
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



19 

A Stochastically Perturbed  
Particle Swarm Optimization for Identical 

Parallel Machine Scheduling Problems 

Mehmet Sevkli1 and Aise Zulal Sevkli2 

1King Saud University, Faculty of Engineering, Department of  
Industrial Engineering, Riyadh 

2King Saud University, College of Computer and Information Sciences, Department of 
Information Technology, Riyadh  

Kingdom of Saudi Arabia 

1. Introduction 

Identical parallel machine scheduling (PMS) problems with the objective of minimizing 

makespan (Cmax) is one of the well known NP-hard [1] combinatorial optimization 

problems. It is unlikely to obtain optimal schedule through polynomial time-bounded 

algorithms. Small size instances of PMS problem can be solved with reasonable 

computational time by exact algorithms such as branch-and-bound [2, 3], and the cutting 

plane algorithm [4]. However, as the problem size increases, the computation time of 

exact methods increases exponentially. On the other hand, heuristic algorithms generally 

have acceptable time and memory requirements, but do not guarantee optimal solution. 

That is, a feasible solution is obtained which is likely to be either optimal or near optimal. 

The well-known longest processing time (LPT) rule of Graham [5] is a sort of so called list 

scheduling algorithm. It is known that the rule works very well when makespan is taken 

as the single criterion [6]. Later, Coffman et al. [7] proposed MULTIFIT algorithm that 

considers the relation between bin-packing and maximum completion time problems.  

Yue [8] showed that the MULTIFIT heuristic is not guaranteed to perform better than LPT 

for every problem. Gupta and Ruiz-Torres [9] developed a LISTFIT algorithm that 

combines the bin packing method of the MULTIFIT heuristic with multiple lists of jobs. 

Min and Cheng [10] introduced a genetic algorithm (GA) that outperformed simulated 

annealing (SA) algorithm. Lee et al. [11] proposed a SA algorithm for the PMS problems and 

compared their results with the LISTFIT algorithm. Tang and Luo [12] developed a new 

iterated local search (ILS) algorithm that is based on varying number of cyclic exchanges.  

Particle swarm optimization (PSO) is based on the metaphor of social interaction and 

communication among different spaces in nature, such as bird flocking and fish schooling. 

It is different from other evolutionary methods in a way that it does not use the genetic 

operators (such as crossover and mutation), and the members of the entire population are 

maintained through out the search procedure. Thus, information is socially shared among 
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individuals to direct the search towards the best position in the search space. In a PSO 

algorithm, each member is called a particle, and each particle moves around in the multi-

dimensional search space with a velocity constantly updated by the particle’s experience, 

the experience of the particle’s neighbours, and the experience of the whole swarm.  

PSO was first introduced to optimize various continuous nonlinear functions by Eberhart 

and Kennedy [13]. PSO has been successfully applied to a wide range of applications such 

as automated drilling [14], home care worker scheduling [15], neural network training 

[16], permutation flow shop sequencing problems [17], job shop scheduling problems [18], 

and task assignment [19]. More information about PSO can be found in Kennedy et al. 

[20].  

The organization of this chapter is as follows: Section II introduces PMS problem, the way 

how to represent the problem, lower bound of the problem and overview of the classical 

PSO algorithm. The third section reveals the proposed heuristic algorithm. The 

computational results are reported and discussed in the fourth section, while the fifth 

section includes the concluding remarks. 

2. Background 

2.1 Problem description 

The problem of identical parallel machine scheduling is about creating schedules for a set J 

={J1, J2 , J3 ,..., Jn} of n independent jobs to be processed on a set M={M1, M2, M3,..., Mm} of m 

identical machines. Each job should be carried out on one of the machines, where the time 

required for processing job i on a machine is denoted by pi. The subset of jobs assigned to 

machine Mi in a schedule is denoted by
iMS . Once a job begins processing, it must be 

completed without interruption. Furthermore, each machine can process one job at a time, 

and there is no precedence relation between the jobs. The aim is to find a permutation for 

the n jobs to machines from set M so as to minimize the maximum completion time, in other 

words the makespan. The problem is denoted as P||Cmax , where P represents identical 

parallel machines, the jobs are not constrained, and the objective is to obtain the minimum 

length schedule. An integer programming formulation of the problem that minimize the 

makespan is as follows: [5] 

min y 

subject to: 

 
1

1
m

ij
j

x
=

= ,  1 i n≤ ≤ , (1) 

 
1

0
n

i ij
i

y p x
=

− ≥ ,  1 j m≤ ≤  (2) 

where the optimal value of y is Cmax and xij=1 when job i is assigned to machine j, otherwise 

xij=0. 
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2.2 Solution representation and lower bound 

The solution for the PMS problem is represented as a permutation of integers Π= {1,..., n} 

where Π defines the processing order of the jobs. As mentioned in the text above, three 

versions of the PSO algorithm are compared in terms of solution quality and CPU time.  

In continuous based PSO by Tasgetiren et al. [17], PSOspv , particles themselves do not present 

permutations. Instead, the SPV rule is used to derive a permutation from the position values 

of the particle. In discrete PSO by Pan et al.[21] and the proposed algorithm (SPPSO), on the other 

hand, the particles present permutations themselves.    

 

Jobs 1 2 3 4 5 6 7 8 9 

pi 7 7 6 6 5 5 4 4 4 

Table 1. An example of 9-job × 4-machine PMS problem 

For all of the three algorithms, the process of finding makespan value for a particle can be 

illustrated by an example.  Namely, let’s assume a permutation vector of Π= {1 8 3 4 5 6 7 2 

9}. By considering 4 parallel machines and 9 jobs, whose processing times are given in Table 

1, the makespan value of the given vector is depicted in Figure 1. 

 

Fig. 1. Shedule generated from random sequence 

According to the schedule, each value of the vector is iteratively assigned to the most 

available machine. First four elements of the permutation vector (1,8,3,4) are assigned to the 

four machines respectively. The remaining jobs are assigned one by one to the first machine 

available. For instance, 5 goes to second machine (M2), since it is the first machine released. 

If there is more than one available machine at the time, the job will be assigned randomly 

(ties can be broken arbitrarily). The makespan value of the given sequence is Cmax(Π)=14, as 

can easily be seen in figure 1. 

The lower bound for P||Cmax is calculated as follows [22]: 

 { }max
1

1
( ) max ; max

n

i i
i

i

LB C p p
m =

  
=   

  
  (3) 

It is obtained by assuming that preemption is not allowed. If Cmax(Π)=LB(Cmax), the current 

solution(Π) is optimum. So, lower bound will be used as one of the termination criteria 
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throughout this chapter. The lower bound of the example presented in Table 1 can be 

calculated as:  

{ }
9

max
1

1
( ) max ; max max(12;7) 12

4
i i

i
i

LB C p p
=

  
= = =  

  
  

2.3 Classic Particle Swarm Optimization 

In PSO, each single solution, called a particle, is considered as an individual, the group 
becomes a swarm (population) and the search space is the area to explore. Each particle has 
a fitness value calculated by a fitness function, and a velocity to fly towards the optimum. 
All particles fly across the problem space following the particle that is nearest to the 
optimum. PSO starts with an initial population of solutions, which is updated iteration-by-
iteration. The principles that govern PSO algorithm can be stated as follows:  

• n dimensional position ( 1 2( , , ..., )i i i inX x x x= ) and velocity vector ( 1 2( , ,..., )i i i inV v v v= for 

ith particle starts with a random position and velocity.  

• Each particle knows its position and value of the objective function for that position. 

The best position of ith particle is donated as 1 2( , ,..., )i i i inP p p p= , and the best position of 

the whole swarm as, 1 2( , ,..., )nG g g g= respectively. The PSO algorithm is governed by 

the following main equations: 

 
1

1 1 2 2

1 1

( ) ( ),t t t t t t
in in in in i in

t t t
in in in

v wv c r p x c r g x

x v x

+

+ +

= + − + −

= +
 (4) 

where t represents the iteration number, w is the inertia weight which is a coefficient to 
control the impact of the previous velocities on the current velocity. c1 and c2 are called 
learning factors. r1 and r2 are uniformly distributed random variables in [0,1].  

The original PSO algorithm can optimize problems in which the elements of the solution 
space are continuous real numbers. The major obstacle for successfully applying PSO to 
combinatorial problems in the literature is due to its continuous nature. To remedy this 
drawback, Tasgetiren et al. [17] presented the smallest position value (SPV) rule. Another 
approach to tackle combinatorial problems with PSO is done by Pan et al. [21]. They 
generate a similar PSO equation to update the particle’s velocity and position vectors using 
one and two cut genetic crossover operators.   

3. The proposed Stochastically Perturbed Particle Swarm Optimization 
algorithm 

In this chapter, a stochastically perturbed particle swarm optimization algorithm (SPPSO) is 
proposed for the PMS problems. The initial population is generated randomly. Initially, each 
individual with its position, and fitness value is assigned to its personal best (i.e., the best 
value of each individual found so far). The best individual in the whole swarm with its 
position and fitness value, on the other hand, is assigned to the global best (i.e., the best 
particle in the whole swarm). Then, the position of each particle is updated based on the 
personal best and the global best. These operations in SPPSO are similar to classical PSO 
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algorithm. However, the search strategy of SPPSO is different. That is, each particle in the 
swarm moves based on the following equations. 

 

1

1

2 1

3 2

1
1 2 3

( )

( )

( )

( ; ; )

t t
i

t

t
i

t

t
i

s w X

w w

s c P

s c G

X best s s s

η

β

η

η

+

+

= ⊕

= ⋅

= ⊕

= ⊕

=

 (5) 

At each iteration, the position vector of each particle, its personal best and the global best are 

considered.  First of all, a random number of U(0,1) is generated to compare with the inertia 

weight to decide whether to apply Insert function(η ) to the particle or not.  

Insert function(η ) implies the insertion of a randomly chosen job in front (or back 

sometimes) of another randomly chosen job. For instance, for the PMS problem, suppose a 

sequence of {3, 5, 6, 7, 8, 9, 1, 2, 4}. In order to apply Insert function, we also need to derive 

two random numbers; one is for determining the job to change place and the other is for the 

job in front of which the former job is to be inserted. Let’s say those numbers are 3 and 5 

(that is, the third job will move in front of the fifth. In other words, job no.6 will be inserted 

in front of job no.8 {3, 5, 6, 7, 8, 9, 1, 2, 4}). The new sequence will be {3, 5, 7, 8, 6, 9, 1, 2, 4}.  

If the random number chosen is less than the inertia weight, the particle is manipulated with 

this Insert function, and the resulting solution, say s1, is obtained. Meanwhile, the inertia 

weight is discounted by a constant factor at each iteration, in order to tighten the 

acceptability of the manipulated particle for the next generation, that is, to diminish the 

impact of the randomly operated solutions on the swarm evolution.  

The next step is to generate another random number of U(0,1) to be compared with c1, 

cognitive parameter, to make a decision whether to apply Insert function to personal best of 

the particle considered. If the random number is less than c1, then the personal best of the 

particle undertaken is manipulated and the resulting solution is spared as s2. Likewise, a 

third random number of U(0,1) is generated for making a decision whether to manipulate 

the global best with the Insert function. If the random number is less than c2, social 

parameter, then Insert is applied to the global best to obtain a new solution of s3.  Unlike the 

case of inertia weight, the values of c1 and c2 factors are not increased or decreased 

iteratively, but are fixed at 0.5. That means the probability of applying Insert function to the 

personal and global bests remains the same. The new replacement solution is selected 

among s1, s2 and s3, based on their fitness values. This solution may not always be better 

than the current solution. This is to keep the swarm diverse. The convergence is traced by 

checking the personal best of each new particle and the global best. As it is seen, proposed 

equations have all major characteristics of the classical PSO equations. The following 

pseudo-code describes in detail the steps of the SPPSO algorithm. 

It can be seen from the pseudo-code of the algorithm that the algorithm has all major 
characteristics of the classical PSO, the search strategy of the algorithm is different in a way 
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that the new solution is selected among s1, s2 and s3, based on their fitness values. The 
selected particle may be worse than the current solution that keep the swarm diverse. The 
convergence is obtained by changing the personal best of each new particle and the global 
best. 

 

Fig. 2. Pseudo code of the proposed SPPSO algorithm for PMS problem 

4. Computational results 

In this section, a comparison study is carried out on the effectiveness of the proposed SPPSO 

algorithm. SPPSO was exclusively tested in comparison with two other recently introduced 

PSO algorithms: PSOspv algorithm of Tasgetiren et al. [17] and DPSO algorithm of Pan et al. 

[21]. Two experimental frameworks, namely E1 and E2, are considered implying the type of 

discrete uniform distribution used to generate job-processing times. That is, the processing 

time of each job is generated by using uniform distribution of U[1,100] and U[100,800] for 

experiments E1 and E2 respectively. All SPPSO, PSOspv and DPSO algorithms are coded in C 

and run on a PC with the configuration of 2.6 GHz CPU and 512MB memory. The size of the 

population considered by all algorithms is the number of jobs (n).  

For SPPSO and DPSO, the social and cognitive parameters were taken as 1 2 0.5c c= = , initial 

inertia weight is set to 0.9 and never decreased below 0.40, and the decrement factor β  is 

fixed at 0.999. For the PSOspv algorithm, the social and cognitive parameters were fixed at 

1 2 2c c= = , initial inertia weight is set to 0.9 and never decreased below 0.40, and the 

decrement factor β  is selected as 0.999.  The algorithms were run for 20000/n iterations. All 

the there algorithms were applied without embedding any kind of local search.  

The instances of problems were generated for 3, 4, 5, 10, 20, 30, 40, 50 machines and 20, 50, 
100, 200, and 500 jobs. In order to allow for the variations, 10 instances are generated for 
each problem size. Hence, the overall number of instances added up to 350. The measures 
considered in this chapter are mainly about the solution quality. The performance measure 
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is a relative quality measure, C/LB, where C is the result achieved (makespan) by the 
algorithm and LB is the lower bound of the instance which is calculated in Eq.(3). Once C 
catches LB, the index results 1.0, otherwise remains larger.  
 

 PSOspv DPSO SPPSO 

m n min avg max min avg max min avg max 

3 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5 20 1.000 1.001 1.005 1.000 1.001 1.005 1.000 1.001 1.005 

 50 1.000 1.000 1.002 1.000 1.000 1.000 1.000 1.000 1.000 

 100 1.000 1.000 1.001 1.000 1.000 1.000 1.000 1.000 1.000 

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

10 20 1.050 1.091 1.168 1.050 1.091 1.168 1.050 1.091 1.168 

 50 1.000 1.002 1.004 1.004 1.005 1.008 1.000 1.001 1.004 

 100 1.000 1.001 1.002 1.002 1.003 1.005 1.000 1.000 1.002 

 200 1.001 1.002 1.002 1.001 1.002 1.002 1.000 1.001 1.001 

 500 1.001 1.001 1.002 1.001 1.001 1.001 1.000 1.000 1.001 

20 50 1.015 1.026 1.050 1.033 1.043 1.053 1.009 1.024 1.050 

 100 1.007 1.009 1.013 1.025 1.029 1.037 1.004 1.009 1.013 

 200 1.006 1.007 1.010 1.013 1.015 1.018 1.004 1.006 1.008 

 500 1.004 1.006 1.007 1.006 1.007 1.009 1.002 1.003 1.005 

30 50 1.066 1.154 1.266 1.076 1.161 1.266 1.066 1.154 1.266 

 100 1.013 1.022 1.028 1.043 1.061 1.072 1.019 1.029 1.039 

 200 1.009 1.017 1.021 1.032 1.037 1.043 1.014 1.017 1.020 

 500 1.009 1.011 1.015 1.011 1.016 1.021 1.008 1.009 1.011 

40 50 1.282 1.538 1.707 1.282 1.538 1.707 1.282 1.538 1.707 

 100 1.033 1.047 1.067 1.084 1.115 1.142 1.042 1.055 1.061 

 200 1.021 1.028 1.034 1.054 1.067 1.075 1.028 1.035 1.042 

 500 1.016 1.019 1.022 1.025 1.030 1.031 1.016 1.020 1.026 

50 100 1.070 1.088 1.114 1.156 1.184 1.220 1.070 1.097 1.140 

 200 1.036 1.044 1.053 1.081 1.096 1.106 1.049 1.057 1.065 

 500 1.023 1.027 1.030 1.034 1.043 1.046 1.028 1.032 1.035 

Average 1.019 1.033 1.046 1.029 1.044 1.058 1.020 1.034 1.048 

Table 2. Results for experiment E1:p~U(1,100) 
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 PSOspv DPSO SPPSO 

m n min avg max min avg max min avg max 

3 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 20 1.000 1.001 1.001 1.000 1.000 1.001 1.000 1.000 1.001 

 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5 20 1.001 1.002 1.003 1.001 1.002 1.003 1.001 1.001 1.002 

 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

10 20 1.046 1.071 1.128 1.040 1.068 1.128 1.040 1.068 1.128 

 50 1.001 1.003 1.005 1.003 1.006 1.010 1.001 1.002 1.003 

 100 1.000 1.001 1.001 1.003 1.004 1.004 1.001 1.001 1.001 

 200 1.000 1.000 1.001 1.001 1.002 1.003 1.000 1.001 1.001 

 500 1.000 1.000 1.000 1.000 1.001 1.002 1.000 1.000 1.001 

20 50 1.022 1.067 1.113 1.026 1.037 1.054 1.011 1.019 1.025 

 100 1.012 1.016 1.021 1.012 1.023 1.029 1.006 1.006 1.007 

 200 1.002 1.005 1.010 1.011 1.014 1.017 1.003 1.003 1.004 

 500 1.000 1.001 1.002 1.005 1.007 1.009 1.001 1.002 1.003 

30 50 1.080 1.122 1.195 1.096 1.128 1.195 1.080 1.123 1.195 

 100 1.016 1.029 1.043 1.038 1.055 1.065 1.012 1.015 1.016 

 200 1.012 1.017 1.022 1.027 1.033 1.037 1.008 1.010 1.012 

 500 1.005 1.006 1.007 1.012 1.015 1.017 1.005 1.007 1.008 

40 50 1.268 1.378 1.534 1.268 1.378 1.534 1.268 1.378 1.534 

 100 1.024 1.069 1.095 1.077 1.093 1.102 1.022 1.029 1.036 

 200 1.016 1.022 1.028 1.046 1.057 1.066 1.015 1.019 1.021 

 500 1.009 1.010 1.011 1.022 1.025 1.027 1.011 1.012 1.014 

50 100 1.034 1.052 1.084 1.121 1.154 1.166 1.047 1.060 1.084 

 200 1.007 1.011 1.022 1.076 1.086 1.099 1.026 1.032 1.035 

 500 1.001 1.003 1.007 1.034 1.039 1.044 1.015 1.019 1.022 

Average 1.016 1.025 1.038 1.026 1.035 1.046 1.016 1.023 1.033 

Table 3. Results for experiment E2:p~U(100,800) 

www.intechopen.com



A Stochastically Perturbed  
Particle Swarm Optimization for Identical Parallel Machine Scheduling Problems 

 

379 

 PSOspv DPSO SPPSO 

  p~U(1,100) p~U(100,800) p~U(1,100) p~U(100,800) p~U(1,100) p~U(100,800) 

m n nopt CPU nopt CPU nopt CPU nopt CPU nopt CPU nopt CPU 

3 20 10 0.008 10 0.266 10 0.014 10 0.308 10 0.005 10 0.241 

 50 10 0.015 10 0.571 10 0.008 10 0.077 10 0.003 10 0.029 

 100 10 0.038 9 2.020 10 0.010 10 0.091 10 0.005 10 0.023 

 200 10 0.310 9 8.054 10 0.044 10 0.239 10 0.019 10 0.062 

  500 10 3.172 10 57.143 10 0.259 10 1.437 10 0.083 10 0.180 

4 20 10 0.112 1 1.007 10 0.201 3 0.383 10 0.096 4 0.406 

 50 10 0.013 2 0.836 10 0.055 7 0.294 10 0.024 10 0.202 

 100 10 0.027 9 1.676 10 0.059 8 0.355 10 0.019 10 0.126 

 200 10 0.202 9 4.391 10 0.115 7 0.865 10 0.053 10 0.239 

  500 10 3.169 10 11.438 10 1.085 10 3.635 10 0.234 10 0.485 

5 20 7 0.206 0 0.603 8 0.218 0 0.363 9 0.233 0 0.430 

 50 9 0.084 8 0.678 10 0.134 1 0.274 10 0.052 5 0.286 

 100 8 0.028 5 2.308 10 0.199 3 0.424 10 0.072 9 0.255 

 200 9 0.408 9 4.877 10 0.397 2 1.023 10 0.127 9 0.357 

  500 6 3.177 9 15.739 10 2.502 3 4.576 10 0.453 9 0.720 

10 20 0 0.414 0 0.429 0 0.374 0 0.401 0 0.559 0 0.449 

 50 5 0.799 0 0.922 0 0.322 0 0.329 8 0.344 0 0.399 

 100 4 0.778 1 2.853 0 0.512 0 0.542 8 0.354 0 0.435 

 200 0 0.208 1 10.314 0 1.189 0 1.259 5 0.630 0 0.673 

  500 0 3.194 5 52.414 0 4.869 0 5.207 2 1.347 0 1.439 

20 50 0 0.960 0 1.514 0 0.438 0 0.446 0 0.450 0 0.471 

 100 0 2.840 0 2.883 0 0.627 0 0.650 0 0.510 0 0.551 

 200 0 10.385 0 10.671 0 1.397 0 1.451 0 0.806 0 0.862 

  500 0 52.525 0 67.284 0 5.334 0 5.643 0 1.750 0 1.853 

30 50 0 1.636 0 1.631 0 0.459 0 0.469 0 0.485 0 0.504 

 100 0 2.842 0 2.898 0 0.643 0 0.674 0 0.561 0 0.607 

 200 0 10.495 0 11.330 0 1.455 0 1.532 0 0.906 0 0.972 

  500 0 59.247 0 66.154 0 5.550 0 5.940 0 1.978 0 2.324 

40 50 0 1.684 0 1.636 0 0.497 0 0.522 0 0.518 0 0.590 

 100 0 2.984 0 2.873 0 0.699 0 0.742 0 0.620 0 0.726 

 200 0 10.625 0 10.531 0 1.568 0 1.667 0 1.022 0 1.164 

  500 0 59.573 0 65.551 0 5.829 0 6.292 0 2.244 0 2.548 

50 100 0 3.658 0 3.626 0 0.813 0 0.861 0 0.697 0 0.745 

 200 0 10.702 0 10.556 0 1.680 0 1.763 0 1.140 0 1.247 

  500 0 65.759 0 65.793 0 6.117 0 6.465 0 2.521 0 2.844 

Total 148 117 148 94 172 126  

Average  8.922 14.385 1.305 1.634 0.598  0.727 

Table 4. Results for both experiments 

www.intechopen.com



 
Bio-Inspired Computational Algorithms and Their Applications 

 

380 

The results for the instances with different sizes are shown in Table 3 and Table 4, where the 
minimum, average and maximum of the C/LB ratio are presented. Each line summarizes 
the values for the 10 instances of each problem size, where 10 replications are performed for 
each instance.  

The result for the experiment E1, in which processing times are generated by using U(1,100) 
are summarized in Table 2. In this experiment, it is found that the minimum, average and 
maximum values of the ratios are quite similar for SPPSO and PSOspv. On the other hand, 
SPPSO and PSOspv performed better than DPSO. 

The result for the experiment E2 in which processing times are generated by using 
U(100,800) are summarized in Table 3. In this experiment, there is also no significant 
difference between SPPSO and PSOspv. However, in terms of max ratio performance SPPSO 
performed slightly better than PSOspv. In addition, PSOspv and SPPSO are also better than 
DPSO for all the three ratios in this experiment.  

Table 4 shows the number of times the optimum is reached within the group (nopt) for each 
algorithm and their average CPU times in seconds for each experiment. Total number of 
optimum solutions obtained by PSOspv, DPSO and SPPSO for the both experiment are 
summarized as (148,148,172) and (117, 94,126) respectively. Here, the superiority of SPPSO 
over PSOspv and DPSO is more pronounced in terms of number of total optimum solutions 
obtained.  

In terms of the average CPU, SPPSO shows better performance than PSOspv and DSPO. 
SPPSO (0.598, 0.727) is about 15 times faster than PSOspv (8.922, 14,395) and about 2 times 
faster than DPSO (1.305, 1.634) in both experiments.  

5. Conclusion 

In this chapter, a stochastically perturbed particle swarm optimization algorithm (SPPSO) is 

proposed for identical parallel machine scheduling (PMS) problems. The SPPSO has all 

major characteristics of the classical PSO. However, the search strategy of SPPSO is 

different. The algorithm is applied to (PMS) problem and compared with two recent PSO 

algorithms. The algorithms are kept standard and not extended by embedding any local 

search. It is concluded that SPPSO produced better results than DPSO and PSOspv in terms of 

number of optimum solutions obtained. In terms of average relative percent deviation, there is 

no significant difference between SPPSO and PSOspv. However, they are better than DPSO.  

It also should be noted that, since PSOspv considers each particle based on three key vectors; 

position (Xi), velocity (Vi), and permutation (Πi), it consumes more memory than SPPSO. In 

addition, since DPSO uses one and two cut crossover operators in every iteration, 

implementation of DPSO to combinatorial optimization problems is rather cumbersome. 

The proposed algorithm can be applied to other combinatorial optimization problems such 

as flow shop scheduling, job shop scheduling etc. as future work. 
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