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Optimal Design of Power System Controller 
Using Breeder Genetic Algorithm  

K. A. Folly and S. P. Sheetekela 
University of Cape Town Private Bag., Rondebosch 7701  

South Africa  

1. Introduction  

Genetic Algorithms (GAs) have recently found extensive applications in solving global 

optimization problems (Mitchell, 1996). GAs are search algorithms that use models based on 

natural biological evolution (Goldberg, 1989). They are intrinsically robust search and 

optimization mechanisms and offer several advantages over traditional optimization 

techniques, including the ability to effectively search large space without being caught in 

local optimum. GAs do not require the objective function to have properties such as 

continuity or smoothness and make no use of hessians or gradient estimates.  

In the last few years, Genetic Algorithms (GAs) have shown their potentials in many fields, 
including in the field of electrical power systems. Although GAs provide robust and 
powerful adaptive search mechanism, they have several drawbacks (Mitchell, 1996). Some 
of these drawbacks include the problem of “genetic drift” which prevents GAs from 
maintaining diversity in its population. Once the population has converged, the crossover 
operator becomes ineffective in exploring new portions of the search space. Another 
drawback is the difficulty to optimize the GAs’ operators (such as population size, crossover 
and mutation rates) one at a time. These operators (or parameters) interact with one another 
in a nonlinear manner. In particular, optimal population size, crossover rate, and mutation 
rate are likely to change over the course of a single run (Baluja, 1994). From the user’s point 
of view, the selection of GAs’ parameters is not a trivial task. Since the ‘classical’ GA was 
first proposed by Holland in 1975 as an efficient, easy to use tool which can be applicable to 
a wide range of problems (Holland, 1975), many variant forms of GAs have been suggested 
often tailored to specific problems (Michalewicz, 1996). However, it is not always easy for 
the user to select the appropriate GAs parameters for a particular problem at hand because 
of the huge number of choices available. At present, there is a little theoretical guidance on 
how to select the suitable GAs parameters for a particular problem (Michalewicz, 1996). Still 
another problem is that the natural selection strategy used by GAs is not immune from 
failure. To cope with the above limitations, an extremely versatile and effective function 
optimizer called Breeder Genetic Algorithm (BGA) was recently proposed (Muhlenbein, 1994). 
BGA is inspired by the science of breeding animals. The main idea is to use a selection strategy 
based on the concept of animal breeding instead of “natural selection” (Irhamah & Ismail, 
2009). The assumption behind this strategy is as follows: “mating two individuals with high fitness 
is more likely to produces an offspring of high fitness than mating two randomly selected individuals”.  
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Some of the features of BGA are: 

• BGA uses real-valued representation as opposed to binary representation used in 
classical GAs.  

• BGA only requires a few parameters to be chosen by the user.  

• The selection technique used is (always) truncation, whereby a selected top T% of the 
fittest individuals are chosen from the current generation and goes through 
recombination and mutation to form the next generation. The rest of the individuals are 
discarded.  

The main advantage of using BGA is its simplicity with regard to the selection method 

(Irhamah & Ismail, 2009) and the fewer parameters to be chosen by the user. However, there 

is a price to pay for this simplicity. Since only the best individuals are selected in each 

generation to produce the children for the next generation, there is a likelihood of premature 

convergence. As a result, BGA may converge to local optimum rather than the desired 

global one. It should be mentioned that most of the Evolutionary Algorithms including GA 

have problems with premature convergence to a certain degree. The general way to deal 

with this problem is to apply mutation to a few randomly selected individuals in the 

population. In this work, instead of a fixed mutation rate, we have used adaptive mutation 

strategy (Green, 2005), (Sheetekela & Folly, 2010). This means that the mutation rate is not 

fixed but varies according to the convergence and performance of the population.  In 

general, even with fixed mutation rate, BGA may still perform better than GA as discussed 

in (Irhamah & Ismail, 2009). 

The application of Evolutionary Algorithm to design power system stabilizer for damping 

low frequency oscillations in power systems has received increasing attention in recent 

years, see for example, (Wang, et al 2008), (Chuang, & Wu, 2006), (Chuang, & Wu, 2007), 

(Eslami, et al 2010), (Hongesombut, et al 2005), (Folly, 2006), and (Hemmati, et al 2010).   

Low frequency oscillations in power systems arise due to several causes. One of these is the 

heavy transfer of power over long distance. In the last few years, the problems of low 

frequency oscillations are becoming more and more important. Some of the reasons for this 

are: 

a. Modern power systems are required to operate close to their stability margins. A small 
disturbance can easily reduce the damping of the system and drive the system to 
instability. 

b. The deregulation and open access of the power industry has led to more power transfer 
across different regions. This has the effect of reducing the stability margins. 

For several years, traditional control methods such as phase compensation technique 
(Hemmati et al, 2010), root locus (Kundur, 1994), pole placement technique (Shahgholian & 
Faiz, 2010), etc. have been used to design Conventional PSSs (CPSSs). These (CPSSs) are 
widely accepted in the industry because of their simplicity. However, conventional 
controllers cannot provide adequate damping to the system over a wide range of operating 
conditions. To cover a wide range of operating conditions when designing the PSSs several 
authors have proposed to use multi-power conditions, whereby the PSS parameters are 
optimized over a set of specified operating conditions using various optimization 
techniques such as sensitivity technique (Tiako & Folly, 2009),  (Yoshimura& Uchida, 2000), 
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Differential Evolutionary (Wang, et al 2008), hybrid Differential Evolutionary (Chuang, & 
Wu, 2006), (Chuang, & Wu, 2007), Particle Swarm Optimization (Eslami, et al 2010), 
Population-Based Incremental Learning (Folly,2006), (Sheetekela, 2010), etc. 

In this chapter, Breeder Genetic Algorithm (BGA) with adaptive mutation is used for the 
optimization of the parameters of the Power System Stabilizer (PSSs). An eigenvalue based 
objective function is employed in the design such that the algorithm maximizes the lowest 
damping ratio over specified operating conditions. A single machine infinite bus system is 
used to show the effectiveness of the proposed method. For comparison purposes, Genetic 
Algorithms (GAs) based PSS and the Conventional PSS (CPSS) are included. Frequency and 
time domain simulations show that BGA-PSS performs better than GA-PSS and CPSS under 
both small and large disturbances for all operating conditions considered in this work. 
GA-PSS in turn gives a better performance than the Conventional PSS (CPSS).   

2. Background theory to breeder genetic algorithm 

BGA is a relatively new evolution algorithm. It is similar to GAs with the exception that it 
uses artificial selection and has fewer parameters. Also, BGA uses real-valued 
representation as opposed to GAs which mainly uses binary and sometimes floating or 
integer representation. In this work, a modified version of BGA called Adaptive Mutation 
BGA is used (Green, 2005), (Sheetekela & Folly, 2010). Truncation selection method is 
adopted whereby a top T% of the fittest individuals are chosen from the current population 
of N individuals and goes through recombination and mutation to form the next generation. 
The rest of the individuals are discarded. In truncation method, the fittest individual in the 
population called an ellist is guaranteed a place in the next generation. The other top (T-1) % 
goes through recombination and mutation to form up the rest of the individuals in the next 
generation. The process is repeated until an optimal solution is obtained or the maximum 
number of iteration is reached.  

2.1 Recombination 

Recombination is similar to crossover in GAs (Michalewicz, 1996). The Breeder Genetic 
Algorithm proposed in this work allows various possible recombination methods to be 
used, each of them searching the space with a particular bias. Since there is no prior 
knowledge as to which bias is likely to suit the task at hand, it is better to include several 
recombination methods and allow selection to do the elimination. Two recombination 
methods were used in this work: volume and line recombination (Sheetekela, 2010). 

In volume recombination, a random vector r of the same length as the parent is generated 
and the child zi is produced by the following expression. 

௜ݖ	  = ௜ݔ௜ݎ + ሺ1 −  ௜ (1)ݕ௜ሻݎ

where xi and yi are the two parents. 

In other words, the child can be said to be located at a point inside the hyper box defined by 
the parents as shown in Fig. 1. 

In line recombination, a single uniformly random number r is generated between 0 and 1, 
and the child is obtained by the following expression (Green, 2005). 
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௜ݖ	  = ௜ݔݎ + ሺ1 −  ௜ (2)ݕሻݎ

where xi and yi are  the two parents. 

In light of this, a child can be said to be located at a randomly chosen point on a line 
connecting the two parents as shown in Fig.2.  

  

Fig. 1. Volume recombination 

 

Fig. 2. Line recombination 

2.2 Mutation 

One problem that has been of concern in GAs is premature convergence, whereby a good 
but not optimal solution will come to dominate the population. In other words, the search 
may well converge to local optimum than the desired global one. This problem can be 
eliminated by adding a small vector of normally-distributed zero-mean random numbers 
(say with a standard deviation R) to each child before inserting it into the population. The 
magnitude of the standard deviation R of the vector is very critical, as small R might lead to 
premature converge and large R might impair the search and reduce its ability to converge 
optimally. Therefore, it’s better to use an adaptive approach whereby the rate of mutation is 
modified during the course of the search. We set R to the nominal rate Rnom. The population 
is divided into two halves X and Y. A mutation rate of 2Rnom is applied to X whereas a 
mutation of Rnom/2 is applied to Y. The mutation rate Rnom is adjusted depending on the 
population (X or Y) that is producing better and fitter solutions on average. If X individuals 
are fitter, then the mutation rate Rnom is increased slightly by say l0%. If Y is fitter then the 
mutation rate, Rnom is reduced by a similar amount. 
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3. Test model 

The power system considered is a single machine infinite bus (SMIB) system as shown in 
Fig. A. 1 of Appendix 8.2.1. The generator is connected to the infinite bus through a double-
circuit transmission line. The generator is modeled using a 6th order machine model, and is 
equipped with an automatic voltage regulator (AVR) which is represented by a simple 
exciter of first order differential equation as given in the Appendix 8.1.4. The block diagram 
of the AVR is shown in Fig. A. 2 of Appendix 8.2.2. A supplementary controller also known 
as power system stabilizer (PSS) is to be designed to damp the system’s oscillations. The 
block diagram of the PSS is shown in Fig. A.3 of Appendix 8.2.3. 

The non-linear differential equations of the system are linearized around the nominal 
operating condition to form a set of linear equations as follows: 

 
d

x Ax Bu
dt

y Cx Du


= +


 = +

 (3) 

where: 

A is the system state matrix, B is the system input matrix, C is the system output matrix and 
D is the feed-forward matrix 
x is the vector of the system states, u is the vector of the system inputs and y is the vector of 
the system outputs.  

In this work, x= [Δδ  Δω  Δψfd  Δψ1d  Δψ1q  Δψ2q  ΔEfd ]; u = [ΔTm  ΔVref ]; y = Δω; where, Δδ  is 

the rotor angle deviation, Δω is the speed deviation, Δψfd  is the field flux linkage deviation,  Δψ1d is d-axis amortisseur flux linkage deviation, Δψ1q is the 1st q-axis amortisseur flux 
linkage deviation, Δψ2q is the 2nd q-axis amortisseur flux linkage deviation, ΔEfd is the exciter 
output voltage deviation. ΔTm is the mechanical torque deviation and ΔVref is the voltage 
reference deviation. 

Several operating conditions were considered for the design of the controllers. These 
operating conditions were obtained by varying the active power output, Pe and the reactive 
power Qe of the generator as well as the line reactance, Xe. However, for simplicity, only 
three operating conditions will be presented in this paper. These operating conditions are 
listed in the Table 1 together with the open loop eigenvalues and their respective damping 
ratios in % in brackets. 
 

case Active Power 
Pe [p.u] 

Reacctive Power 
Qe [p.u] 

Line reactance 
Xe [p.u] 

Eigenvalues 
(Damping ratio) 

1 1.1000 0.4070 0.7000 -0.2894 ± j5.2785 
(0.0547) 

2 0.5000 0.1839 1.1000 -0.3472 ± j4.3271 
(0.0800) 

3 0.9000 0.3372 0.9000 -0.2704 + j4.7212 
(0.0572) 

Table 1. Selected operating conditions with open-loop eigenvalues 
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4. Fitness function 

The fitness function is used to provide the measure of how individuals performed. In 

this instance, the problem domain was that the PSS parameters should stabilize the 

system simultaneously over a certain range of specified operating conditions. The PSS 

which parameters are to be optimized has a structure similar to the conventional PSS 

(CPSS) as shown in Fig. A. 3. of Appendix 8.2.3. There are three parameters KS, T1 and T2 

that are to be optimized, where Ks is the PSS gain and T1 and T2 are lead-lag time 

constants. Tw is the washout time constant which is not critical and therefore has not 

been optimized. 

The fitness function that was used is to maximize the lowest damping ratio. Mathematically 

the objective function is formulated as follows: 

 max(min( ))i jval ς=   (4) 

where 

i = 1,2, … n , j =1, 2, ….m 

2 2

ij

ij

ij ij

σ
ς

σ ω

−
=

+
 

ζi j is the damping ratio of the ݅th  eigenvalue of the jth  operating conditions. The number of 

the eigenvalues is n, and m is the number of operating conditions. 

σij and ωij are the real part and the imaginary part (frequency) of the eigenvalue, 

respectively.  

5. PSS design   

The following parameter domain constraints were considered when designing the PSS.  

0 < Ks ≤ 20 

0.001 ≤ Ti ≤ 5 

where  Ks and Ti denote the controller gain and the lead lag time constants, respectively . 

5.1 BGA-PSS  

The following BGA parameters have been used during the design 

- Population: 100 

- Generation: 100 

- Selection: Truncation selection (i.e., selected the best 15% of the population) 

- Recombination: Line and volume  

- Mutation initial Rnom: 0.01 

The parameters of the BGA-PSS are given in Table A.1 of Appendix 8.2.3. 
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5.2 GA-P15 Folly_secondSS  

The following GA parameters have been used during the design 

- Population: 100 
- Generation: 100 
- Selection: Normalized geometric  
- Crossover: Arithmetic  
- Mutation: Non-uniform 

More information on the selection, crossover and mutation can be found in (Michalewicz, 
1996), (Sheetekela & Folly, 2010).  

The parameters of the GA-PSS are given in Table A.1 of Appendix 8.2.3. 

5.3 Conventional-PSS  

The Conventional PSS (CPSS) was designed at the nominal operating condition using the 
phase compensation method. The phase lag of the system was first obtained, which was 
found to be 20o, thus only a single lead-lag block was used for the PSS. After obtaining the 
phase lag, a PSS with a phase lead was designed using the phase compensation technique. 
The final phase lead obtained was approximately 18o, thus giving the system a slight phase 
lag of 2o. Once the phase lag is improved, then the damping needed to be improved as well 
by varying the gain KS. The parameters of the CPSS are given in Table A.1 of Appendix 8.2.3. 

6. Simulation results  

6.1 Eigenvalue analysis  

Under the assumption of small-signal disturbance (i.e, small change in Vref or Tm), the 
eigenvalues of the system are obtained and the stability of the system investigated. Table 2 
shows the eigenvalues of the system for the different PSSs. The damping ratios are shown in 
brackets. For all of the cases, it can be seen that on average, BGA-PSS provides more 
damping to the system than GA-PSS. On the other hand, GA-PSS performs better than 
CPSS. For example for case 1, BGA-PSS provides a damping ratio of 50% as compared to 
48.85% for GA-PSS and 44.93% for CPSS. This means that, BGA gives the best performance. 
Likewise, BGA provides better damping ratios for cases 2 and 3. 

 

case BGA-PSS GA-PSS CPSS 

1 -3.0664 ±j 5.3117 
(0.5000) 

-2.9208 ± j5.2172 
(0.4885) 

-1.9876 ± j3.9516 
(0.4493) 

2 -1.2793 ± j4.3024 
(0.2850) 

-1.2305±  j4.2616 
(0.2774) 

-0.9529 ± j3.9443 
(0.2348) 

3 -2.1245 + j4.6503 
(0.4155) 

-2.0268 + j4.5784 
(0.4048) 

-1.3865 + j3.8881 
(0.3359) 

Table 2. Closed-loop eigenvalues 
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It should be mentioned that a maximum damping ratio of 50% was imposed on the BGA 

and GA, otherwise, their damping ratios could have been higher. If the damping of  

the electromechanical mode is too high this could negatively affect other modes in the 

system. 

6.2 Large disturbance 

A large disturbance was considered by applying a three-phase fault to the system at 0.1 

seconds. The fault was applied at the sending-end of the system (near bus 1 on line 2) for 

200ms. The fault was cleared by disconnecting line 2. Fig. 3 to Fig. 5 show the speed 

responses of the system. 

Figure 3 shows the speed responses of the generator for case 1. When the system is 

equipped with GA-PSS and BGA-PSS it settles around 3 seconds. On the other hand, the 

settling time of the system equipped with the CPSS is more than doubled (6 seconds). In 

addition, the subsequent oscillations are larger than those of BGA and GA PSSs.   

Figure 4 shows the speed responses for case 2. The system equipped with CPSS is seen to 

have bigger oscillations as compared to the system equipped with BGA-PSS and GA-PSS. 

With both BGA and GA PSSs, the system settled in approximately 3.5 sec., whereas CPSS 

takes more than 6 sec. to settle down. The performances of the BGA-PSS and GA-PSS are 

quite similar, even though the BGA-PSS performs slightly better than the GA- PSS.  

Figure 5 shows the speed responses of the system for case 3. It can be seen that the system 

equipped with BGA and GA PSS settled in less than 4 sec compared to more than 6 sec. for 

the CPSS. With CPSS, the system has large overshoots and undershoots.  

 

Fig. 3. Speed response of case 1 under three-phase fault 
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Fig. 4. Speed responses of case 2 under three-phase fault 

 

Fig. 5. Speed responses of case 3 under three-phase fault 

7. Conclusion  

Breeder Genetic Algorithms is an extremely versatile and effective function optimizer. The 

main advantage of BGA over GA is the simplicity of the selection method and the fewer 
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genetic parameters. In this work, adaptive mutation has been used to deal with the problem 

of premature convergence in BGA. The effectiveness of the proposed approach was 

demonstrated by  the time and frequency domain simulation results. Eigenvalue analysis 

shows that the BGA based controller provides a better damping to the system for all 

operating conditions considered than a GA based controller. The conventional controller 

provides the least damping to all the operating conditions considered. The robustness of the 

BGA controller under large disturbance was also investigated by applying a three-phase 

fault to the system. Further research will be carried out in the direction of using multi-

objective functions in the optimization and using a more complex power system model. 

8. Appendix 

8.1 Generator and Automatic Voltage Regulator (AVR) equations 

8.1.1 Swing equations 

1
( )

2
m e D

d
T T K

dt H
ω ωΔ = − − Δ  

0

d

dt
δ ω ωΔ = Δ  

where  

δ is the rotor angle in rad 

ω is the synchronous speed in per-unit (p.u.) 

ω0 is the synchronous speed in rad/sec 

H is the inertia constant in sec. 

Tm  is the mechanical torque in p.u. 

Te  is the mechanical torque in p.u. 

KD  is the damping coefficient in torque/ p.u. 

8.1.2 Rotor circuit equations  
 

0( )
fd

fd fd fd

fd

Rd
E i

dt L
ψ ω= −  

1 0 1 1d d d

d
R i

dt
ψ ω= −  

1 0 1 1q q q

d
R i

dt
ψ ω= −  

2 0 2 2q q q

d
R i

dt
ψ ω= −  
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where  

ψfd, ψ1d, ψ1q, ψ2q, Efd are the same as defined in section 3. 

Rfd,, Lfd, are the field winding resistance and inductance, respectively. 

R1d, is the d-axix amortisseur resistance. 

R1q,, is the 1st q-axix amortisseur resistance. 

R2q is the 2nd q-axix amortisseur resistance. 

The rotor currents are expressed a follows: 

1
( )fd fd ad

fd

i
L

ψ ψ= −  

1 1

1

1
( )d d ad

d

i
L

ψ ψ= −  

1 1

1

1
( )q q aq

q

i
L

ψ ψ= −  

2 2

2

1
( )q q aq

q

i
L

ψ ψ= −  

where  

ψfd, ψ1d, ψ1q, ψ2q are defined as before 

ψad, ψaq, are the mutual flux linkages in the d and q axis, respectively. 

L1d is the d-axix amortisseur inductance. 

L1q is the 1st q-axix amortisseur inductance. 

L2q is the 2nd q-axix amortisseur inductance. 

8.1.3 Electrical torque  

The electrical torque is expressed by the following: 

e d q q dT i iψ ψ= −  

where ψd, and ψq are the d and q axis flux linkages, respectively. 

8.1.4 AVR equations  

( )
fdA

fd ref t

A A

EKd
E V V

dt T T
= − −  

where KA and TA are the gain and time constant of the AVR. Vt is the terminal voltage of the 

generator. 

In this work KA=200 and TA = 0.05 sec. 
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8.2 Power system model, AVR parameters and PSS block diagram and parameters 

8.2.1 Power system model diagram 

 

Fig. A1. System model- Single-Machine Infinite Bus (SMIB) 

8.2.2 Block diagram of the Automatic Voltage Regulator (AVR) 

 

Fig. A2. Automatic voltage regulatore structure 

8.2.3 Block diagram and parameters of the PSSs 

 

Fig. A3. Power system stabilizer structure  

In Fig. A3, VPSS is the output signal of the PSS, while ∆ωሺsሻ is the input signal, which in this 
case is the speed deviation.  
 

PSSs Ks T1 T2 Tw 

CPSS 9.7928 1.1686 0.2846 2.5000 

GA-PSS 13.7358     3.5811     1.2654        2.5000 

BGA-PSS 18.8838     3.7604      1.7390        2.5000 

Table A1. PSS parameters. 
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8.3 Generator’s parameters 

Xl =0.0742 p.u,  , Xd=1.72 p.u,, X’d=0.45 p.u,, X”d=0.33 p.u,T’d0=6.3sec., T”d0 = 0.033 p.u,,  
Xq =1.68 p.u,, X’q =0.59 p.u,, X”q =0.33 p.u, T’q0 =0.43 sec  

T”q0 = 0.033sec., H = 4.0sec 

8.4 Pseudo code for BGA generator’s parameters 

Begin 
Randomly initialize a population of N individuals; 
Initialize mutation rate Rnom 
While termination criterion not met 

evaluate goodness of each individuals  
save the best individual in the new population 
select the best T%  individuals and discarding the rest; 
for I =1 to N-1 do  

randomly select two individuals among the T% best individual 
recombine the two parents to obtain one offspring 

end 
divide the new population into two halves (X and Y) 
apply mutation rate rnom/2 to X and  2 Rnom to Y 
evaluate the average fitness value for the two half population (X and Y) 
If X performs better than Y; assign r= Rnom -0.1 rnom; 
If Y performs better than X; assign r= Rnom + 0.1 rnom; 

end 
end 
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