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1. Introduction

In this work it is developed a methodological proposal to build linear models of Time Series
(TS) from setting out the problem of obtaining a good linear model, such as solving a problem
of nonlinear optimization with bounded variables. It is worth to mention that to build these
problems are taken some ideas of the traditional statistical approach.

As product of the methodology here presented, it will be developed two heuristic algorithms
for the treatment of TS, which allow building several models for the same problem, where the
accuracy of these can be increased by increasing the number of terms of the model, situation
that does not happen with the traditional statistical approach. Thus, with this algorithms it
can be obtained several proposals of solution for the same problem, of which it can be selected
the one that presents the best results in the forecasting. In addition, the algorithms proposed
in this work allow building different linear versions, but equivalent to the Autoregressive
(AR) and the classic Autoregressive with Moving Average (ARMS) models, with the added
advantage of the possibility of obtaining models for not stationary TS, and with non stationary
variance, in cases where the traditional methodology does not work.

Since optimization problems set out here may present multiple local minimums, it is needed
to use a special technique to solve them. With this end it was developed a version of the
Self Adaptive Genetic Algorithms (SAGA), encoded on real numbers that allows, without
intervention of the user, to find satisfactory solutions for different problems without making
changes in the parameters of the code.

On the other hand, among the principal points of this methodology it is the fact that in many
cases, these linear versions present a phenomenon that has been named ’forecasting delay’,
which allows to modify the linear model obtained to find a more accurate forecasting.

It is important to notice that the first AR version of the algorithms developed for the TS were
tested in the examples of the international competition:

"NN3 Artificial Networks & Computational Intelligence Forecasting Competition"

that from now on it will be called NN3, which was realized in 2006-2007
(http://www.neural-forecasting-competition.com/NN3/results.htm). This competition is
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held annually to evaluate the accuracy of methods in the area of Computational Intelligence
in diverse problems of TS. In this edition the problem at hand was to forecast with the same
methodology 18 future values of a set of series where the majority are measurements of real
phenomena. The competition has two categories: the NN3-Complete has 111 problems and
the NN3-Reduced consists of 11 problems. In this competition using only models with four
terms it was obtained the third place in the category NN3-Complete from 29 competitors, and
the sixth in the category NN3-Reduced from 53 competitors. This work will be referenced in
various sections in relation to the examples of this competition. An analysis of the results of
NN3 can be found in (Crone & Hibon & Nikolopoulos, 2011)

2. Methodology

The forecasting process consists in calculating or predicting the value of some event that is
going to happen in the future. To realize adequately this process it is needed to analyze
the event data in question and build a model that allows the incorporation of the behavior
patterns that have occurred in the past under the assumption that they can happen again in
the future. It is important to note that there is not interest in explaining how the mechanism
that produces the events works, but to predict their behavior.

The TS models are used for studying the behavior of data that varies with time.
The data can be interpreted as measurements of some value (observable variable) of
a phenomenon, realized at time intervals equal and consecutive. There are several
methods to construct TS models and an overview of the most important can be found in
(Weigend & Gershenfeld, 1994). In (Palit & Popovic, 2005) it is shown an overview of
the methodologies most used in the area of computational intelligence. One of the most
used methods is based on considering the TS as a realization of a stochastic process. This
approach is the basis of statistical treatment of TS that can be found in (Box & Jenkins,
1976) and (Guerrero, 2003). Nowadays the construction of model for TS is an area of
great development as evidenced by the articles of the Journal of Time Series Analysis
(http://www.wiley.com/bw/journal.asp?ref=0143-9782&site=1) in addition to the papers
presented in international competitions on time series modelling such as NN3. Nevertheless
the existence of GA papers in which are used the TS (Alberto et all, 2010; Battaglia &
Protopapas, 2011; Chiogna & Gaetan & Masarotto, 2008; Hansen et all, 1999; Mateo & Sovilj &
Gadea, 2010; Szpiro, 1997; Yadavalli et all, 1999), it is important to note that it was not found
any reference to the use of SAGA for this purpose.

The data will be represented by {Zt} with the implicit assumption that t takes the values
1, 2, ..., N where the parameter N indicates up to what moment the information is had. When
it is had a model for the data set, then it can be estimated values for the TS, which are denoted
by {Ft}. In addition in order to consider a model as a good one, it is required that the values
of {Ft} be "similar" to those of {Zt}. The main purpose of this work is to build linear models
for the data set to have good estimates of the K unknown values of the phenomenon being
studied in the moments N + 1, N + 2, ..., N + K.

In the forecasting subject, when it is had a TS with these N + K data, the set of the first N is
called training set, and is used to construct the model of the series and realize the estimation
of its parameters. The set of the last K terms in the series is called training set, and is used for
the comparison of different models to choose the most suitable. Especially, it is been interested
in building automated Autoregressive models of order p (AR (p)). For the TS are expressions
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of the form:
Zt = δ + φ1Zt−1 + φ2Zt−2 + ... + φpZt−p + at (1)

Where Zt is the observable variable in question,δ and φi are the parameters to be determined
and the variable at represents a random variable of noise called residual. The expression (1)
means that to predict what will happen at the time t are required the p values previous to t,
these values are called delays or lags.

In the classic theory of linear models is set the restriction that at represents a white noise, but
in this work it was not included this boundary, which will allow to find AR expressions for
the residuals with which it will be possible to increase the accuracy of the models.

The interest in this type of models is originated in the fact that they represent the most
important information about the behavior of the series eliminating the noise that may appear.
It should also be added that, for these models, it is important that in the expression (1)
only appears a number of terms set in advance. This will allow finding models for a TS,
controlling the accuracy of the approximation of the same series according to the number of
terms utilized.

Problem 1: If {Zt} is the original TS and {Ft} is the forecasting obtained of the form

Ft = δ + φ1Zt−1 + φ2Zt−2 + ... + φpZt−p (2)

with t > p.

It is necessary to find the values for δ and φi that minimize the function:
√

√

√

√

N

∑
i=p

(Zi − Fi)2 (3)

This function will be called Root of the Sum of Squares (RSS). It is necessary to add that for
rapidity in calculation it is preferable to use the square of this function obtaining the same
results.

In this initial setting out the construction of the model is presented as if a linear interpolation
problem was solved, and given that the values for δ and φi will not be arbitrary but will be
looked at certain intervals are necessary methods to solve the Problem 1 working in addition
with bounded variables.

The RSS function can have multiple local optima, and to solve this problem it was developed
an original version of SAGA algorithms, which allows to solve real nonlinear optimization
problems and with bounded variables. The selection of a self Adaptive version was carried
out by the fact that it is wanted to automate as much as possible the process of building these
models.

3. Self adaptive genetic algorithms

The SAGA algorithms were developed by Thomas Bäck (Bäck, 1992a, 1992b) and have the
characteristic that they alone look for the best parameters for their operation. In them, the
parameters that will be self Adaptive are encoded in the representation of the individual,
for which they are altered by the actions of the genetic operators. With this, the best
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values of these parameters will produce better individuals, which have major probability of
surviving, and in consequence, will spread towards the whole population the best values of
the parameters. There are several versions of SAGA that differ especially in the parameters
that will be adjusted automatically (Eiben at all, 1999). In the case of this work four self
Adaptive parameters are used: individual probability of crossing pc, repetition of crossing rc,
individual probability of mutation pm and repetition of mutation rm as presented in (4). The
selection of these parameters and its values is based on the idea that genetic operations of
crossing and mutation can be multiple, but they cannot have very large values. A binary
version of this algorithm already had been used by one of the authors of this work in other
problems (Flores, 1999; Garduño, 2000; Garduño, 2001; Sanchez, 2004), and this, as well as
the presented one here (with the representation of real numbers) according to the literature
reviewed, are original of himself.

The individuals for these problems will be proposed as solutions to them, and in addition will
have four more components, where it will be represented the values of: individual probability of
crossing pc, repetition of crossing rc, individual probability of mutation pm and repetition of mutation
rm. To this section of the individual it is called section of the self Adaptive parameters, and
with this, our entire individual is represented by:

(δ, φ1, φ2, ..., φp, pc, rc, pm, rm) (4)

The above mentioned is necessary, so in this model, the probability of crossing and mutation
will be characteristic of each individual (not of the population as is traditional in the GA), and
in addition it is considered that the crossing and the mutation can be multiple, that is to say,
to operate several times in the same time. The multiple crossing and mutation are repetitions
of the crossing and mutation that are used in the GA, when are used individuals represented
by vectors of real components. The way of operating with these parameters is similar to that
presented in (Bäck, 1992a, 1992b).

The limits that were used in the code of this work for the self Adaptive parameters are:
individual probability of crossing pc that changes in the interval (0.5, 0.95), repetition of crossing rc

in (1.0, 4.0) what means that only can be crossed from one to three times, individual probability
of mutation pm that varies in (0.5, 0.85) and repetition of mutation rm in (1.0, 5.0) what means
that just it is possible to mutated from one to four times. The limits of these self Adaptive
parameters were chosen on the basis of the experience of other works (Flores, 1999; Garduño,
2000; Garduño, 2001; Sanchez, 2004) , where they proved to give good results.

Later there are detailed the procedures of crossing and mutation.

3.1 Crossing and mutation

Given two individual, the crossing is realized taking as probability of crossing the average of
the values of the individual crossings. Once it has been decided if the individuals cross, it is
taken the integer part of the average individual crossing, and that is the number of times they
cross. The crossing of two individuals consists of exchanging the coordinates of both vectors
from a certain coordinate chosen at random. The multiple crossing is the result of applying
this procedure several times to the same vectors.

For the mutation it is taken the individual probability of mutation of the individual, and
accordingly to this it is decided whether mutated or not. As soon as has been decided that
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an individual mutates, this is mutated as many times as the value of the integer part that has
in the repetition of mutation of himself. To apply the mutation to an individual a coordinate of
the vector is chosen at random, and it is changed its value for another (chosen also at random)
between the limits established for the above mentioned coordinate. The multiple mutation is
the application of this procedure to the same individual several times.

3.2 Use of the self adaptive genetic algorithms

Since SAGA are random, it is common to realize several runs on the same problem and choose
the best result from them. These algorithms are applied in three stages to solve our problems.
In the first two stages are defined which are the important variables to solve the problem, and
in the third stage, it is where the solution is calculated properly. It is important to note that
the individuals have two parts, but in this section only there is born in mind the first part of
the individual, which corresponds to the Autoregressive components. Here is the procedure
based on SAGA, which is performed to obtain a solution to the problem.

In the first stage are used SAGA to explore the space of solutions and later to define which
variables among δ, φ1, φ2, ..., φp, are the most important for the problem in question. For this
were done 10 repetitions of 1000 iterations each, and with the solutions of each repetition, a
vector is constructed by the sum of the absolute values of δ, φ1, φ2, ..., φp. (see Figure 1)

Fig. 1. Solution using all variables.

In this first stage, the aim is to realize an exploration of the space of solutions, and for that are
performed 10 iterations with all variables to consider. Then, with the 10 solutions obtained, a
vector is built by adding the 10 solutions with all its positive components, and it is assumed
that the largest values of these components are the most important.

In the second stage the SAGA are applied to find solutions by considering only the important
variables of the problem. For this is defined in advance how many variables are required
(this will be seen to detail below), and are chosen those which correspond to larger values
of the first stage. In this stage 5 repetitions are realized, where each one is finished until
the optimum is not modified in the last 200 iterations. Of these 5 repetitions the best result
obtained is chosen (see Figure 2).

In this second stage, only are considered the variables that had greatest values in the part of
the autoregressive components of the individual, and for them are kept the original intervals
of its values: For all the other variables in this part of the individual, it is stated that the upper
and lower limits are zero. In this stage 5 repetitions are realized and from them is chosen the
one that has lower value of RSS.

In the third stage it will be found the solution in which only are taken into account the
important variables obtained in the previous stage. For this are extended the boundaries
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Fig. 2. Solution using the most important values.

of the variables of the solution obtained in the previous stage, which absolute value is grater
than 0.01. The upper limits of the variables considered are the nonzero values obtained in the
previous best solution of more than 1.0 and the lower with less than 1.0. The upper and lower
limits of the other variables of the autoregressive components of the individual will be zero.
With these limits is solved once until the optimum is not improved in 250 iterations. Since the
GA are random for each problem were performed 5 iterations, and of them it was chosen the
best.

The main characteristics of the SAGA version used in this work that make them original are:

• Real coding is used for the variables of the problem. This allows a more simple code that
can easily pass from one stage to another of those presented here.

• The probabilities of crossing and mutation are characteristics of each individual and
the crossing and mutation procedures are established on the basis of these individual
characteristics.

• The repetitions of crossing and mutation are multiple though the values that take are not
very big.

• It was introduced a control mechanism that prevents the proliferation within the
population of the best individual copies, thus eliminating the risk of premature
convergence.

Above all, the last three features are inspired by the fact that the nature behavior is more
flexible than rigid, and therefore should be allowed more variability within the SAGA.

The main disadvantage that has the use of SAGA, is the major computational cost compared
with traditional versions, but the advantage that is obtained is that with the same code it is
possible to solve automatically all the problems of nonlinear modelling of TS.

4. Autoregressive models

The TS linear models are important because there are many applications where linear
estimations are sufficient, besides they have a wide use in industrial situations. On the other
hand, are also important because there are other methodologies that use forecasting (Medeiros
& Veiga, 2000,2005). The classic reference for the treatment of linear models is (Box & Jenkins,
1976).

In the specific case of the AR that we care for TS, the value at a certain time should be
calculated as a linear expression of the values of a certain number of previous measurements,
as described in (Box & Jenkins, 1976). The AR models developed here fulfill the stochastic
process of the residuals {at} associated with them; it is not a white noise. The latter will allow
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that once it is built a good AR model of TS, it can be build for it another AR model for residuals
{at}, which together with the original one allow obtaining the equivalent of an ARMA model,
but with major forecasting possibilities.

On the other hand, to solve the problem 1 it is first necessary to address the following
questions, taking into account that is necessary to find an AR model with K terms, where
K is established beforehand:

1. How many p terms must be considered?
2. At what intervals are the coefficients of the linear expression?
3. What K terms are most appropriate to solve this problem?
4. What are the values of this K terms that minimize the function (3)?

The following summarizes the results of the BJ methodology that is used in our proposal.

4.1 Main results of the Box Jenkins methodology

Univarieted TS were analyzed by the Box-Jenkins (BJ) methodology from the formulation of
equations in differences with a random additive component denominated white noise. For
these BJ models the conditions in which is presented the stationarity property of the series
and the scheme that has to be follow to determine the parameters of the particular model
were studied.

The most general model is denominated ARMA(p,q) (Autoregressive Moving Average) and
indicates the presence of autoregressive components both in the observable variable {Zt} as
well as in the white noise {at}. A particular class of model for stationary series corresponds
to the Autoregressive models AR(p) (that are denoted as AR), which is represented by the
expression:

Zt = δ + φ1Zt−1 + φ2Zt−2 + ... + φpZt−p + at (5)

When the series is stationary δ and φi are constants that satisfy the following relations:

|φ1| < 1, (6)

µ =
δ

1 − ∑ φi

and
∑ φi < 1

Where µ represents the average of the series { Ft }. The relations in (6) are a consequence of the
stationarity property and can be consulted in (Box & Jenkins, 1976).

The correlation structure presented by a TS related to an AR model for separate observations
k time units is given by the autocorrelation function:

pk = φ1 pk−1 + φ2 pk−2 + ... + φp pk−p

where pk is the autocorrelation for data of series separated k time units. From the initial
conditions that satisfy this equation in differences are presented the following possible
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behaviors: exponential or sinusoidal decay. This permits to determine if a series is stationary
or not.

The most general model is the model ARIMA (p, d, q) (AutoRegressive Integrated Moving
Average processes) that includes not stationary series for which apply differences of order d
to stationarize it:

φp(B)∇dzt = δ + θq(B)at

Where φp(B), θq(B) and B are operators that satisfy the following relations:

φp(B)zt = (1 − φ1B − φ2B2 − ... − φpBp) = zt − φ1zt−1 − ... − φpzt−p

and
θq(B)at = (1 − θ1B − θ2B2 − ... − θqBq)at = at − θ1at−1 − ... − θqat−q

Bkzt = zt−k

∇dzt = (1 − B)dzt

Similarly, there is a general model that considers the presence of stationarity or cyclic
movement of short term of longitude s modeled by the expression:

φP(Bs)φp(B)∇dzt = δ + θQ(Bs)θq(B)at

Where φP(Bs) y θQ(Bs) are polynomial operators similar to the above mention, but its powers
are multiples of s, {at} are residuals in the moment t and θt are its components in the part of
moving averages.

BJ methodology satisfies the following stages:

(a). Identification of a possible model among the ARIMA type models. To accomplish this
first is necessary to determine if the series is stationary or not. When an observed series is
not stationary the difference operator is applied:

∇zt = zt − zt−1

as many times as it will be necessary up to stationarity. To avoid overdifferentiation it is
calculated the variances of the new obtained series choosing the one with the smallest
value.

When a series is stationary in its mean, but its variance is increasing or decreasing
according to BJ methodology it should be applied a transformation (generally logarithmic)
for the stability of the variance. It is important to notice that this is not necessary in our
proposal.

Given a stationary series the behavior pattern of the autocorrelation function and the
partial autocorrelation indicate the possible number of parameters i and j that the model
should have.

Besides the presence of stationarity in a temporal series there is other property that is
required in the ARIMA models denominated invertibility, which permits to represent the
series as an autoregressive model of infinite extension that satisfy the condition:
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lim
i→∞

φi = 0

The above mention allows that with a finite number of terms could be obtained an
expression that satisfies the form (1) for the series. This means that only the ARIMA models
that have the invertibility property can be approximated by an AR model of the form (1).

(b). Estimation of the model parameters by means of non linear estimation techniques.
(c). Checking that the model provides an adequate fitting and that the basic assumptions

implied in the model are satisfied through the analysis of the residuals behavior. Is
important to mention that our proposal does not need such analysis because the residuals
do not correspond, in general, to the white noise.

(d). Use of the model.

Next are presented the characteristics of the heuristic proposed algorithms. Note that these
algorithms are used to build models AR of TS since the ARMA models are built from these.

4.2 Proposed algorithms

The heuristic algorithms built in this work are based in the following assumptions:

(a). Regardless the original series type (stationary or non stationary) the model looked will
always be of the form AR presented in (1).

(b). To determine how many delays p are required, first is necessary to choose the differences
series that will be used to estimate these, afterwards it is defined the number of delays
according to the behavior of the autocorrelation sample function of the difference series
chosen. This implies a difference with the BJ methodology, which applies the number of
delays under the terms of the information that provides both the autocorrelation function
as well as the partial autocorrelation function and the hypothesis of the random component
as white noise. This choice has as consequence in the models developed here that at will
not be white noise.

(c). The conditions of (6) become more relax, since in spite of be satisfied it in the stationary
series, in this work these will be applied to series that could not be stationary.

It is necessary to add that the heuristic algorithms presented here allow the treatment of
series with trend and variance time-dependant, since they do not require the conditions that
traditionally are asked to the TS, as is the fact that they are stationary or of stationary variance
or that they result from applying a logarithmic transformation or moving averages.

The first algorithm that we propose builds a linear approximation for the series of differences
(of first, second or third order) that could be stationary. Then, from this linear approximation
and using the result 1, it is built another linear model of the original series.

4.2.1 First algorithm

In this stage, first it is decided which series will be used to work with among the original, the
first differences, the second differences and in our case it is included the possibility of working
with third differences series. In order to decide this it is chosen the series that have the lowest
variance, which we consider as an indication of having a stationary series (Box & Jenkins,
1976).
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Once that was chosen the series to work with it will be estimated how many terms are
necessary for the linear approximation of the series with base in the autocorrelation function.
In this work were calculated 30 values for the autocorrelation function and for selecting how
many terms are required two cases were utilized. If the function is decreasing a value of 4 is
taken, on the contrary a value equal to the value in which the first maximum of this function is
observed it will be chosen (see Figure 3). With this procedure if the series presents stationarity
and the period is smaller than 30 the models that are built here can represent appropriately
such stationarity.

Fig. 3. Possible autocorrelation function graphs.

With this information are built the limits for the coefficients intervals of the chosen series, for
that are taken all the φi in [−1, 1] except the independent term δ which limits are calculated
between zero an the average value of the series. The reason why these limits are established is
obtained from the equations presented in (6) With all the previous information it is complete
the proposal of the p number of terms required and that are the limits of its coefficients. From
this information is solved the problem 1 applying the SAGA in the first two stages depicted
in section 3.2 with base on the following:

Result 1. If {yt} is a difference series for {xt} with a model

yt = h0 + h1yt−1 + h2yt−2 + ... ++hkyt−k

then, for the difference series with terms yt = xt − xt−1 must be

xt = h0 + (1 + h1)xt−1 + (h2 − h1)xt−2 + ... + (hk − hk−1)yt−k − hkyt−k−1 (7)

is a model for the series {xt}.

From this result two important consequences are obtained:

• The model for the series {xt} has one term more than the series {yt}
• If yt has a coefficient value between −1.0 and 1.0, the coefficient of xt may not be in this

range.

Applying the result 1 as many times as necessary, it can be obtained a model for the original
series, and to this model it is applied the stage three of section 3.2 to obtain a linear model for
the TS. Note that if it is had a model AR for some series of differences, the model built for the
original series has more terms than the series of differences, so if K terms are needed for the
original series, then must be found models for the series of differences of less terms that K.
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4.2.2 Second algorithm

The second algorithm only utilizes of the BJ methodology the estimation of how many
terms are necessary in the linear approximation of the series of differences, which could be
stationary, thus, from this is determined the numbers of terms that will be used in the original
series.

From now on, are applied the stages presented in section 3.2, taking the limits of all the
coefficients in [−1, 1], but always working with the original series. There is not a result that
justifies the use of these limits, and only it has been found a reference (Cortez at all, 2004)
where it is used. On the other hand is a fact that a high percentage of cases in the NN3
presented better results with this algorithm than with the first. As an example of this the
second algorithm outperformed the first in 46 of the 111 examples of NN3-Complete.

5. NN3 results

The international competition NN3 Artificial Neural Network & Computational Intelligence
Forecasting Competition 2007 aims at assessing the latest methodologies for the forecasting of
TS. This competition is open to use methods based on Neural Networks, Fuzzy Logic, Genetic
Algorithms and others in the area of artificial intelligence. The problems in question are
presented in two groups called NN3-Complete (with 111 examples of TS) and NN3-Reduced
(with 11 examples), and the purpose of the competition is to obtain the best models for each
example of the two sets using the same methodology. The notation of this section is similar to
that used in NN3.

To evaluate the performance of a model in some example s, it is estimated the forecasting
F and it is measured the performance with the average of the indicator Symmteric Mean
Absolute Percent Error SMAPE in all the values of the series. The SMAPE measures the
absolute symmetric error in percentage between the real values of the original series Z and
the forecasting F for all observations t of the test set of size n for each series s with SMAPE
equal to:

1
n

n

∑
t=1

|zt − ft|

(zt + ft)/2
∗ 100 (8)

and finally it is averaged over all examples in the same set of data. Other measures of
forecasting accuracy of a model can be found in (Hyndman & Koehler, 2006).

This indicator can evaluate the performance of applying different methodologies on the same
set of data and the methodology that produces the lowest value is considered the best. In
the set NN3-Complete the best result was of 14.84% and applying the algorithms developed
in this work was of 16.31%. In the NN3-Reduced the results were 13.07% and 15.00%
respectively. However, it is possible to build linear models with the methodology presented
in this work to improve these results because:

• Although the competition was intended to determine the best model for each example in
this work was found an AR model with 4 terms for each example. It is expected that if it
is divided the series in a training set and in other set of test it can be found models with
higher forecasting capacity that improve the results obtained.

• It were not used ARMA models that include the behavior of the residuals or the
advancement of forecasting that substantially improve the results.
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To build the NN3 competition models were conducted several activities. First it was worked
the NN3-Reduced problems where, with the two algorithms developed, were realized 50 runs
of every algorithm in each example looking for linear models with 4 terms. Table 1 presents
the results of linear expressions and calculation of RSS.

After reviewing the behavior of the 50 solutions of these examples it was concluded that five
runs were enough to obtain satisfactory results. For this reason only five runs were realized
for the examples of the NN3-Complete using each algorithm and it was chosen the best of
these. The results of the NN3-Complete examples are not presented.

Problem Linear Model RSS
101 Ft = 1269.3358 + 0.3467Zt−1 + 0.6978Zt−12 − 0.2921Zt−13 1713.55
102 Ft = 1.9987 + 0.9218Zt−1 + 0.9574Zt−12 − 0.8792Zt−13 5440.262
103 Ft = 1.9989 + 0.9218Zt−1 + 0.8124Zt−12 − 0.3734Zt−13 80019.738
104 Ft = 9.113 + 0.7252Zt−1 + 0.8316Zt−12 − 0.5592Zt−13 7321.538
105 Ft = 1.998 + 0.9099Zt−1 + 0.3104Zt−11 − 0.2225Zt−13 1513.984
106 Ft = 2821.9541 + 0.2673Zt−2 − 0.1699Zt−7 + 0.3422Zt−12 4464.87
107 Ft = 0.9978 + 0.7937Zt−1 + 0.3152Zt−12 − 0.1125Zt−13 1387.011
108 Ft = 2000.5819 + 0.2885Zt−2 − 0.1456Zt−4 + 0.2379Zt−5 10417.433
109 Ft = 1.9988 + 0.9951Zt−1 2297.306
110 Ft = 1863.0699 + 0.2520Zt−1 − 0.1058Zt−5 + 0.2359Zt−11 18593.279
111 Ft = 474.1106 + 0.2420Zt−11 − 0.3319Zt−12 + 0.2688Zt−13 7248.281

Table 1. Linear models for the NN3-REDUCED.

5.1 NN3 graphs

In this section are showed some of the graphs of the series obtained with the best result of
some heuristic algorithms here presented. The values correspondent to the last 18 points on
the graph are the result of the forecasting obtained on having evaluated the expressions of the
linear models that appear in Table 1.

Fig. 4. Example 101.

6. ARMA models for time series

In this section the methodology already developed is applied to obtain AR components of the
error series obtained by subtracting from the original series the values that are assigned by
the AR model. With this is obtained a new model by adding these two components, thus it is
obtained the equivalent in our methodology of the traditional ARMA models.
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Fig. 5. Example 102.

Fig. 6. Example 103.

Fig. 7. Example 104.

Fig. 8. Example 105.

In the first part of this section is presented, as an example, the Fig. 10 of the error obtained
with our methodology for a certain series for a particular series that for its behavior it can
be concluded that is not a white noise. Note that when are realized tests of white noise to
the errors obtained with this methodology it was not observed that this was a white noise.
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Fig. 9. Example 106.

Therefore it can be built AR models for these error series, which will have the capability to
adequately model the error, which allows, when considering these two models, to obtain a
bigger forecasting capability.

6.1 Building of the ARMA models

The most general models used in this work are the Autoregressive Moving Averages ARMA
(p, q) that contain the presence of autoregressive components in the observable variable Zt

and in the error at, where:

at = Zt − (δ +
p

∑
i=1

φiZt−i)

and

Ft = δ +
p

∑
i=1

φiZt−i +
q

∑
j=1

γjat−j

Once the AR model is obtained for a series it can be built an ARMA model from the acquiring
other AR model for the series obtained when considering the at errors between the original
series and its AR model. When is added to the AR model an additional component that
considers the autoregressive terms corresponding to the error is obtained the complete ARMA
model. Figure. 10 shows an example of the error for the series.

Fig. 10. Example of a TS corresponding to the error.

The procedure to build the ARMA models is realized in two stages. First is built an AR model
for the original series, afterwards it is considered the error series at to which it is found other
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AR model. In both procedures the most important stage is to define how many terms are
required for each model.

From know on the ARMA notation for a series changes, for this it will be indicated to which
part of the expression of AR or MA corresponds, and the constants φi and γj will represent
the terms of the corresponding expression, in other words the terms Ft−i and at−j it will not
be written.

7. The forcasting delay phenomenon

Analyzing the graphs of the built models with this methodology for the examples of the
NN3-complete it was detected a phenomenon that visually appears as if the graph of the
model were almost the same that the original series, but with a displacement of one unit to
the right. This phenomenon was observed in the NN3-Complete in 20 examples: 51, 64, 66,
74, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 100, 105, 107 and 109.

Given that the first 50 examples of the competition corresponded to series of 50 values
(apparently built by experts) and the last 61 examples were series of 150 terms (seemingly
of real phenomenon) it was supposed that the 34% of the real examples of the NN3 present
this behavior. From this information we can assume that this phenomenon appears in a large
percentage of the models built with this metodology and, for this reason the model built with
this methodology will give better results when applying to these series. Following is showed
in Fig. 11 an example of this phenomenon corresponding to the AR model of the example 74
obtained with the methodology of this work.

Fig. 11. Example 74 of the NN3-Complete.

This phenomenon was called in this work as forecasting delay (FD), since is equivalent to
forecast in a certain moment what happen in the previous moment.

8. The procedure of advancement of forecasting

The FD phenomenon can be used by modifying the graph of the linear models obtained by
applying a displacement of one unit to the left of its graph. This procedure was defined as
advancement of forecasting (AF) and it is formalized next.
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Definition: Be a time series with model AR or ARMA

Ft = δ +
p

∑
i=1

φiZt−i +
q

∑
j=1

γjat−j

The advancement of the forecasting was denominated as the following operation:

Ft = Ft−1, f or, t > max (p, q) (9)

When is applied to an AR or ARMA this operation it is said that is a linear model AR or linear
ARMA with AF respectively. In figure 12 is shown the linear model of the example 74 with
AF.

Fig. 12. Example 74 of NN3-Complete to which it was applied the advancement of
forecasting.

A first result obtained is that if a series that presents FD it is applied the AF, then the value of
RSS for these models is smaller than the error of the original ARMA models. This is caused
because when is displaced the graph of a model one unit to the left, which is what means the
operation (9), almost it is superimposed to the graph of the original series. Extrapolating this
behavior to the region of forecasting it is expected that the same effect occurs and that the
values of the linear model with AF be a better approximation than those of the linear models.
Due to the above it is supposed that the linear models with AF will have a better forecasting
capacity. As an example, in Table 2 is showed the improvement of the linear models with AF
for 10 examples of NN3 that present DF.

The improvement (imp) in the models here presented ranges from 10.28% to 97.27% with
an average of 48.48%, and it is expected that as the percentage is greater the ability of the
forecasting model increases by a similar proportion. It should be noted that when it is had
an AR model with four terms it is very difficult to improve substantially the value of RSS by
incrementing the terms of the AR model or including terms of the part of the moving averages.
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Example AR RSS RSS AF imp %
51 0.9968 + 0.81291 + 0.659412 − 0.479913 3767.009 3379.4502 10.28
64 0.3894 + 0.91991 + 0.677812 − 0.599913 3899.114 3495.0649 10.36
66 0.9984 + 0.92021 + 0.585812 − 0.510313 3893.0544 2803.1406 27.99
74 0.9993 + 0.94481 + 0.522612 − 0.480013 4894.1655 3340.5911 31.74
86 −0.9991 + 0.62351 + 0.21612 + 0.190717 4114.1499 1917.1523 53.40
88 0.9979 + 0.70011 + 0.153111 + 0.143818 2449.5383 1265.7606 48.32
89 0.9995 + 0.89141 + 0.216912 − 0.107913 1247.8290 339.8757 97.27

105 1.9980 + 0.90991 + 0.310411 − 0.222513 1513.984 664.8109 56.08

Table 2. Comparison of RSS for linear and linear with AF models.

9. Comparisons with other methodologies

To evaluate the performance of a model on a TS data is divided into two sets called training
set and test set. The training set has the first values of the series (approximately 90% of the
total) and the test set the last 10%. The information of the training set model is used to choose
the model and evaluate the parameters. Once chosen the corresponding model is evaluated
its ability to forecast the test set, and when it is had different model proposals it is common
to choose the best result of the test set. For this assessment can be used several measures of
performance (Hyndman & Koehler, 2006). In this work preferably is used RSS.

To build the models with the methodology of this wok it is proceeded as follows:

(a). In this first stage is calculated the AR part of the model. For this, from K = 2 are built
the models AR with K terms and is tested the performance on the test set. As soon as the
first K value is obtained where the RSS of the model is less than the values obtained for the
K − 1 and K + 1 is considered that the AR part of the model has the already found K terms
and passes to the second stage.

(b). It is calculated the error series obtained from the original series and the ones calculated
by the model obtained in the previous stage. On this new series it is applied the same
procedure above mention and it is obtained the part corresponding to the component of
the MA moving average of the ARMA model. It may be the case that by including the MA
components of the model it will be had the worst approximations in the test set than those
obtained with the AR part. In this case the model would only have the AR component.

(c). It is checked if the model AR obtained in the stage 1 presents the FD phenomenon occurs,
and if so to realize the displacement of the graph one unit to the left according to (9) as
long as with this procedure the result is improved.

To test the performance of our models of (8) we used the series A, B, C, D, E and F appearing
in (Box & Jenkins, 1976), used and presented in chapter 3.

In (Hansen at all, 1999) are shown the results of building several linear models for these series.
The first is the classic BJ, and others apply when BJ model do not satisfy the postulate that the
error is a white noise. In (McDonald & Yexiao, 1994) it is indicated that the use of these latest
models improved from 8% to 13% the capability of prediction of the model when the error
is not white noise. Immediately it is presented the relationship of these models for the linear
models.
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• Standard ARIMA model. Here applies the traditional methodology of BJ where the main
components are the autoregressive models with moving averages that are linear in the time
series {Zt} and white noise {at} (Box & Jenkins, 1976).

• Ordinary least squares (OLS). These are used when the distribution of the error presents
the leptokurtosis problem and allows diminishing the error in the forecasting (Huber,
2004).

• Least Absolute Deviation (LAD). It is used to minimize the sum of the absolute values
rather the sum of squares. This is done to reduce the influence of the extreme errors (Huber,
2004).

• Generalized t-distribution (GT). Here is minimized the objective function in relation to the
parameters but assuming that the error has a t-distribution (McDonald & Newey, 1988).

• Exponential Generalized beta distribution of the second kind (EGB2). Here it is supposed
that the errors have a distribution of this kind (McDonald & Newey, 1988).

Additionally in (Hansen at all, 1999) are presented the results of two models of neural
networks, one heuristic (Heuristic NN), and another based on genetic algorithms (GANN),
which are included in the commercial software BioComp Systemt’s NeuroGenetic Optimizer
®.

To make comparisons with the models described above, it will be used the same size of
training set and test sets shown in (Hansen at all, 1999), where if the number of elements
of the series is greater than 100 the sizes of test sets are set to 10. In the event that they are less
than or equal to 100 the test sets will have size five. The size of the training sets is the original
size of the series minus the number of elements of the test set.

With the methodology of this work were obtained the models of the Table 3, where for each
example is presented the component AR and if necessary the MA. Note that when it is shown
"AF" in the last column of the table it was applied the displacement presented in (9).

Series AR MA AF
A 1.1035 + 0.56481 + 0.19196 + 0.12459 −0.22711 + 0.10462 + 0.05143 No

+0.054413
B 0.8302 + 1.12741 − 0.16852 + 0.06444 0.04602 − 0.05765 + 0.13816 Yes

−0.02586 +0.05877
C 0.84251 − 0.84882 No
D 0.7609 + 0.89971 + 0.051112 − 0.033516 Yes
E 1.9993 + 1.00511 − 0.25903 + 0.153810 Yes
F 1.9996 + 0.65552 + 0.29383 No

Table 3. Solution to the Box Jenkins problems.

In Table 4 are shown the results of the different methodologies presented in (Hansen at all,
1999) and those obtained with the algorithm proposed in this work. Table 4 is used as a
criterion of comparison of the sum of absolute values of errors. The results of our model are
presented in the line called "Linear AF" and the place obtained when confronted with other
models is in the line called "Place." It should be noted that each group of comparisons, except
in one instance", the results obtained with our methodology are better than those obtained
with the confronted statistical methods and also have good results when compared with those
obtained by neural networks.
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Table 5 presents the results of comparing the method proposed in this work with those
reported in (Cortez at all, 2004). In this paper are confronted the methodologies:

• Holt-Winters Methodology. This methodology is widely used due to its simplicity and
accuracy of its forecasting’s especially with periodic time series. It is based on four basic
equations that represent the regularity, trend, periodicity and forecasting of the series
(Chatfield, 2000).

• Box-Jenkins Methodology that already was widely commented in previous sections (Box
& Jenkins, 1976).

• Evolutionary forecasting method. It is a methodology based on evolutionary
programming (Cortez at all, 2004).

• Evolutionary meta algorithms. It is a metaheuristic that uses two architecture levels, in
the first is chosen the ARMA model in question, and in the second the corresponding
parameters are estimated (Cortez at all, 2004).

To test the performance of the models, were used some of the series in (Hyndman, 2003).
which are known as: Passengers, which is a series (144 data) that represents the number of
monthly passengers on an airline; Paper, this series (120 data) represents the paper monthly
sales in France; Deaths, which is a series (169 data) that represents the death and injury on
roads of Germany; Maxtemp represents the maximum temperatures (240 data) in Melbourne,
Australia; and Chemical, which is a series (198 data) of readings of the concentrations of a
chemical reactor. The training sets of these series contain 90% of the data and remaining 10%
are in the test set.

Series A Series B Series C Series D Series E Series F Series G
Linear AF 3.9 75 5.9 2.87 87 46 173

Heuristic NN 4.519 88.312 9.138 2.942 98.873 43.966
GA NN 3.705 72.398 6.684 2.952 69.536 36.4

ARIMA ML 4.005 78.855 11.247 3.114 3.114 49.161
OLS 3.937 83.17 10.74 3.08 114.8 45.5
LAD 3.96 79.47 10.3 3.066 117.6 44.46
GT 3.937 80.68 10.25 3.064 106.5 44.59

EBG2 4.017 81.01 10.3 3.066 111.8 44.5
PLACE 1 2 1 1 2 6

Table 4. Comparison of the models with regard to a sum of values of absolute errors.

Using the method proposed in this work it were obtained the models that are shown in table
5. Note that form this examples none presents DF.

In Table 6 were confronted the results for these TS. The results of our models are shown in
the column called "Linear AF" and the place gotten when comparing with the other models is
shown in the column "Place".

From the results presented in the tables of this section it can be concluded that the model
built with our methodology outperform all the models obtained with statistical methods
and are competitive with non-linear methods presented here. In addition, it must be added
that this methodology is fully automated and allows modelling TS than other traditional
methodologies can not.
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Series AR MA
Passengers 1.3400 + 0.90871 + 1.061212 − 0.963313

Paper 6.2323 + 0.958312
Deaths 1.9941 + 0.905312 + 0.083214 4.3636 + 0.4052

Maxtemp 0.7046 + 0.33621 − 0.06687 + 0.406011 18.662 + 0.10455 − 0.185711
+0.291012 −0.193012

Chemical 0.5419 + 0.60811 + 0.37537 − 0.014415

Table 5. Solutions with the methodology proposed in this work.

Series Holt Box Heuristic Meta Linear Place
Winter Jenkings Evolutionay Evolutionay AF

Passengers 16.5 17.8 21.9+ -1.2 17.2+ - 0.2 16.3 1
Paper 49.2 61 60.2+ - 2.2 52.5+ - 0.1 5.59 1

Deaths 135 144 135.9+ - 1.7 137+ - 2 140 3
Maxtemp 0.72 1.07 0.95+ - 0.02 0.93+ - 0.4 0.94 2
Chemical 0.35 0.36 0.36+ - 0.0 0.34+ -0.0 0.34 1

Table 6. Comparison with other methodologies.

10. Conclusions

From the above it can be obtained several conclusions. The first is that the methodology
developed here based on setting out the building of linear models as an optimization problem,
where the construction of the problem is guided by the classical TS theory, is correct because
allows to build better models than those obtained by the traditional methods.

Another conclusion is that the fact of choosing the SAGA as an alternative to solve the
problems set out here is very important since allows exploring the solution space of our
problem and finding the most significant variables to solve it. In addition, the SAGA
version developed has proved to be very robust in solving many different problems with
out adjustment of parameters.

As a result not contemplated it was found that the phenomenon of FD, which allowed us to
construct new linear models for TS, which in some cases are better alternatives compared to
other linear and nonlinear models. In addition, these new models have great potential for
application in areas such as industrial control, economics, finance, etc. In particular, we think
that the FD is a characteristic of the phenomenon in question, but that is only detected if the
model is built with an appropriate methodology, particularly in the selection and setting limits
of variables.

Finally, it should be noted that having a fully automated methodology with the ability to
model phenomena that other methodologies can not open a whole world of possibilities in
the development of computer systems for modelling and process control.
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