0.697 0 0.745

 200 0 10.702 0 10.556 0 1.680 0 1.763 0 1.140 0 1.247

 500 0 65.759 0 65.793 0 6.117 0 6.465 0 2.521 0 2.844

Total 148 117 148 94 172 126

Average 8.922 14.385 1.305 1.634 0.598 0.727

Table 4. Results for both experiments

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

380

The results for the instances with different sizes are shown in Table 3 and Table 4, where the
minimum, average and maximum of the C/LB ratio are presented. Each line summarizes
the values for the 10 instances of each problem size, where 10 replications are performed for
each instance.

The result for the experiment E1, in which processing times are generated by using U(1,100)
are summarized in Table 2. In this experiment, it is found that the minimum, average and
maximum values of the ratios are quite similar for SPPSO and PSOspv. On the other hand,
SPPSO and PSOspv performed better than DPSO.

The result for the experiment E2 in which processing times are generated by using
U(100,800) are summarized in Table 3. In this experiment, there is also no significant
difference between SPPSO and PSOspv. However, in terms of max ratio performance SPPSO
performed slightly better than PSOspv. In addition, PSOspv and SPPSO are also better than
DPSO for all the three ratios in this experiment.

Table 4 shows the number of times the optimum is reached within the group (nopt) for each
algorithm and their average CPU times in seconds for each experiment. Total number of
optimum solutions obtained by PSOspv, DPSO and SPPSO for the both experiment are
summarized as (148,148,172) and (117, 94,126) respectively. Here, the superiority of SPPSO
over PSOspv and DPSO is more pronounced in terms of number of total optimum solutions
obtained.

In terms of the average CPU, SPPSO shows better performance than PSOspv and DSPO.
SPPSO (0.598, 0.727) is about 15 times faster than PSOspv (8.922, 14,395) and about 2 times
faster than DPSO (1.305, 1.634) in both experiments.

5. Conclusion

In this chapter, a stochastically perturbed particle swarm optimization algorithm (SPPSO) is

proposed for identical parallel machine scheduling (PMS) problems. The SPPSO has all

major characteristics of the classical PSO. However, the search strategy of SPPSO is

different. The algorithm is applied to (PMS) problem and compared with two recent PSO

algorithms. The algorithms are kept standard and not extended by embedding any local

search. It is concluded that SPPSO produced better results than DPSO and PSOspv in terms of

number of optimum solutions obtained. In terms of average relative percent deviation, there is

no significant difference between SPPSO and PSOspv. However, they are better than DPSO.

It also should be noted that, since PSOspv considers each particle based on three key vectors;

position (Xi), velocity (Vi), and permutation (Πi), it consumes more memory than SPPSO. In

addition, since DPSO uses one and two cut crossover operators in every iteration,

implementation of DPSO to combinatorial optimization problems is rather cumbersome.

The proposed algorithm can be applied to other combinatorial optimization problems such

as flow shop scheduling, job shop scheduling etc. as future work.

6. References

[1] Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP

completeness. Freeman, San Francisco, California

www.intechopen.com

A Stochastically Perturbed
Particle Swarm Optimization for Identical Parallel Machine Scheduling Problems

381

[2] Van deVelde, S. L. (1993) “Duality-based algorithms for scheduling unrelated parallel

machines”. ORSA Journal on Computing, 5, 192–205.

[3] Dell Amico, M., Martello, S. (1995) “Optimal scheduling of tasks on identical parallel

processors”, ORSA Journal on Computing 7, 191-200.

[4] Mokotoff, E. (2004). “An exact algorithm for the identical parallel machine scheduling

problem”, European Journal of Operational Research, 152, 758–769.

[5] Graham, R. L., (1969). “Bounds on multiprocessor timing anomalies. SIAM”, Journal of

Applied Mathematics, 17, 416-429.

[6] Blazewicz, J ., Ecker, K., Pesch, E., Schmidt, G., and Weglarz, J., (1996), “Scheduling

Computer and Manufacturing Systems”. (Berlin: Springer).

[7] Coffman EG, Garey MR, Johnson DS, (1978). “An application of bin-packing to multi-

processor scheduling”. SIAM Journal of Computing 7, 1–17.

[8] Yue, M., (1990) “On the exact upper bound for the MULTIFIT processor algorithm”,

Annals of Operations Research, 24, 233-259

[9] Gupta JND, Ruiz-Torres AJ (2001) “A LISTFIT heuristic for minimizing makespan on

identical parallel machines”. Prod Plan Control 12:28–36

[10] Min, L.,Cheng, W.(1999) “A genetic algorithm for the minimizing the makespan in case

of scheduling identical parallel machines”, Artificial Intelligence in Engineering 13,

399-403

[11] Lee WC, Wu CC, Chen P (2006) “A simulated annealing approach to makespan

minimization on identical parallel machines”. Intelligent Journal of Advanced

Manufacturing Technology 31, 328–334.

[12] Tang L,, Luo J. (2006) “A New ILS Algorithm for Parallel Machine Scheduling

Problems”, Journal of Intelligent Manufacturing 17 (5), 609-619

[13] Eberhart, R.C., and Kennedy, J., (1995) “A new optimizer using particle swarm theory,

Proceedings of the Sixth International Symposium on Micro Machine and Human

Science”, Nagoya, Japan, 1995, 39-43.

[14] Onwubolu, G.C. and M. Clerc. (2004). "Optimal Operating Path for Automated Drilling

Operations by a New Heuristic Approach Using Particle Swarm Optimisation."

International Journal of Production Research 42(3), 473-491

[15] Akjiratikarl,C., Yenradee,P., Drake,P.R. (2007), "PSO-based algorithm for home care

worker scheduling in the UK", Computers & Industrial Engineering 53(4), 559-583

[16] Van den Bergh, F. and A.P. Engelbecht. (2000). "Cooperative Learning in Neural

Networks Using Particle Swarm Optimizers." South African Computer Journal 26,

84-90.

[17] Tasgetiren, M.F., Liang, Y.C., Sevkli, M. and Gencyilmaz, G, (2007) "Particle Swarm

Optimization Algorithm for Makespan and Total Flowtime Minimization in

Permutation Flowshop Sequencing Problem", European Journal of Operational

Research 177 (3), 1930-1947

[18] Sha,D.Y., Hsu, C-Y, (2006) "A hybrid particle swarm optimization for job shop

scheduling problem", Computers & Industrial Engineering, 51(4),791-808

[19] Salman, A., I. Ahmad, and S. Al-Madani. (2003). "Particle Swarm Optimization for Task

Assignment Problem." Microprocessors and Microsystems 26, 363-371.

[20] Kennedy, J., R.C. Eberhart, and Y. Shi. (2001). Swarm Intelligence, San Mateo, Morgan

Kaufmann, CA, USA.

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

382

[21] Pan, Q-K, Tasgetiren, M.F., and Liang,Y-C, (2008) A discrete particle swarm

optimization algorithm for the no-wait flowshop scheduling problem, Computers

& Operations Research, Vol.35(9), 2807-2839.

[22] Pinedo, M. (1995) Scheduling: theory, algorithm, and systems, Prentice hall, Englewood

cliffs, New Jersey

www.intechopen.com

Bio-Inspired Computational Algorithms and Their Applications

Edited by Dr. Shangce Gao

ISBN 978-953-51-0214-4

Hard cover, 420 pages

Publisher InTech

Published online 07, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Bio-inspired computational algorithms are always hot research topics in artificial intelligence communities.

Biology is a bewildering source of inspiration for the design of intelligent artifacts that are capable of efficient

and autonomous operation in unknown and changing environments. It is difficult to resist the fascination of

creating artifacts that display elements of lifelike intelligence, thus needing techniques for control, optimization,

prediction, security, design, and so on. Bio-Inspired Computational Algorithms and Their Applications is a

compendium that addresses this need. It integrates contrasting techniques of genetic algorithms, artificial

immune systems, particle swarm optimization, and hybrid models to solve many real-world problems. The

works presented in this book give insights into the creation of innovative improvements over algorithm

performance, potential applications on various practical tasks, and combination of different techniques. The

book provides a reference to researchers, practitioners, and students in both artificial intelligence and

engineering communities, forming a foundation for the development of the field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mehmet Sevkli and Aise Zulal Sevkli (2012). A Stochastically Perturbed Particle Swarm Optimization for

Identical Parallel Machine Scheduling Problems, Bio-Inspired Computational Algorithms and Their Applications,

Dr. Shangce Gao (Ed.), ISBN: 978-953-51-0214-4, InTech, Available from:

http://www.intechopen.com/books/bio-inspired-computational-algorithms-and-their-applications/a-

stochastically-perturbed-particle-swarm-optimization-for-identical-parallel-machine-scheduling-pro

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

