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1. Introduction 

A central and frequently contentious issue in public policy analysis is the allocation of funds 
to competing projects. Public resources for financing social projects are particularly scarce. 
Very often, the cumulative budget being requested ostensibly overwhelms what can be 
granted. Moreover, strategic, political and ideological criteria pervade the administrative 
decisions on such assignments (Peterson, 2005). To satisfy these normative criteria, that 
underlie either prevalent public policies or governmental ideology, it is obviously 
convenient both to prioritize projects and to construct project-portfolios according to 
rational principles (e.g., maximizing social benefits). Fernandez et al. (2009a) assert that 
public projects may be characterized as follows. 

• They may be undoubtedly profitable, but their benefits are indirect, perhaps only long-
term visible, and hard to quantify. 

• Aside from their potential economic contributions to social welfare, there are intangible 
benefits that should be considered to achieve an integral view of their social impact. 

• Equity, regarding the magnitude of the projects’ impact, as well as the social conditions 
of the benefited individuals, must also be considered.  

Admittedly, the main difficulty for characterizing the “best public project portfolio” is 
finding a mechanism to appropriately define, evaluate, and compare social returns. 
Regardless of the varying definitions of the concept of social return, we can assert the 
tautological value of the following proposition.  

Proposition 1: Given two social projects, A and B, with similar costs and budgets, A should be 
preferred to B if A has a better social return.  

Ignoring, for a moment, the difficulties for defining the social return of a project portfolio, 
given two portfolios, C and D, with equivalent budgets, C should be preferred to D if and 
only if C has a better social return. Thus, the problem of searching for the best project-
portfolio can be reduced to finding a method for assessing social-project returns, or at least a 
comparative way to analyze alternative portfolio proposals. 

The most commonly used method to examine the efficiency impacts of public policies is 
“cost-benefit” analysis (e.g. Boardman, 1996). Under this approach, the assumed 
consequences of a project are “translated” into equivalent monetary units where positive 
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consequences are considered “benefits” and negative consequences are considered “loses” 
or “costs”. The temporal distribution of costs and benefits, modeled as net-cash-flows and 
adjusted by applying a “social discount rate”, allows computing the net present-value of 
individual projects. A positive net present-value indicates that a project should be approved 
whenever enough resources are available (Fernandez et al., 2009a). Therefore, the net 
present-value of a particular project can be used to estimate its social return. As a 
consequence, the social impact of a project portfolio can be computed as the sum of the net-
present-value of all the projects in the portfolio. The best portfolio can then be found by 
maximizing the aggregated social return (portfolio net-present-social benefit) using 0-1 
mathematical programming (e.g. Davis and Mc Keoun, 1986). 

This cost-benefit approach is inadequate for managing the complex multidimensionality of 
the combined outcome of many projects, especially when it is necessary to assess intangibles 
that have no well-defined market values. In extreme cases, this approach favors 
unacceptable practices (either socially or morally) such as pricing irreversible ecological 
damages, or even human life. Aside from ethical concerns, setting a price to intangibles for 
which a market value is highly controversial can hardly be considered a good practice. For a 
detailed analysis on this issue, the reader is referred to the works by French (1993), Dorfman 
(1996), and Bouyssou et al. (2000). 

Despite this drawback, cost-benefit analysis is the preferred method for evaluating social 
projects (Abdullah and Chandra, 1999). Besides, not using this approach for modeling the 
multi-attribute impacts of projects leave us with no other method for solving portfolio 
problems with single objective 0-1 programming. A contending approach to cost-benefit is 
multi-criteria analysis. This approach encompasses a variety of techniques for exploring 
the preferences of the Decision Makers (DM), as well as models for analyzing the 
complexity inherent to real decisions (Fernandez et al., 2009a). Some of the most broadly 
known multi-criteria approaches are MAUT (cf. Keeney and Raiffa, 1976), AHP (cf. Saaty, 
2000, 2005), and outranking methods (Roy, 1990; Figueira et al., 2005; Brans and 
Mareschal, 2005). 

Multi-criteria analysis represents a good alternative to overcome the limitations of cost-
benefit analysis as it can handle intangibles, ambiguous preferences, and veto conditions. 
Different multi-criteria methods have been proposed for addressing project evaluation and 
portfolio selection (e.g.  Santhanam and Kyparisis, 1995 ; Badri et al., 2001 ; Fandel and Gal, 
2001 ; Lee and Kim, 2001 ; Gabriel et al., 2006; Duarte and Reis, 2006; Bertolini et al., 2006; 
Mavrotas et al., 2006; Sugrue et al., 2006;  Liesio et al., 2007 ; Mavrotas et al., 2008; Fernandez 
et al., 2009a,b). The advantages of these methods are well documented in the research 
literature and the reader is referred to Kaplan y Ranjithan (2007) and to Liesio et al. (2007) 
for an in-depth study on the topic. 

Multi-criteria analysis offers techniques for selecting the best project or a small set of 

equivalent “best” projects (this is known as the Pα problem, according to the known 
classification by Roy (1996)), classifying projects into several predefined categories (e.g. 

“good”, “bad”, “acceptable”), known as the Pβ problem, and ranking projects according to 

the preferences or priorities given by the decision maker (the Pγ problem).  

Given a set of ranked projects, funding resources may be allocated following the priorities 

implicit in the ranking until no resources are left (e.g. Martino, 1995). This is a simple but 
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rigid process that has been questioned by several authors (e.g. Gabriel et al., 2006, 

Fernandez et al., 2009 a,b). According to our perspective, the decision on which projects 

should receive financing must be made based on the best portfolio, rather than on the best 

individual projects. Therefore, it is insufficient to compare projects to one another. Instead, it 

is essential to compare portfolios. Selecting a portfolio based on individual projects’ ranking 

guarantees that the set of the best projects will be supported. However, this set of projects 

does not necessarily equals the best portfolio. In fact, these two sets might be disjoint. Under 

this scenario, it is reasonable to reject a relatively good (in terms of its social impact) but 

expensive project if it requires disproportionate funding (Fernandez et al. 2009 a,b). 

Therefore, obtaining the best portfolio is, we argue, equivalent to solving the Pα problem 

defined over the set of all feasible portfolios. 

Mavrotas et al. (2008) argue that, when the portfolio is optimized, good projects can be 

outranked by combinations of low-cost projects with negligible impact. However, this is not 

a real shortcoming whenever the following conditions are satisfied. 

• Each project is individually acceptable 

• The decision maker can define his/her preferences over the set of feasible portfolios (by 
using some quality measure, or even by intuition) 

• The decision maker prefers the portfolio composed of more projects with lower costs. 

In order to solve the selection problem over the set of feasible portfolios, the following issues 

should be addressed. 

• The nature of the decision maker should be defined. It must be clear that this entity can 
address social interest problems in a legit way. In addition, the following questions 
should be answered. Is the decision-maker a single person? Or is it a collective with 
homogeneous preferences such that these can be captured by a decision model? Or is it, 
instead, a heterogeneous group with conflicting preferences? How is social interest 
reflected on the decision model? 

• A computable model of the DM’s preferences on the social impacts of portfolios is 
required. 

• Portfolio selection is an optimization problem with exponential complexity. The set of 
possible portfolios is the power set of the projects applying for funding. The 
cardinality of the set of portfolios is 2N, where N is the number of projects. The 
complexity of this problem increases significantly if we consider that each project can 
be assigned a support level. That is, projects can be partially supported. Under these 
conditions, the optimization problem is not only about identifying which projects 
constitute the best portfolio but also about defining the level of support for each of 
these projects.  

• If effects of synergetic projects or temporal dependencies between them are considered, 
the complexity of the resulting optimization model increases significantly. 

The first issue is related to the concepts of social preferences, collective decision, democracy, 

and equity. The second issue, on the other hand, constitutes mathematical decision analysis’ 

main area of influence. These capabilities for building preference models that incorporate 

different criteria and perspectives is what makes these techniques useful (albeit with some 

limitations) for constructing multidimensional models of conflicting preferences. 

www.intechopen.com



 
Bio-Inspired Computational Algorithms and Their Applications 

 

142 

The DM´s preferences on portfolios (or their social impacts) can be modeled from different 
perspectives, using different methods, and to achieve different goals. Selecting one of these 
options depends on who the DM is (e.g., a single person or a heterogeneous group), as well 
as on how much effort this DM is willing to invest in searching for the solution to the 
problem. Therefore, the information about the impact and quality of the projects that 
constitute a portfolio can be obtained from the DM using one of several available 
alternatives. This requires us to consider different modeling strategies and, in consequence, 
different approaches for finding the solution to this problem. We should note that the DM’s 
preferences can be modelled using different and varying perspectives; ranging from the 
normative approach that requires consistency, rationality, and cardinal information, to a 
totally relaxed approach requiring only ordinal information. The chosen model will depend 
on the amount of time and effort the decision maker is willing to invest during the 
modelling process, and on the available information on the preferences. Here, we are 
interested in constructing a functional-normative model of the DM’s preferences on the set 
of portfolios. 

Evolutionary algorithms are powerful tools for handling the complexity of the problem 
(third and fourth issues listed above). Compared with conventional mathematical 
programming, evolutionary algorithms are less sensitive to the shape of the feasible region, 
the number of decision variables, and the mathematical properties of the objective function 
(e.g., continuity, convexity, differentiability, and local extremes). Besides, all these issues are 
not easily addressed using mathematical programming techniques (Coello, 1999). While 
evolutionary algorithms are not more time-efficient than mathematical programming, they 
are often more effective, generally achieving satisfactory solutions to problems that cannot 
be addressed by conventional methods (Coello et al., 2002).  

Evolutionary algorithms provide the necessary instruments for handling both the 
mathematical complexity of the model and the exponential complexity of the problem. In 
addition, mathematical decision analysis methods are the main tools for modelling the DM´s 
preferences on projects and portfolios, as well as for constructing the optimization model 
that will be used to find the best portfolio.  

The rest of this chapter is organized as follows. An overview of the functional-normative 
approach to decision making, as well as its use as support for solving selection, ranking and 
evaluation problems is considered in Section 2. In Section 3, we study the public portfolio 
selection problem where a project’s impact is characterized by a project evaluation, and the 
DM uses a normative approach to find the optimal portfolio (i.e., the case where maximal 
preferential information is provided). In the same section we also describe an evolutionary 
algorithm for solving the optimization problem. An illustrative example is provided in 
Section 4. Finally, some conclusions are presented in Section 5. 

2. An outline of the functional approach for constructing a global preference 
model 

Mathematical decision analysis provides two main approaches for constructing a global 
preference model using the information provided by an actor involved in a decision-making 
process. The first of these approaches is a functional model based on the normative axiom of 
perfect and transitive comparability. The second approach is a relational model better 
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known for its representation of preferences as a fuzzy outranking relation. In this work, 
however, we will focus on the functional approach only.  

When using the functional model, also known as the functional-normative approach (e.g. 
French, 1993), the Decision Maker must establish a weak preference relation, known as the 
at least as good as relation and represented by the symbol ≿.This relation is a weak order (a 
complete and transitive relation) on the decision set A. The statement “a is at least as good as 

b” (a ≿ b) is considered a logical predicate with truth values in the set {False, True}. If a ≿ b is 
false then b ≿ a must be true, implying a strict preference in favor of b over a. Given the 
transitivity of this relation, if the DM simultaneously considers that predicates a ≿ b and b ≿ 
c are true, then, the predicate a ≿ c is also set to true. This approach does not consider the 
situation where both predicates, a ≿ b and b ≿ a, are false, a condition known as 
incomparability. Because of this, the functional model requires the DM to have an unlimited 
power of discrimination. 

The relation ≿ can be defined over any set whose elements may be compared to each other 
and, as a result of such comparison, be subject to preferences. Of particular interest is the 
situation where the decision maker considers risky events and where the consequences of 
the actions are not deterministic but rather probabilistic. To formally describe this situation, 
let us introduce the concept of lottery at this point.  

Definition 1. A lottery is a 2N-tuple of the form (p1, x1; p2, x2;… pN, xN), where xi ∈ ℜ 
represents the consequence of a decision, pi is the probability of such consequence , and  the 
sum of all probabilities equals 1. 

Given that the relation ≿ is complete and transitive, it can be proven that a real-valued 

function V can be defined over the decision set A (V: A → ℜ), such that for all a, b ∈ A, 

V(a) ≥ V(b) ⇔ a ≿ b. This function is known as a value or utility function in risky cases 
(French, 1993). If the decision is being made over a set of lotteries, the existence of a utility 

function U can be proven such that Ū(L1) ≥ Ū(L2) ⇔ L1 ≿ L2, where L1 and L2 are two 
lotteries from the decision set and Ū is the expected value of the utility function (French, 
1993).  

The value, or utility, function represents a well formed aggregation model of preferences. 

This model is constructed around the set of axioms that define the rational behavior of the 

decision maker. In consequence, it constitutes a formal construct of an ideal behavior. The 

task of the analyst is to conciliate the real versus the ideal behavior of the decision maker 

when constructing this model. Once the model has been created, we have a formal problem 

definition. This is a selection problem that is solved by maximizing either V or Ū over the set 

of feasible alternatives. From this, a ranking can be obtained by simply sorting the values of 

these functions. By dividing the range of these values into M contiguous intervals, discrete 

ordered categories can be defined for labeling the objects in the decision set A (for instance, 

Excellent, Very Good, Good, Fair, and Poor). These categories are considered as equivalence 

classes to which the objects are assigned to. 

When building a functional model, compatibility with the DM’s preferences must be 
guaranteed. The usual approach is to start with a mathematical formulation that captures 
the essential characteristics of the problem. Parameters are later added to the model in a 
way that they reflect the known preferences of the decision maker. Hence, every time the 
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DM indicates a preference for object a over object b, the model (i.e., the value function V) 
must satisfy condition V(a) > V(b). Otherwise, the model should satisfy condition V(a) = 
V(b), indicating that the DM has no preference of a over b, nor has the DM a preference of b 
over a. This situation is known as indifference on the pair (a, b). If V is an elemental function, 
these preference/indifference statements on the objects become mathematical expressions 
that yield the values of V’s parameters. To achieve this, usually the DM provides the truth 
values of several statements between pairs of decision alternatives (ai, bi). Then, the model’s 
parameter values are obtained from the set of conditions V(ai) = V(bi). Finally, the value and 
utility functions are generally expressed in either additive or product forms, and, in the 
most simple cases, as weighted-sum functions. 

The expected gain in a lottery is the average of the observed gains in the lottery’s history. If 
the DM plays this lottery a sufficiently large number of times, the resulting gain should be 
close the lottery’s expected gain. However, it is not realistic to assume that a DM will face 
(play) the same decision problem several times as decision problems are, most of the times, 
unique and unrepeatable. Therefore it is essential to model the DM’s behavior towards risk. 
Persons react differently when facing risky situations. In real life, a DM could be risk prone, 
risk averse, or even risk neutral. Personal behavior for confronting risk is obviously a 
subjective characteristic depending on all of the following. 

• The DM’s personality  

• The specific situation of the DM as this determines the impact of failing or succeeding. 

• The amount of the gain or loses that will result from making a decision. 

• The relationship of the DM with these gains and loses.  

All these aspects are closely related. While the first of them is completely subjective, the 
remaining three have evident objective features. 

The ability for modeling the decision maker’s behavior when facing risk is one of the most 
interesting properties of the functional approach. At this point, it is necessary to introduce 
the concept of certainty equivalence in a lottery.  

Definition 2. Certainty equivalence is the “prize” that makes an individual indifferent 
between choosing to participate in a lottery or to receive the prize with certainty. 

A risk averse DM will assign a lottery a certainty equivalence value lower than the expected 
value of the lottery. A risk prone DM, on the other hand, will assign the lottery a certainty 
equivalence value larger than the lottery’s expected gain. We say a DM is risk neutral when 
the certainty equivalence value assigned to a lottery matches the lottery’s expected gain. 
This behavior of the DM yields quite interesting properties on the utility function. For 
instance, it can be proven that a risk averse utility function is concave, a risk prone utility 
function is convex, and a risk neutral function is linear. 

Let us conclude this section by summarizing both the advantages and disadvantages of 

the functional approach. We start by listing the main advantages of the functional 

approach. 

• It is a formal and elegant model of rational decision making. 

• Once the model exists, obtaining its prescription is a straight forward process. 

• It can model the DM’s behavior towards risk. 
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Now, we provide a list of drawbacks we have identified on the functional approach. 

• It cannot incorporate ordinal or qualitative information. 

• In real life, DM’s do not exactly follow a rational behavior. 

• When decisions are made by a collective, the transitivity of the preference relation 
cannot be guaranteed. 

• It cannot precisely model threshold effects, nor can it use imprecise information. 

• In most cases, the DM does not have the time to refine the model until a precise utility 
function is obtained. 

3. A functional model for public portfolio optimization using genetic 
algorithms 

Let us consider a set Pr of public projects whose consequences can be estimated by the DM. 
These projects have been considered acceptable after some prior evaluation. That is, the DM 
would support all of them, given that enough funds are available and that no mutually 
exclusive projects are members of the set. However, projects are not, in general, mutually 
independent. In fact, they can be redundant or synergetic. Furthermore, they may establish 
conflicting priorities, or compete for material or human resources, which are indivisible, 
unique, or scarce. 

For the sake of generality, let us consider a planning horizon partitioned in T adjacent time 
intervals. When T=1, this problem is known as the stationary budgeting problem (one 
budgeting cycle) (Chan et al., 2005). In non-stationary cases, there could be different levels of 
available funds for each period. 

In its more general form, a portfolio is a finite set of pairs of projects and periods {(pi, t(pi))}, 

where pi∈ Pr and t(pi) ∈T denotes the period when pi starts. A portfolio is feasible whenever 
it satisfies financial and scheduling restrictions, including precedence, and it does not 
contain redundant or mutually exclusive projects. These restrictions may also be influenced 
by equity, efficiency, geographical distribution, and the priorities imposed by the DM. In 
particular, if only one budgeting cycle is considered, the portfolios are subsets of Pr. 

The set of projects is partitioned in different areas, according to their knowledge domain, 
their social role, or their geographic zone of action. One project can only be assigned to one 
area. Such partition is usually due to the DM’s interest for obtaining a balanced portfolio. 
Given a set of areas A = {A1, A2, …, An}, the DM can set the minimum and maximum 

amounts of funding that will be assigned to projects belonging to area Ai ∈ A. 

The general problem is to determine which projects should be supported, in what period 
should the support start, and the amount of funds that each project should receive, provided 
that the overall social benefit from the portfolio is maximised. 

In order to have a formal problem statement, we should answer the following questions. 

• How can the return of a public project-portfolio be formally defined? 

• How can objective and subjective criteria be incorporated for optimizing project-
portfolio returns? 

• Under what conditions can the return of a portfolio be effectively maximized? 

• What methods can be used to select the best portfolio? 
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To achieve the goal of maximizing social return we need to formally define a real-valued 
function, Vsocial, that does not contravene the relation ≿social. The construction of such 
function is, however, problematical due to the following reasons. 

i. A set of well defined social preferences must exist. 
ii. This set of preferences must be revealed.  

The preference-indifference social relation is required to be transitive and complete over 
social states (premise i). However, due to the known limitations for constructing collective 
rational-preferences (e.g., Condorcet’s Paradox, Arrow’s Impossibility Theorem, and 
context-dependent preferences), (Bouyssou et. al., 2000; Tversky and Simonson, 1993; 
French, 1993), and to the difficulty in obtaining valid information about social preferences 
from the decision maker, premises i and ii are rarely fulfilled  in real-world cases (Sen, 2000, 
2008). 

The success of public policies is measured in terms of their contribution to social equity and 
social “efficiency”. A project’s social impact should be an integrated assessment of such 
criteria. In the research literature, it is possible to find several methods that have been 
proposed for estimating a project contribution to social well-fare. Unfortunately, they all 
show serious limitations for handling intangible attributes. Furthermore, these methods’ 
objectivity for measuring the contribution of each project or public policy is questionable.  In 
any society, a wide variety of interests and ideologies can coexist. This human condition 
makes it complicated to reach a consensus on what an effective measure of social benefit 
should be. In turn, the absence of consensus leads to a lack of objectivity on any defined 
measure. This lack of objectivity is closely related to a nonexistent function of social 
preference and to the ambiguity of collective preferences as reported by Condorcet, Arrow, 
and Sen (Bouyssou et al., 2000; Sen, 2000, 2008).  

While the social impact is objective, its assessment is highly subjective as it depends on the 

ideology, preferences and values of the person measuring the impact. This subjectivity, 

however, does not necessarily constitute a drawback as it is not arbitrary. In the end, 

decision making does not lack of subjective elements. The set of criteria upon which the 

decision making is based should strive to be objective. However, the assessment of the 

combined effect of such criteria, some of them in conflict with each other, is subjective in 

nature as it depends on the perception of the decision maker. The objectivity of decision 

making theory is not based on eliminating all subjective elements. Instead, it is based on 

creating a model that reflects the system of values of the decision maker. 

In every decision problem it is necessary to identify the main actor whose values, priorities, 

and preferences, are to be satisfied. In this context (the problem of efficiently and effectively 

allocating public resources), we will call “supra-decision-maker” (SDM) to this single or 

collective actor. For the rest of the discussion, we drop the idea of modeling public returns 

from a social perspective in favor of modeling the SDM’s preferences. 

Focusing exclusively on the SDM’s preferences is a pragmatic representation of the problem 
that raises ethical concerns. This is particularly true when the SDM is elected democratically 
and, as such, his/her decisions formally represent the preferences of the society. In real life, 
an SDM may possibly have a very personal interpretation of social welfare and subjective 
parameters to evaluate project returns that do not necessarily represent the generalized 
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social values but rather the ambition of a certain group. Thus, even under the premise of 

ethical behavior, the SDM ⎯who is supposed to distribute resources according to social 

preferences⎯ can only act in response to his/her own preferences. The reasons for this are 
that either the SDM hardly knows the actual social preferences, or he/she pursues his/her 

own satisfaction ⎯according to his/her preferences⎯ in an honest attempt to achieve what 
he/she thinks is socially better. Unethical behavior or lack of information can cause the 
SDM’s preferences to significantly deviate from the predominant social interests. In turn, 
this situation might trigger events such as social protests claiming to reduce the distance 
between the SDM’s preferences and social interests. Therefore, solving a public project-
portfolio selection problem is about finding the best solution from the SDM’s perspective. 
This solution (under the premise of ethical behavior) should be close to the portfolio with 
the highest social return. 

3.1 A Functional model of the subjective return 

In order to maximize the portfolio’s subjective return (that is, the return from the SDM 

perspective), we must build a value function that satisfies relation ≿portfolios. For a starting 

analogy, let us accept that each project’s return can be expressed by a monetary value,  

in a similar way as cost-benefit analysis. If no synergy and no redundancy exist (or they 

can be neglected) among the projects, the overall portfolio’s return can be calculated as 

follows. 

 Rt = x1 c1 + x2 c2 + …+ xN cN (1) 

In Equation 1, N is the cardinality of Pr. The value of xi is set to 1 whenever the i-th project is 
supported, otherwise xi = 0. Finally, ci is the return value of the i-th project. 

Let Mi denote the funding requirements for the i-th project. Let d be an N-dimensional 

vector of real values. Each value, di, of vector d is associated to the funding given to the i-th 

project. If a project is not supported, then the corresponding value in d associated to such 

project will be set to zero. With this, we can now formally define the problem of portfolio 

selection. 

Problem definition 1. Portfolio selection optimization can be obtained after maximizing Rt, 

subject to d ∈ RF, where RF is a feasible region determined by the available budget, 

constraints for the kind of projects allowed in the portfolio, social roles, and geographic zones. 

Problem 1 is a variant of the knapsack problem, which can be efficiently solved using 0-1 

programming. Unfortunately, this definition is an unrealistic model for most social portfolio 

selection problems due to the following issues. 

1. For Equation 1 to be valid, the monetary value associated to each project’s social impact 
must be known. Monetary values can be added to produce a meaningful figure. 
However, due to the existence of indirect as well as intangible effects on such projects, it 
is unrealistic to assume that such monetary equivalence can be defined for all projects. 
If we cannot guarantee that every ci in Equation 1 is a monetary value, then the 
expression becomes meaningless. 

2. Most of the times, the decision is not about accepting or rejecting a project but rather 
about the feasibility of assigning sufficient funds to it. 
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3. The effects of synergy between projects can be significant on the portfolio social return. 
Therefore, they must be modeled. For instance consider the following two projects, one 
for building a hospital and the other for building a road that will enhance access to such 
hospital. Both of such projects have, individually, an undeniable positive impact. 
However their combined social impact is superior. 

4. Time dependences between projects are not considered by Problem definition 1. 
5. It is possible that for a pair of projects (i and j) ci >> cj and Mi >> Mj, the solution to this 

problem indicates that project i should not be supported (xi = 0) whereas project j is 
supported (xj = 1). The SDM might not agree to this solution, as it fails to support a 
high-impact project while it provides funds to a much less important project. 
Furthermore, such situation will be difficult to explain to the public opinion. 

The functional normative approach presented in Section 2 is used to address the first issue 

on this list. Here, we present a new approach based on the work of Fernandez and Navarro 

(2002), Navarro (2005), Fernandez and Navarro (2005), and Fernandez et al. (2009). 

Addressing issues 2 to 5 on the list above requires using a heuristic search and optimization 

methods. 

This new approach is constructed upon the following assumptions. 

Assumption 1: Every project has an associated value subjectively assigned by the SDM. This 

value increases along with the project’s impact.  

Assumption 2: This subjective value reflects the priority that the SDM assigns to the 

project. Each project is assigned to a category from a set of classes sorted in increasing 

order of preference. These categories can be expressed qualitatively (e.g., {poor, fair,  

good, very good, excellent}) or numerically in a monotonically increasing scale of 

preferences. 

Assumption 3: Projects assigned to the same category have about the same subjective value 

to the SDM. Therefore, the granularity of the discrete scale must be sufficiently fine so that 

no two projects are assigned to the same class if the SMD can establish a strict preference 

between them. 

Assumption 4 (Additivity): The sum of the subjective values of the projects belonging to a 
portfolio is an ordinal-valued function that satisfies relation ≿portfolios. 

Fernandez et al. (2009) rationalize this last assumption by considering that each project is a 

lottery. A portfolio is, in consequence, a “giant” lottery being played by a risk-neutral SDM. 

Under this scenario, the subjective value of projects and portfolios corresponds to their 

certainty equivalent value. 

Under Assumption 4, the interaction between projects cannot be modeled. Synergy and 

redundancy in the set of projects are characteristics that require special consideration that 

will be introduced later. 

Under Assumptions 1 and 4, the SDM assess a subjective value to portfolio given by the 

following equation. 

 V= x1 c1 + x2 c2 + …+ xN cN (2) 

www.intechopen.com



 
Public Portfolio Selection Combining Genetic Algorithms and Mathematical Decision Analysis 

 

149 

In Equation 2, ci represents the subjective value of the i-th project. Equations 1 and 2 are 
formally equivalent. However, the resulting value of V only makes sense if there is a process 
to assign meaningful values to ci.  

Before we proceed to the description of the rest of the assumptions, we need to introduce 
the concept of elementary portfolio. 

Definition 3: An elementary portfolio is a portfolio that contains only projects of the same 
category. It will be expressed in the form of a C-dimensional vector, where C is the number 
of discrete categories. Each dimension is associated to one particular category. The value in 
each dimension corresponds to the number of projects in the associated category. 
Consequently, the C-dimensional vector of an elementary portfolio with n projects will have 
the form (0, 0, …, n, 0, …, 0). 

Assumption 5: The SDM can define a complete relation ≿ on the set of elementary 
portfolios. That is, for any pair of elementary portfolios, P and Q, one and only one of the 
following propositions is true. 

• Portfolio P is preferred to portfolio Q 

• Portfolio Q is preferred to portfolio P 

• Portfolios P and Q are indifferent. 

Assumption 6 (Essentiality): Given two elementary portfolios, P and Q, defined over the 
same category. Let P = (0, 0, …, n, 0, …, 0) and Q = (0, 0,…, m, 0, …, 0). P is preferred to Q if 
an only if n > m. 

From the set of discrete categories, let C1 be the lowest category, CL be the highest, and Cj  a 
category preferred to C1. 

Assumption 7 (Archimedean): For any category Cj,  there is always an integer value n such 
that the SDM would prefer a portfolio composed of n projects in the C1 category to any 
portfolio composed of a single project in the Cj category. 

Assumption 8 (Continuity): If an elementary portfolio P = (x, 0, …, 0,…, 0) is preferred to an 

elementary portfolio Q = (0,…, 1, 0,…, 0), defined over category j for 1 < j ≤ L, there is always 

a pair of integers values n and m (n > m) such that an elementary portfolio with n projects of 
the lowest category is indifferent to another elementary portfolio with m projects of the j-th 
category. 

Assumption 5 characterizes the normative claim of the functional approach for decision-
making. Assumption 6 is a consequence of Assumption 4 (additivity) combined with the 
premise that all projects satisfy minimal acceptability requirements. Assumption 7 is a 
consequence of both essentiality and the non-bounded character of the set of natural 
numbers. Assumption 8 simulates the way in which a person balances a scale using a set of 
two types of weights whose values are relative primes. 

Let us say that c1 is a number representing the subjective value of the projects belonging to 
the lower category C1. Similarly, let us use cj to represent the value of projects in category Cj. 
Now, suppose that the elementary portfolios P (containing n projects in C1) and Q 
(integrated by m projects in Cj) are indifferent. That is, P and Q have the same V value. If we 
combine Assumption 8 with Equation 2, we obtain the following expression. 
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n c1= m cj ⇔ cj= (n/m)c1 

If V is a value function, then every proportional function is also a value function satisfying 

the same preferences. Therefore, we can arbitrarily set c1=1 to obtain Equation 3 below.  

 cj= n/m (3) 

In consequence, Equation 2 can now be re-stated as follows. 

 U= Σi,k wikxik (4) 

In Equation 4, the variable j is used to index categories, whereas variable k indexes projects. 

The value of w1k is set to 1, and wjk= n/mj, where mj denotes the cardinality of an 

elementary portfolio defined over category Cj. Additionally, factors wik might be interpreted 

as importance factors. These weights express the importance given by the SDM to projects 

within certain category. Therefore, they should be calculated from the SDM’s preferences, 

expressed while solving the indifference equations between elementary portfolios, as stated 

by Assumption 8 and according to Equation 3. A weight must be calculated for every 

category. If the cardinality of the set of categories is too large, the resolution of such 

categories can be reduced to simplify the model. A temporary set of weights is obtained 

using these coarse categories. By interpolation on such set, the values of the original (finer 

resolution) set can be obtained. 

3.2 Fuzziness of requirements 

Another important issue is the imprecise estimation of the monetary resources required by 

each project. If dk are the funds assigned to the k-th project, then there is an interval [mk, Mk] 

for dk where the SDM is uncertain about whether or not the project is being adequately 

supported. Therefore, the proposition “the k-th project is adequately supported” may be 

seen as a fuzzy statement. If we consider that the set of projects with adequate funds is 

fuzzy, then the SDM can define a membership function μk(dk) representing the degree of 

truth of the previous proposition. This is a monotonically increasing function on the interval 

[mk ,Mk], such that μk(Mk) = 1, μk(mk) > 0, and μk(dk) = 0 when dk < mk.  

The subjective value assigned by the SDM to the k-th project is based on the belief that the 

project receives the necessary funding for its operation. When dk<mk the SDM is certain that 

the project is not sufficiently funded. When mk ≤ dk < Mk, the SDM hesitates about the truth 

of that statement. This uncertainty affects the subjective value of the project, because it 

reduces the feasible impact of the project, which had been subjectively estimated under the 

premise that funding was sufficient. The reduction of the project’s subjective value can be 

modeled by the product of the original value and a feasibility factor f. This factor is a 

monotonically increasing function with μk as an argument such that f(0) = 0 and f(1) = 1. 

Equation 5 below, is generated by introducing this factor into Equation 4, and assuming that 

f(µik) >0 ⇔ xik=1.  

 U = Σik f(µik) wik (5) 

The simplest definition of the feasibility factor is to make f(µik) = µik. This is equivalent to a 

fuzzy generalization of Equation 4. In such case, xik can be considered as the indicator 
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function of the set of supported projects. When a non-fuzzy model includes the binary 

indicator function of a crisp set, the fuzzy generalization provided by classical “fuzzy 

technology” is made substituting this function with a membership function expressing “the 

degree of membership” to the more general fuzzy set. In this way, Equation 5 becomes 

Equation 6 shown below. 

 U = Σik wik µik (6) 

Equation 6 was proposed by Fernandez and Navarro (2002) as a measure of a portfolio’s 

subjective value. 

3.3 Synergy and redundancy 

Redundancy between projects can be addressed using constraints. For every pair of 

redundant projects, (pi, pj), i < j, condition µi(di) × µj(dj) = 0 should be enforced. 

Let S = {S1, S2, …, Sk} be the set of coalitions of synergetic projects. In a model like the one 

represented by Equation 5, each of these coalitions should be treated as an (additional) 

individual project. As a result, each coalition has an associated cost (i.e., the sum of the costs 

of the individual projects in the coalition), and an evaluation. This evaluation should be 

better than the evaluation of any of the projects in the coalition. Let us assume that coalitions 

Si and Sj become projects PN+i and PN+j, respectively. If Si is a subset of Sj, then it does not 

make sense to include them both in a portfolio. Therefore, PN+i and PN+j must be considered 

redundant projects. Furthermore, if project pn is a member of Si, then the pair (pn, pN+i) is 

also redundant (since the value of pn is included in the value of pN+i). 

3.4 A Genetic algorithm for optimizing public portfolio subjective value 

Suppose that a feasible region of portfolios, RF, is defined by constraints on the total budget 

and on the distribution of projects by area. In addition, the SDM could include further 

constraints on the portfolios due to following reasons. 

• The particular budget distribution of the portfolio could be very difficult to justify. Let 
us suppose that the SDM asserts that “project pj is much better than project pi”. In 

consequence, any portfolio in which µi is greater than µj could be unacceptable. This 
implies the existence of some veto situations that can be modeled with the following 
constraint. For every project pi and pj, being si, and sj their corresponding evaluations, if 

(si – sj ) ≥ vs, then (µi (di) - µj (dj)) must be greater than (or equal to) 0, where vs is a veto 
threshold. In the following they will be called veto constraints.  

• A possible redundancy exists between projects.  

Let us use R’F, R’F ⊂ RF, to denote the set of values for the decision variables that make every 

portfolio acceptable. All the veto constraints are satisfied in R’F and there are no redundant 

projects in the portfolios belonging to this region. The optimization problem can now be 

defined as follows. 

Problem definition 2. An optimal portfolio can be selected by maximizing U = Σik f(µik(dik)) 

wik,  subject to  d ∈ R’F , where dik indicates the financial support assigned to the k-th project 

belonging to the i-th category. 

www.intechopen.com



 
Bio-Inspired Computational Algorithms and Their Applications 

 

152 

Solving this problem requires a complex non linear programming algorithm. The number of 

decision variables involved can be in the order of thousands. Due to the discontinuity of µi, 

the objective function is discontinuous on the hyper planes defined by dik = mik. Therefore, 

its continuity domain is not connected. The shape of the feasible region R’F is too 

convoluted, even more if synergy and redundancy need to be addressed. R’F hardly has the 

mathematical properties generally required by non linear programming methods. Note that 

veto constraints on the pairs of projects (pi, pk) and (pj, pk’) are discontinuous on the hyper 

planes defined by dik = mik and djk’ = mjk’. In a real world scenario, where hundreds or 

even thousands of projects are considered, non-linear programming solutions cannot 

handle these situations. Using Equation 6, a simplified form of Problem definition 2, was 

efficiently solved by Fernandez et al. (2009) and later by Litvinchev et al. (2010) using an 

integer-mixed programming model. Unfortunately, this approach cannot handle synergy, 

redundancy, veto constraints, nor can it handle the non-linear forms of function f in 

Problem definition 2. 

Evolutionary algorithms are less sensitive to the shape of the feasible region, the number of 

decision variables, and the mathematical properties of the objective function (e.g., 

continuity, convexity, differentiability, and local extremes). In contrast, all of these issues are 

a real concern for mathematical non linear programming techniques (Coello, 1999). While 

evolutionary algorithms are not time-efficient, they often find solutions that closely 

approximate the optimal. Problem definition 2 represents a relatively rough model. 

However, the main interest is not on fine tuning the optimization process but rather on the 

generality of the model and on the ability to reach the optimal solution or a close 

approximation. 

In Figure 1, we illustrate the genetic algorithm used for solving the optimization problem 

stated in Problem definition 2. This algorithm is based on the work of Fernandez and 

Navarro (2005). As in any genetic algorithm, a fundamental issue is defining a 

codification for the set of feasible solutions to the optimization problem. In this case, each 

individual represents a portfolio and each chromosome contains N genes, where N is the 

number of projects. For the chromosome, we use a floating point encoding representing 

the distribution of funding among the set of projects in the portfolio. The financial 

support for each project is represented by its membership function, μj(dj), which is real-

valued with range in [0, 1]. That is, a floating point number represents each project’s 

membership value. This membership value is a gene in our definition of chromosomes. As 

discussed earlier, the number of genes can be increased in order to address the effects of 

synergetic projects. 

The fitness value of each individual is calculated based on function U given by Equation 5. 

Remember that this is a subjective value that captures the SDM’s certainty that the project 

receives the necessary funding for its operation. The SDM’s idea that a project has been 

assigned sufficient funds is modeled using two parameters, α and β. The domain for both 

parameters is the continuous interval [0, 1].The first parameter, α, can be interpreted as the 

degree of truth of the assertion “the project has sufficient financial support if it receives m 

monetary units of funding”. When this financial support reaches the value βM, the predicate 

“the project has sufficient funding” is considered true. The value of these two parameters is 

needed to establish models for function µj in order to calculate the value of U. To generate 
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these models, we propose to choose parameters α and β (0< α <1, m/M < β ≤1) for 

modelling µ as shown in Figure 2. For the experiments presented here, the values of α = 0.5 

and β = 1 have been used. The most promising values for these parameters are reasonably 

found in the intervals [0.5, 0.7] and [0.9, 1], respectively.  

 

Fig. 1. A Genetic Algorithm for Project Portfolio Selection 

For the selection stage, the roulette wheel technique was used. That is, the probability that a 

particular individual is selected for reproduction is proportional to its fitness value. For the 

experiments, the crossover rate was set to 0.2. Therefore twenty percent of the population is 

selected for crossover in any given reproductive trial. The crossover operator takes genes 

from each parent string and combines them to produce the offspring of the next generation. 

The main reason for doing this is that by creating new strings from fit parent strings, new 

and promising zones of the search space will be explored. While many crossover techniques 

Algorithm 1. A Genetic Algorithm for Project Portfolio Selection. 

Input:  
 

cycles, the number of iterations before the algorithm converges 
generations 

c_r, the Crossover rate 
m_r, the Mutation rate 

Output: best_solution, the best solution found 

1 
2 

 

3 
 

4 
5 
6 
7 
8 
9 

 

10 
11 

 

12 
13 
14 

 

15 
16 
17 
18 
19 

 

20 

Set best_solution ← any feasible portfolio. // this is the best so far 

Set Ν ← the number of projects (chromosomes) 
 

Set Population ← {best_solution} 
 

for (i = 1 to cycles) do 

for (j = 1 to Ν - 1) do 

set new_solution ← best_solution 

randomly select a gene in new_solution and mutate it 

set Population ← Population ∪ {new_solution} 
end 
 

evaluate every individual ∈ Population 

set best_solution ← the fittest individual ∈ Population 
 

for (k = 1 to generations) do 

perform crossover on (Ν × c_r) individuals ∈ Population 

perform mutation on (Ν × m_r) individuals ∈ Population 
 

set Population ← Population ∪ {best_solution} 

evaluate every individual ∈ Population 

set best_solution ← the fittest individual ∈ Population 
end 

end 
 

return best_solution 
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have been reported, in this algorithm the classic crossover technique based on a random cut 

point was used. The number of offspring resulting from this process is one fifth the size of 

the population. 

The replacing process dictates how to update the current population with the individuals 

obtained by crossover. A random replacement approach (every individual has the same 

probability to be replaced) is used for reducing selective pressure. A similar approach is 

used for implementing an elitist policy. That is, an individual is randomly chosen from the 

current population and is replaced by the individual with the highest evaluation. 

Consequently, the presence of the best individual (best_solution in Algorithm 1) in the 

updated population is guaranteed. 

Algorithm 1 uses a constant mutation rate that is set a priori. Each individual in the 

population is considered for mutation, and all the individuals have the same probability of 

mutating, which is defined by the mutation rate. Once an individual has been selected for 

mutation, one of its genes is randomly chosen. This gene will change by adding to it a 

random value in the [-0.2, 0.2] interval, excluding zero. The resulting gene value, however is 

limited to the [0, 1] interval.  

Redundancy is addressed in a very simple way. If, as the result of some genetic operator an 

individual (i.e., a portfolio) containing redundant projects is generated, this individual is 

immediately “killed”. That is, its incorporation to the current population is denied. 

 

 

Fig. 2. The Membership Function 

μ(d) 

0 

0 

1 

α 

m d βM 
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3.5 An illustrative example 

Let us now consider the following example taken from (Fernandez and Navarro, 2005). The 

goal is to distribute a budget of 50 million dollars among of 400 R&D projects. These projects 

are distributed in four areas, namely engineering, life sciences, formal sciences, and social 

sciences. There are 140 projects in the first area (engineering), 80 projects in the second one 

(life sciences), 100 projects in the third area (formal sciences), and 80 project in the last area 

(social sciences). No synergetic effects are considered. 

The classification of the projects, according to their evaluations and areas, is described in 

Table 1. The projects subjective values corresponding to each category and area are shown 

in Table 2. These values were obtained taking a social sciences project evaluated as Below 

Average as baseline (w = 1). These values define a ranking on the set of projects that can be 

used to allocate funds according to the conventional heuristic described in Section 1 (with all 

its known limitations).  

 

 Area 1 Area 2 Area 3 Area 4 

Very Good 54 28 13 12

Good 23 9 18 24

Above Average 62 32 36 28

Average 1 9 17 11

Below Average 0 2 16 5

Total 140 80 100 80

Table 1. Distribution of Projects by Area. 

 

 Area 1 Area 2 Area 3 Area 4 

Very Good 5.838 4.3785 3.892 2.9190

Good 4.540 3.4055 3.027 2.2700

Above Average 3.027 2.2700 2.018 1.5135

Average 2.108 1.5810 1.405 1.0540

Below Average 2.000 1.5000 1.333 1.0000

Table 2. Projects Subjective Values. 

Four different instances of the problem were generated by assigning random budget ranges 

to each area. For each project, random values of mik, and Mik were defined, representing its 

minimum and maximum funding requirements. The proposed evolutionary algorithm was 

run 30 times to optimize the expression given by Problem definition 2. For simplicity f(µik) 

was taken to be identical to µik . 
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The algorithm was coded using Visual C++. Its execution time was about 25 minutes for one 

million generations running on a Pentium-4 processor with a, 2.1 GHz clock cycle. This 

architecture was complemented with 256 MB of physical memory and a 74.5-GB hard disk 

drive. The experimental results shown in Table 3 indicate a significant improvement in the 

value of the optimized portfolio with respect to conventional approaches. 

These results represent an average saving of 6.514 million dollars, equivalent to 13.02% of 

the total budget. This improvement has a positive impact on the number of supported 

projects, as Table 4 reveals. The average number of supported projects is 12.5 % higher than 

when conventional methods were used. 

 

Instance Value of the portfolio funding following 
the ranking given by project evaluations 

Value of the 
optimized portfolio 

Improvement 

1 1406.80 1533.95 9% 

2 1282.36 1496.16 16.67% 

3 1279.58 1458.48 14% 

4 1393.58 1566.97 12.44% 

Table 3. Traditional Funding versus our Approach. 

 

Instance Number of supported projects 
funding following the ranking given 
by project evaluations 

Number of supported 
projects in the optimized 
portfolio 

Increment 

1 237 267 12.76% 

2 257 285 10.89% 

3 265 299 12.83% 

4 246 279 13.41% 

Table 4. Traditional Funding versus our Approach (portfolio’s cardinality). 

3.6 Modeling temporal dependencies 

The model described in Problem definition 2 can be generalized to incorporate temporal 
restrictions.  

Problem definition 3. An optimal portfolio of projects with temporal dependencies can be 

selected by maximizing U= Σik f(µik(dik)) wik, subject to (d, t)∈ R’’F , where vector t =(t(p1), 
t(p2),…) denotes the decision variables valid during the period of time when each project 
starts. R’’F contemplates time-precedence restrictions, restrictions on the time projects can 
start, and the available funds for each time interval. 
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This problem can be solved using a genetic algorithm similar to the one previously 
presented. However, a different encoding for individuals must be devised. Our proposal is 

to encode individuals as a 2N-dimensional vector of the form (µ1, t1, µ2, t2, …, µN, tN). As 

before, genes corresponding to µi have domain defined by the continuous interval [0, 1]. 
Genes corresponding to ti have a domain defined by the set {1, 2, 3, …, T}, where T is the 
maximum number of time periods. Crossover can only occur between genes of the same 
kind. However, mutations may occur at any gene. Restrictions such as time precedence and 
the earliest time a project can start are controlled by constraints as described by Carazo et al. 
(2010). 

4. Concluding remarks 

Given a set of premises, it is possible to create a value model for selecting optimal portfolios 
from an SDM perspective. While this problem is Turing-decidable, finding its exact solution 
requires exponential time. However, the use of genetic algorithms for solving this problem 
can closely approximate the optimal portfolio selection. 

Inspired by a normative approach, the set of premises presented here is based on the 
following assumptions.  

• To the SMD, every project and every portfolio has a subjective value that depends on its 
social impact. This value exists even if it cannot be initially quantified.  

• The SDM either has already defined a consistent system of preferences, or has the 
aspiration of doing so. 

• The SDM is willing to invest a considerable amount of mental effort in order to define 
this consistent set of preferences and produce the aforementioned value model. 

As for the algorithmic solution to the portfolio problem, its computational complexity can 
increase considerably when synergic effects and temporal dependencies are considered. 
However strategic planning requires a high quality model. The problems defined in this 
scenario are so important that they justify the use of computational intensive solutions. 

5. Acknowledgements 

This work was sponsored in part by the Mexican Council for Science and Technology 
(CONACyT) under grants 57255 and 106098. 

6. References 

Abdullah, A. & Chandra, C.K. (1999). Sustainable Transport: Priorities for Policy Sector Reform, 

World Bank, Retrieved from   

<http://www.worldbank.org/html/extpb/sustain/sustain.htm> 

Badri, M.A. & Davis, D. (2001). A Comprehensive 0-1 Goal Programming Model for Project 

Selection. International Journal of Project Management, No. 19, pp.  243-252. 

Bertolini, M., Braglia, M., & Carmignani, G. (2006). Application of the AHP Methodology in 

Making a Proposal for a Public Work Contract. International Journal of Project 

Management No. 24, pp. 422-430. 

Boardman, A. (1996). Cost-benefit Analysis: Concepts and Practices, Prentice Hall. 

www.intechopen.com



 
Bio-Inspired Computational Algorithms and Their Applications 

 

158 

Boyssou, D., Marchant, Th., Perny, P., Tsoukias, A., & Vincke, Ph. (2000). Evaluations and 

Decision Models: A Critical Perspective, Kluwer Academic Publishers, Dordrecht. 

Brans, J.P. & Mareschal, B. (2005). PROMETHEE Methods, In: Multiple Criteria Decision 

Analysis: State of the Art Surveys, Figueira, J., Greco, S., & Erghott, M., pp. 163-190, 

Springer Science + Business Media, New York. 

Carazo, A.F., Gomez, T., Molina, J., Hernandez-Diaz, A.G., Guerrero, F.M., & Caballero, R. 

(2010). Solving a Comprehensive Model for Multiobjective Portfolio Selection. 

Computers & Operations Research No. 37, pp. 630-639. 

Chan, Y., DiSalvo, J., & Garrambone, M., A. (2005). Goal-seeking Approach to Capital 

Budgeting. Socio-Economic Planning Sciences, No.39, pp. 165-182. 

Coello, C. (1999). A Comprehensive Survey of Evolutionary-based Multiobjective 

Optimization Techniques. Knowledge and Information Systems, No. 1, pp.  269-308 

Coello, C., Van Veldhuizen, D., & Lamont, G. (2002). Evolutionary Algorithms for Solving 

Multi-objective Problems, Kluwer Academic Publishers, New York-Boston-

Dordrecht-London-Moscow. 

Davis, K. & Mc Kewon, P. (1986). Quantitative Models for Management (in Spanish), Grupo 

Editorial Iberoamérica, Mexico. 

Dorfman, R. (1996). Why Cost-benefit Analysis is Widely Disregarded and what to do About 

It?, Interface, Vol.  26, No. 1, pp. 1-6. 

Duarte, B. & Reis, A. (2006). Developing a Projects Evaluation System Based on Multiple 

Attribute Value Theory. Computers & Operations Research, No. 33, pp. 1488-1504. 

Fandel, G. & Gal, T. (2001). Redistribution of Funds for Teaching and Research among 

Universities: The Case of North Rhine Westphalia. European Journal of Operational 

Research, No. 130, pp. 111-120. 

Fernandez, E. & Navarro J. (2002). A Genetic Search for Exploiting a Fuzzy Preference 

Model of Portfolio Problems with Public Projects, Annals of Operations Research, No. 

117, pp. 191-213. 

Fernandez, E. & Navarro J. (2005). Computer–based Decision Models for R&D Project 

Selection in Public Organizations. Foundations of Computing and Decision Sciences, 

Vol. 30, No.2, pp. 103-131. 

Fernandez, E., Felix, F., & Mazcorro, G. (2009).  Multiobjective Optimization of an 

Outranking Model for Public Resources Allocation on Competing Projects.  

International Journal of Operational Research, No. 5, pp. 190-210. 

Fernandez, E., Lopez, F., Navarro, J., Litvinchev, I., & Vega, I. (2009). An Integrated 

Mathematical-computer Approach for R&D Project Selection in Large Public 

Organizations. International Journal of Mathematics in Operational Research, No. 1, pp. 

372-396. 

Figueira, J., Greco, S., Roy, B., & Słowiński, R. (2010). ELECTRE Methods: Main Features and 

Recent Developments, In: Handbook of Multicriteria Analysis, Applied Optimization, 

Zopounidis, C., & Pardalos, M.., pp. 51-89, Springer, Heidelberger-Dordrecht-

London-New York. 

French, S. (1993). Decision Theory: An Introduction to the Mathematics of Rationality, Ellis 

Horwood, London. 

www.intechopen.com



 
Public Portfolio Selection Combining Genetic Algorithms and Mathematical Decision Analysis 

 

159 

Gabriel, S., Kumar, S., Ordoñez, J., & Nasserian, A. (2006). A Multiobjective Optimization 

Model for Project Selection with Probabilistic Consideration. Socio-Economic 

Planning Sciences, No. 40, pp. 297-313. 

Kaplan, P. & Ranjithan, S.R., (2007). A new MCDM Approach to Solve Public Sector 

Planning Problems, Proceedings of the 2007 IEEE Symposium on Computational 

Intelligence in Multi Criteria Decision Making, pp. 153-159. 

Keeney, R.L. & Raiffa, H. (1976). Decisions with Multiple Objectives. Preferences and Value 

Trade-offs, Wiley and Sons, New York. 

Lee, J. & Kim, S. (2001). An Integrated Approach for Interdependent Information 

System Project Selection. International Journal of Project Management, No. 19, pp. 

111-118. 

Liesio, J., Mild, P., & Salo, A. (2007). Preference Programming for Robust Portfolio Modeling 

and Project Selection. European Journal of Operational Research, No. 181, pp. 1488-

1505. 

Litvinchev, I., Lopez, F., Alvarez, A., & Fernandez, E. (2010). Large Scale Public R&D 

Portfolio Selection by Maximizing a Biobjective Impact Measure, IEEE Transactions 

on Systems, Man  and Cybernetics , No. 40, pp. 572-582. 

Martino, J. (1995). Research and Development Project Selection, Wiley, NY- Chichester-Brisbane-

Toronto-Singapore. 

Mavrotas, G., Diakoulaki, D., &  Caloghirou, Y. (2006). Project Prioritization under Policy 

Restrictions. A combination of MCDA with 0-1 Programming. European Journal of 

Operational Research, No.171, pp. 296-308. 

Mavrotas, G., Diakoulaki, & D., Koutentsis, A. (2008). Selection among Ranked Projects 

under Segmentation, Policy and Logical Constraints. European Journal of Operational 

Research, No. 187, pp. 177-192. 

Navarro, J. (2005). Intelligent Techniques for R&D Project Selection in Public Organizations (in 

Spanish), PhD. Dissertation, Autonomous University of Sinaloa, Mexico. 

Peterson, S. (2005). Interview on Financial Reforms in Developing Countries, Kennedy School 

Insight, John Kennedy School of Government, Harvard University, Retrieved from: 

<www.ksg.harvard.edu/ksgnews/KSGInsight/speterson.htm>  

Roy, B. (1990). The Outranking Approach and the Foundations of ELECTRE Methods, In: 

Reading in Multiple Criteria Decision Aid, Bana and Costa, C.A., pp. 155-183, 

Springer-Verlag, Berlin,. 

Roy, B. (1996). Multicriteria Methodology for Decision Aiding, Kluwer. 

Saaty, T. L. (2000). Fundamentals of the Analytic Hierarchy Process, RWS Publications, 

Pittsburg. 

Saaty, T. L. (2005). The Analytic Hierarchy and Analytic Network Processes for the 
Measurement of Intangible Criteria for Decision-making, In: Multiple Criteria 
Decision Analysis: State of the Art Surveys, Figueira, J., Greco, S. and Erghott, M., pp. 
345-407, Springer Science + Business Media, New York. 

Santhanam, R. & Kyparisis, J. (1995). A Multiple Criteria Decision Model for 

Information System Project Selection. Computers and Operations Research, No. 22, 

pp.807-818. 

Sen, A. (2000). Development as Freedom, Anchor Books, New York. 

Sen, A. (2008). On Ethics and Economics (18th Edition), Blackwell Publishing, Malden-Oxford-

Carlton. 

www.intechopen.com



 
Bio-Inspired Computational Algorithms and Their Applications 

 

160 

Sugrue, P., Mehrotra, A., & Orehovec, P.M. (2006). Financial Aid Management: An 

Optimization Approach. International Journal of Operational Research, No. 1 pp. 267-

282. 

Tversky A. & Simonson I. (1993). Context Dependent Preferences. Management Science, No. 

39, pp. 1179-1189. 

www.intechopen.com



Bio-Inspired Computational Algorithms and Their Applications

Edited by Dr. Shangce Gao

ISBN 978-953-51-0214-4

Hard cover, 420 pages

Publisher InTech

Published online 07, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Bio-inspired computational algorithms are always hot research topics in artificial intelligence communities.

Biology is a bewildering source of inspiration for the design of intelligent artifacts that are capable of efficient

and autonomous operation in unknown and changing environments. It is difficult to resist the fascination of

creating artifacts that display elements of lifelike intelligence, thus needing techniques for control, optimization,

prediction, security, design, and so on. Bio-Inspired Computational Algorithms and Their Applications is a

compendium that addresses this need. It integrates contrasting techniques of genetic algorithms, artificial

immune systems, particle swarm optimization, and hybrid models to solve many real-world problems. The

works presented in this book give insights into the creation of innovative improvements over algorithm

performance, potential applications on various practical tasks, and combination of different techniques. The

book provides a reference to researchers, practitioners, and students in both artificial intelligence and

engineering communities, forming a foundation for the development of the field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Eduardo Fernández-González, Inés Vega-López and Jorge Navarro-Castillo (2012). Public Portfolio Selection

Combining Genetic Algorithms and Mathematical Decision Analysis, Bio-Inspired Computational Algorithms

and Their Applications, Dr. Shangce Gao (Ed.), ISBN: 978-953-51-0214-4, InTech, Available from:

http://www.intechopen.com/books/bio-inspired-computational-algorithms-and-their-applications/public-portfolio-

selection-combining-genetic-algorithms-and-mathematical-decision-analysis



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


