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1. Introduction  

Optimization techniques range widely from the early gradient techniques 1 to the latest 
random techniques 16, 18, 19 including ant colony optimization 13, 17. Gradient techniques are 
very powerful when applied to smooth well-behaved objective functions, and especially, 
when applied to a monotonic function with a single optimum. They encounter certain 
difficulties in problems with multi optima and in those having a sharp gradient, such as a 
problem with constraint or jump. The solution may converge to a local optimum, or not 
converge to any optimum but diverge near a jump. 

To remedy these difficulties, several different techniques based on random searching have 
been developed: full random methods, simulated annealing methods, and genetic 
algorithms. The full random methods like the Monte Calro method are perfectly global but 
exhibit very slow convergence. The simulated annealing methods are modified versions of 
the hill-climbing technique; they have enhanced global search ability but they too have slow 
convergence rates. 

Genetic algorithms 2-5 have good global search ability with relatively fast convergence rate. 
The global search ability is relevant to the crossover and mutations of chromosomes of the 
reproduced pool. Fast convergence is relevant to the selection that takes into account the 
fitness by the roulette or tournament operation. Micro-GA 3 does not need to adopt 
mutation, for it introduces completely new individuals in the mating pool that have no 
relation to the evolved similar individuals. The pool size is smaller than that used by the 
simple GA , which needs a big pool to generate a variety of individuals. 

Versatile genetic algorithms have some difficulty in identifying the optimal solution that is 
correct up to several significant digits. They can quickly approach to the vicinity of the 
global optimum, but thereafter, march too slowly to it in many cases. To enhance the 
convergence rate, hybrid methods have been developed. A typical one obtains a rough 
optimum using the GA first, and then approaches the exact optimum by using a gradient 
method. Other one finds the rough optimum using the GA first, and then searches for the 
exact optimum by using the GA again in a local domain selected based on certain logic 7. 

The SZGA (Successive Zooming Genetic Algorithm) 6, 8-12 zooms the search domain for a 
specified number of steps to obtain the optimal solution. The tentative optimum solutions 
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are corrected up to several significant digits according to the number of zooms and the 
zooming rate. The SZGA can predict the possibility that the solution found is the exact 
optimum solution. The zooming factor, number of sub-iteration populations, number of 
zooms, and dimensions of a given problem affect the possibility and accuracy of the 
solution. In this chapter, we examine these parameters and propose a method for selecting 
the optimal values of parameters in SZGA. 

2. The Successive Zooming Genetic Algorithm 

This section briefly introduces the successive zooming genetic algorithm 6 and provides the 
basis for the selection of the parameters used. The algorithm has been applied successively 
to many optimization problems. The successive zooming genetic algorithm involves the 
successive reduction of the search space around the candidate optimum point. Although 
this method can also be applied to a general Genetic Algorithm (GA), in the current study it 
is applied to the Micro-Genetic Algorithm (MGA). The working procedure of the SZGA is as 
follows. First, the initial solution population is generated and the MGA is applied. 
Thereafter, for every 100 generations, the elitist point with the best fitness is identified. Next, 
the search domain is reduced to (XOPT-ǂk/2, XOPT+ǂk/2), and then the optimization 
procedure is continued on the reduced domain (Fig. 1). This reduction of the search domain 
increases the resolution of the solution, and the procedure is repeated until a satisfactory 
solution is identified. 

 

Fig. 1. Flowchart of SZGA and schematics of successive zooming algorithm 

The SZGA can assess the reliability of the obtained optimal solution by the reliability 
equation expressed with three parameters and the dimension of the solution NVAR.  

 1
[1 (1 ( / 2) ) ]VAR SP ZOOMN N N

SZGA AVG
R α β

−
= − − ×    (1) 
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where,  

ǂ: zooming factor,                         ǃ: improvement factor 
NVAR: dimension of the solution,  NZOOM: number of zooms 
NSUB: number of sub-iterations,   NPOP: number of populations 
NSP: total number of individuals during the sub-iterations (NSP=NSUB×NPOP) 

Three parameters control the performance of the SZGA: the zooming factor ǂ, number of 

zooming operations NZOOM, and sub-iteration population number NSP. According to 

previous research, the optimal parameters for SZGA, such as the zooming factor, number of 

zooming operations, and sub-iteration population number, are closely related to the number 

of variables used in the optimization problem. 

2.1 Selection of parameters in the SZGA 

The zooming factor α, number of sub-iteration population NSP, and number of zooms NZOOM 

of SZGA greatly affect the possibility of finding an optimal solution and the accuracy of the 

found solution. These parameters have been selected empirically or by the trial and error 

method. The values assigned to these parameters determine the reliability and accuracy of 

the solution. Improper values of parameters might result in the loss of the global optimum, 

or may necessitate a further search because of the low accuracy of the optimum solution 

found based on these improper values. We shall optimize the SZGA itself by investigating 

the relation among these parameters and by finding the optimal values of these parameters. 

A standard way of selecting the values of these parameters in SZGA, considering the 

dimension of the solution, will be provided. . 

The SZGA is optimized using the zooming factor α, number of sub-iteration population NSP, 

and the number of zooms NZOOM, for the target reliability of 99.9999% and target accuracy of 

10-6. The objective of the current optimization is to minimize the computation load while 

meeting the target reliability and target accuracy. Instead of using empirical values for the 

parameters, we suggest a standard way of finding the optimal values of these parameters 

for the objective function, by using any optimization technique, to find the optimal values of 

these parameters which optimize the SZGA itself. Thus, before trying to solve any given 

optimization problem using SZGA, we shall optimize the SZGA itself first to find the 

optimal values of its parameters, and then solve the original optimization problem to find 

the optimal solution by using these parameters. 

After analyzing the relation among the parameters, we shall formulate the problem for the 

optimization of SZGA itself. The solution vector is comprised of the zooming factor α, the 

number of sub-iteration population NSP, and the number of zooms NZOOM. The objective 

function is composed of the difference of the actual reliability to the target reliability, 

difference of the actual accuracy to the target accuracy, difference of the actual NSP to the 

proposed NSP, and the number of total population generated as well. 

 ( ,  ,  ) ( )
SP ZOOM SZGA SP SP ZOOM

F N N R A N N Nα = ∆ + ∆ + ∆ + ×    (2) 

where, 

SZGAR∆ : difference to the target reliability 
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A∆    : difference to the target accuracy 
∆ NSP  : difference to the proposed NSP 

The problem for optimzation of SZGA itself can be formulated by using this objective 

function as follows: 

 Minimize F(X)   (3) 

where, 

{ },  , 
T

SP ZOOM
X N Nα=     

0 < α < 1 
NSP ~ 100 
NZOOM > 1 

The difference of the actual reliability to the target reliability is the difference between RSZGA 

and 99.9999%, where reliability RSZGA is rewritten with an average improvement factor as 

 1
[1 (1 ( / 2) ) ]VAR SP ZOOMN N N

SZGA AVG
R α β −

= − − ×     (4) 

Here, we can see the average improvement factor βAVG, which is to be regressed later on. 

The difference of realized accuracy to the target accuracy is the difference between accuracy  

A and 10-6, where accuracy A is actually the upper limit and may be written as, 

 1ZOOMN
A α −

=      (5) 

The difference of the actual NSP to the proposed NSP is difference between NSP and 100 7 . In 

organizing the optimization algorithm, each element in the objective function is given 

different weights according to its importance. Thus, the target reliability and target accuracy 

are met first, and then the number of total population generated is minimized. Although 

any optimization technique could have been used to slove eq.(3), one can adopt the SZGA in 

optimizing the SZGA itself to obtain a solution fast and accurately. 

The parameters in SZGA have been optimized by using the objective function and 

improvement factor averaged after regression for a test function 9. The target reliability is 

99.9999% and target accuracy of solution is 10-6. The proposed number of sub-iteration 

population NSP is 100. Table 1 shows the optimized values for the SZGA parameters for four 

cases of different number of design variables. 

We found a similar tendency to Table 1 for test functions of various numbers of design 

variables. We also found that the recommended number of sub-iteration population NSP 

would no longer be acceptable to assure reliability and accuracy for the cases whose number 

of design variables is over 1. A much greater number of sub-iteration population is needed 

to obtain an optimal solution with the proper reliability (99.9999%) and accuracy (10-6). 

To confirm our optimized result, we fixed two parameters in the feasible domain that satisfy 

the target reliability and target accuracy, and checked the change in the objective function as 

a function of the remaining parameter. Examples of the change in the objective function for 

the case of four design variables showed the validity of the obtained optimal values of the 
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parameters. Although these values may not be valid for all the other cases, they can be used 

as a good reference for new problems. Some other ways of choosing the  values of these 

parameters will be given later on. 
 

No. of 
Variables 

2 4 8 16 

Zooming 

Factor α 
.02573 .1303 .4216 .5176 

NZOOM 5 8 17 22 

NSP 1,000 2,000 9,510 1,479,230 

No. of 
Function 

Evaluation 
5,000 16,000 161,670 32,543,060 

Table 1. Result of optimized parameters in SZGA for different number of design variables 

2.2 Programming for successive zooming and pre-zoning algorithms 

Programming the SZGA is simple, as explained below. This zooming philosophy may not 
be confined only in GA, but can be applied to most other global search algorithms. Let Y(I) 
be the global variables ranging YMIN(I) ~ YMAX(I), where I is the design variable number. 
Z(I) consists of local normalized variables ranging 0~1. Thus, the relation between them is as 
follows in FORTRAN; 

DO 10 I=1,NVAR ! NVAR=NO. of VARIABLES  

10 Y(I)=YMIN(I)+(YMAX(I)-YMIN(I))*Z(I) 

The relation between local variable Z(I) and local variable X(I) (0~1) in the zoomed region is 
as follows; 

DO 12 I=1,NVAR 

12 Z(I)=ZOPT(I,JWIN)+ALP**(JWIN-1)*(X(I)-0.5) 

Where, ZOPT(I,JWIN) is the elitist in the zoom step (JWIN-1), and ALP is the zooming 
factor. Note that ZOPT(I,JWIN-1) is more logical. However, the argument is increased by 
one to meet old versions of FORTRAN, which require a positive integer as a dimension 
argument. Based on the elitist in step (JWIN-1), we are seeking variables in step JWIN. 
Please note that ZOPT(I,1)=0. 

A pre-zoning algorithm adjusts the gussed initial zone to a very reasonable zone after one 
set of generation. 

DO 14 I=1,NVAR 

   YMIN(I)=YINP(I)-BTA*ABS(YINP(I)) 

14 YMAX(I)=YINP(I)+BTA*ABS(YINP(I)) 

Where, YINP(I)is the elitist obtained after one set of generation. Thus, we eliminate the 
assumed initial boundary, and establish a new reasonable boundary. The coefficient BTA 
may be properly selected, say 0.5. 
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2.3 Hybrid genetic algorithm 

Genetic algorithms are stochastic global search methods based on the mechanism of natural 

selection and natural reproduction. GAs have been applied to structural optimization 

problems because they can solve optimization problems that involve mixing continuous, 

discontinuous, and non-convex regions etc. The SGA (simple GA) has been improved to 

MGA by using some techniques like tournament selection as well as the elitist strategy. Yet, 

GAs have some difficulty in fast searching the exact optimum point at a later stage. The DPE 

(Dynamic Parameter Encoding) GA 4 uses a digital zooming technique, which does not 

change a digit of a higher rank further after a certain stage. The SZGA (Successive Zooming 

GA) zooms the searching area successively, and thus the convergence rate is greatly 

increased. A new hybrid GA technique, which guarantees to find the optimum point, has 

been proposed 7, 14. 

The hybrid GA first identifies a quasi optimal point using an MGA, which has better 

searching ability than the simple genetic algorithm. To solve the convergence problem at the 

later stage, we employed hybrid algorithms that combine the global GA with local search 

algorithms (DFP 1 or MGA). The hybrid algorithm using the DFP (Davidon Fletcher Powell) 

method incorporates the advantages of both a genetic algorithm and the gradient search 

technique. The other hybrid algorithm of global GA and local GA at the zoomed area is 

called LGA (Locally zoomed GA), checks the concavity condition near the quasi minimum 

point. The enhancement of the above hybrid algorithms is verified by application of these 

algorithms to the gate optimization problem. 

In this hybrid algorithm of minimization problem, an MGA is performed generation-by-

generation until there is no further change of the objective function, and then the 

approximate optimum solution is found at ZMCA. The gradients of the objective function as a 

function of the design variables are checked, if the concavity condition 1 is satisfied at the 

boundary of a small zoomed area (Fig. 2). If the condition is not satisfied, the small zoomed 

area is increased by δ. After several iterations, concavity conditions are finally achieved at 

the boundary of the final zoomed area (κδ × κδ) centered at ZMCA. With the elitist solution 

from the global GA (approximate optimum solution, ZMCA) and the concavity condition, the 

optimum point is found within the final zoomed area [Z(i) : (ZMCA(i) - κδ) ~ (ZMCA(i) + κδ)]. 

From this point, a local GA is performed for the small finally zoomed area, which probably 

contains the optimum point. Usually, this area is much smaller than the original are, so the 

convergence rate increases considerably (note that the first approximate solution 

prematurely converged to an inexact but near optimum point). 

Water gates need to be installed in dams to regulate the flow-rate and to ensure the 
containing function of dams. Among these gates, the radial gate is widely used to regulate 
the flow-rate of huge dams because of its accuracy, easy opening and closing, endurance etc. 
Moreover, 3-arm type radial gate has better performance than 2-arm type, in connection 
with the section size of girders and the vibration characteristics during discharging 
operation. Table 2 compares the optimized results for a 3-arm type radial gate, which 
considers the reactions to the minimized main weight of the structure including vertical 
girders with or without arms. The hybrid algorithm (MGA+DFP, MGA+LGA) obtained the 
exact optimal solution of 0.690488E+10 after far fewer generations of 4100 than the 9000 by 
MGA, which result in a close but not the exact solution of 0.690497E+10. 
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Fig. 2. Confirmed zoomed region after checking the concavity condition 

3-arm type Micro GA MGA+DFP MGA+LGA 

Convergence 
Generation 

9000 4000+ǂ 4100 

Objection Function 0.690497E+10 0.690488E+10 0.690488E+10 

Table 2. Comparison of results: MGA, MGA+DFP, MGA+LGA 

3. Example of the SZGA 

The value of the zooming factor α, an optimal parameter was obtained in reference [8], and 
was found to show good match with the empirical one. Using this zooming factor in SZGA, 
the displacement of a truss structure was derived by minimizing the total potential energy 
of the system. The capacity of the servomotor, which operates the wicket gate mounted in a 
Kaplan type turbine of the electric power generator, was optimized using SZGA with the 
value of zooming factor 8.  

This is just one parameter among the full optimal parameters discussed in sec.2.1 9. 
Therefore, the analysis done with this factor 8 is a simplified analysis. As commented in 
section 2.1, the values of the parameters of a well-behaved test model suggested in the Table 
1 can be used for an optimization, or the values of the parameters obtained in another way 
as discussed in the next section can be used. 

Several additional examples of SZGA optimization are presented in the following sections to 
provide more insight on SZGA and to find another way of choosing the values of the SZGA 
parameters. The first example finds the Moony-Rivlin coefficients of a rubber material to 
compare with those from the least square method. The second example is a damage 
detection problem in which the difference between the measured natural frequencies and 
those of the assumed damage in the structure is minimized. The third example finds the 
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optimal link specification (lengths and initial angular positions of members) to control the 
double link system with one motor in an automotive diesel engine. The fourth and last 
example finds an optimal specification (parametric sizes at specified positions) of a ceramic 
jar that satisfies the required holding capacity. 

3.1 Determination of Mooney-Rivlin coefficients 

The rubber is a very important mechanical material in everyday life, used widely in 
mechanical engineering and automotive engineering. Rubber has low production cost and 
many advantages such as its characteristic softness, processability, and hyper-elasticity. The 
development of the rubber parts including most process of the shape design, product 
process, test evaluation, ingredient blending for the required property has used the 
empirical methods. CAE based on advances in computer-aided structural analysis software 
is applied to many products. FEM method is applied on various models of rubber parts to 
evaluate the non-linearity property and the theoretical hyper-elastic behavior of rubber, and 
to develop analysis codes for large, non-linear deformation. 

The structure of rubber-like materials are difficult to analyze because of their material non-
linearity and geometric non-linearity as well as their incompressibility. Furthermore, unlike 
other linear materials, rubber materials have hyper-elasticity, which is expressed by the 
strain energy function. The representative strain energy functions in the finite element 
analysis of rubber are the extension ratio invariant function (Mooney-Rivlin model) and the 
principal extension ratio function (Ogden model). This case uses the Mooney-Rivlin model 
to investigate the behavior of a rubber material. 

The value of the zooming factor changes according to the number of variables and the 
population number of a generation. If the population number is large, more exact solution 
can be obtained than the approach with smaller one. For a large population number, which 
is inevitable in the case of many design variables, longer computation time is needed. In this 
case, because six design valuables are used to solve the six material properties, nine 
hundred population units per one generation are used. At this time, whenever zooming is 
needed, the function is calculated 90,000 times, where, 900 is the population number per one 
generation and 100 is generation number per one zooming because zooming is implemented 
after 100 generations . So the point number searched per one valuable is 6 units (=90,0001/6). 
To search the optimum point, the zooming factor must be not less than 1/6. Therefore, the 
zooming factor of 0.2 is used.  

The maximum generation number must be decided after the zooming factor is chosen. If the 
zooming factor is large, the exact solution can be solved as increasing zooming step. 
Generation numbers have to be decided by the user because they affect the amount of 
calculation like the population numbers do. For example, when zooming factor of 0.3 is 
chosen and Maxgen (maximum allowed generation number) is decided as 1000  
(NZOOM = 10), the accuracy of the final searching range becomes ZRANGE = ǂ(Nzoom-1) = 0.3(10-1) 
= 1.97E-05, and if Maxgen is decided by 1500 (NZOOM = 15) the final searching range 
becomes ZRANGE = ǂ(Nzoom-1) = 0.3(15-1) = 4.78E-08, where ZRANGE is the value related with the 
resolution of solution and is the searching range after N steps of zooming. The smaller this 
value is, the more exact the solution becomes. In this case, Maxgen=900 is adopted. SZGA  
minimized the total error better than the other two methods. 
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Errors to be minimized Haines & Wilson Least Square SZGA 

Simple extension 0.757932 0.709209 0.921277 

Pure shear 0.702015 0.620089 0.370579 

Equi-biaxial 13.2580 0.242475 0.139983 

Total error 14.7180 1.57177 1.43184 

Table 3. Comparisons of errors among the different methods for obtaining Mooney-Rivlin 6 
coefficients 

3.2 Damage detection of structures 

Structures can sometimes experience failures far earlier than expected, due to fabrication 
errors, material imperfections, fatigue, or design mistakes, of which fatigue failure is 
perhaps the most common . Therefore, to protect a structure from any catastrophic failure, 
regular inspections that include knocking, visual searches, and other nondestructive testing 
are conducted. However, these methods are all localized and depend strongly on the skill 
and experience of the inspector. Consequently, smart and global ways of searching for 
damages have recently been investigated by using rational algorithms, powerful computers, 
and FEM. 

 The objective function of the difference between the measured data and the computed data 
is minimized according to an assumed structural damage to find the locations and 
intensities of possible damages in a structure. The measured data can be the displacement of 
certain points or the natural frequencies of the structure, while the computed data are 
obtained by FEM using an assumed structural damage, whose severity is graded between 0 
and 1. For example, Chou et al. used static displacements at a few locations in a discrete 
structure composed of truss members, and adopted a kind of mixed string scheme as an 
implicit redundant representation. Meanwhile, Rao adopted a residual force method, where 
the fitness is the inverse of an objective function, which is the vector sum of the residual 
forces, and Koh adopted a stacked mode shape correlation that could locate multiple 
damages without incorporating sensitivity information 11. 

Yet, a typical structure can be sub-divided into many finite elements and has many degrees 
of freedom. Thus, FEM for a static analysis, as well as for a frequency analysis, takes a long 
time. For a GA, the analysis time is related to the number of functions used for evaluating 
fitness. This number can become uncontrollable when monitoring a full structure, and as a 
result, the RAM or memory space required becomes too large and the access rate too slow 
when handling so much data. 

Accordingly, the proposed SZGA is very effective in this case, as it does not require so many 
chromosomes, even as few as 4, thereby overcoming the slow-down of the convergence rate 
of the conventional GA, which need many chromosomes in determining the extent of a 
damage. Furthermore, the issue of many degrees of freedom can also be solved by sub-
dividing the monitoring problem into smaller sub-problems because the number of 
damages will likely be between 1~4, as long as the structure was designed properly. 
Moreover, the fact that cracks usually initiate at the outer and tensile stressed locations of a 
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structure is also an advantage. As a result, the number of sub-problems becomes 
manageable, and the required time is much reasonable. 

Several tests were performed first to determine the effectiveness of the SZGA for structure 
monitoring, where regional zooming is not necessary. Next, the procedure used to sub-
divide the monitoring problem is presented, along with a comparison of the amount of 
computation required between a full-scale monitoring analysis and a sub--divide 
monitoring analysis according to the number of probable damage sites. The optimization 
problem for various cases of structural damage detection was solved by using three or six 
variables, zooming factor of 0.2 or 0.3, and total number of function evaluations of 100,000 
or 150,000, which is NZOOM × sub-iteration population number. The sub-iteration 
population number means the total population number in a sub-generation of one 
zooming. 

 

Fig. 3. Zooming factor with respect to the number of variables 

 

Fig. 4. Number of sub-iteration population with respect to the number of variables 

Fig. 3, Fig. 4 and Fig. 5 are the fitting curves of ‘NVAR -α ’, ‘NVAR - NSP’ and ‘NVAR - Number 

of function calculation’ relationship data, respectively, based on Table 1. These figures are 
prepared for the data point not shown in Table 1 for interpolation purpose. 
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Fig. 5. Number of function calculations with respect to the number of variables  

The SZGA can pinpoint an optimal solution by searching a successively zoomed domain. 
Yet, in addition to its fine-tuning capability, the SZGA only requires several chromosomes 
for each zoomed domain, which is a very useful characteristic for structural damage 
detection of a large structure that has a great number of solution variables. In the present 
study, just four or six digits of chromosomes were used. The accuracy of optimal solution is 
guaranteed by the successively zoomed infinitesimal range. 

Most structures have few cracks, which may exist at different locations. Therefore, a 
combinational search method is suggested to search for separate cracks by choosing 
probable damage site as nCk. n denotes the number of total elements and k denotes the 
number of possible crack sites (1~4). Thus, up to four cracks (k) were considered in a 
continuum structure modelled with n ( = 20) elements, and the number of function 
calculations between the combinational search and the full scale search was compared. 

 
n k

n
C

k n k

!

!( )!
=

−
   (6) 

 

No. of cracks nCk 
No. of function calculation 

Ratio 
(Combinational/Full) 

Combinational search Full scale search 

1 20 0.580671×105 0.578096×109 0.100445×10-3 

2 190 0.950000×106 0.578096×109 0.164332×10-2 

3 1140 0.990843×107 0.578096×109 0.171398×10-1 

4 4845 0.740788×108 0.578096×109 0.128143 

Table 4. Result of combinational searching method to reduce amount of calculation in SZGA  

When monitoring the entire structure, the number of function calculations became about six 
hundred million based on the relation between the number of variables and the number of 
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function calculations. However, when the combinational searching method was used, the 
number of function calculations was reduced by about 10-1~10-4 times when compared to the 
full-scale monitoring case, as shown in Table 4. Table 5 shows the good detection of the 
damage using the combination method and SZGA. 
 

Element No. 19 20 25 26 31 32 

Actual 
soundness factor 

1 1 0.5 1 1 1 

Damage 
detection result 

1.0 1.0 0.499999 1.0 1.0 1.0 

Table 5. Result of structural damage detection using the combination method and SZGA 

3.3 Link system design using weighting factors 

This section presents a procedure involving the use of a genetic algorithm for the optimal 
designs of single four-bar link systems and a double four-bar link system used in diesel 
engines. Studies concerning the optimal design of the double link system comprised of both 
an open single link system and a closed single link system which are rare, and moreover the 
application of the SZGA in this field is hard to find, where the shape of objective function 
have a broad, flat distribution 12. 

During the optimal design of single four-bar link systems, one can find that for the case of 
equal IO angles, the initial and final configurations show certain symmetry. In the case of 
open single link systems, the radii of the IO links are the same and there is planar symmetry. 
In the case of closed single systems, the radii of the IO links are the same and there is point 
symmetry. 

To control the Swirl Control Valve in small High Speed Direct Injection engines, there are 
two types of actuating systems. The first uses a single DC motor controlled by Pulse Width 
Modulation, while the second uses two DC motors. However, this study uses the first type 
of actuator for the simultaneous control of two Swirl Control Valves using a double link 
system. When two intake valves in a diesel engine are controlled by a single motor, they 
usually exhibit quite different angular responses when the design variables for the control 
link system are not properly selected. Therefore, in order to ensure balanced performance in 
diesel engines with two intake valves, an optimization problem needs to be formulated and 
solved to find the best set of design variables for the double four-bar link system, which in 
turn can be used to minimize the different responses to a single input. 

Two weighting factors are introduced into the objective function to maintain balance 
between the multi-objective functions. The proper ratios of weighting factors between 
objective functions are chosen graphically. The optimal solutions provided by the SZGA and 
developed FORTRAN Link programs can be confirmed by monitoring the fitness. The 
reduction in the objective functions is listed in the tables. The responses of the output links 
that follow the simultaneously acting input links are verified by experiment and the 
Recurdyn 3-D kinematic analysis package. The experimental and analysis results show  
good correspondence. 
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The proposed optimal design process was successfully applied to a recently launched 

luxury Sports Utility Vehicle model. Table 6 shows the original response and that of the 

optimized model. The optimal model exhibits almost the exact left and right outputs, and 

the difference between the left and right responses of 0.603 is thought to be a least value for 

the given positions of the link centers and the double control system adopting a single input 

motor. 

 

Model 
Input 

( degree ) 

Output( degree ) 

Left Right 
Max. 

Difference 

Original 0-90 0-89.144 0-91.958 2.044 

Optimal 0-90 0-89.999 0-89.999 0.603 

Table 6. Comparison of original and optimal models 

3.4 Proper band width for equality constraints 

In a problem having an equality constraint, it is not so simple for GA to satisfy the constraint 

while maintaining efficiency. Optimal solution lies on the line of equality constraint. It is 

very important to gernerate individuals on or near the equality line. However, the desirable 

narrow area including the equality line is very small compared with the whole area. The 

number of individual generated in this narrow area is much less than those in the outer area 

of the desirable narrow area including the equality line. Therefore, the convergence rate of 

GA or SZGA is significantly slow for the problems with equality constraints. The bandwidth 

method is proposed to overcome this kind of slow convergence rate. 

For the minimization problems, we added a basic penalty function to meet the equality 

constraint, which will be explained soon. For this problem with the basic constraint, we can 

not expect a rapid convergence rate as mentioned above. Therefore, we added an additional 

penalty function to the region, located out of the desirable narrow area including the 

equality line, to make an infeasible area of a very highly increased objective function. The 

bandwidth denotes the half width of the narrow region with the basic penalty only. 

There are three methods to handle the equality constraints using GA. One is to give both 

sides the penalty functions along the equality condition. The other is to give one side the 

monotonic function and other side the even (jump) penalty function along the equality 

constraint. However, the one side with the monotonic penalty should be feasible. And, the 

final one is to apply one side with no penalty function and the other side with the even 

(jump) penalty function along the equality constraint, and the one side of no penalty 

function should be feasible. 

The penalty methods provided in Fig. 6 only with original penalty, is the basic technique for 

handling the equality constraint 15. With this kind of basic technique only, however, the 

convergence rate would be too slow to reach the optimal point. Many generated individuals 

are wasted because they mostly too far from the equality constraint line. Therefore we need 

an additional penalty function to increase the effectiveness of GA. That is an additional 
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penalty to the objective function if the condition is located in outer region of a certain 

bandwidth centered with the equality constraint. 

 
 (a)   (b)   (c) 

Fig. 6. Three methods to handle the equality constraint in GA. 

Using the type (c) equality constraint and additional bandwidth penalty, the design of a 

ceramic jar was optimized for three values of zooming factors and various bandwidths of 

equality constraint, as shown in Fig. 7 and Table 7. The result showed a proper range of 

bandwidth for the equality constraint. In Table 7, the optimal solutions were found for the 

jar, satisfying the equality constraint of 2 liter volume. 

   
 (Zooming factor 0.1)   (Zooming factor 0.2) (Zooming factor 0.3) 

Fig. 7. Best fitness for band-width of an equality constraint and numbers of generation. 

Zooming 
factors 

Proper 
band-width 

Weight 
(kg) 

Volume 
(liter) 

Z1 Z2 

0.1 0.15~0.3 0.0802 2.000 0.4790 1.000 

0.2 0.15~0.3 0.0802 2.000 0.4790 1.000 

0.3 0.15~0.3 0.0802 2.000 0.4790 1.000 

Table 7. Proper bandwidths and the optimal solutions for three zooming factors 

This optimization problem does not converge below 0.15 of the band-width of an equality 

constraint, because the objective function is rather complicated and the band-width is 

relatively too narrow to give the most candidated optimal individual out of feasible region. 
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When the band-width is bigger than about 0.3, the best fitness dropped rapidly. In other 

words, if we open the full range as the feasible solution range, the optimal ridge would be 

too narrow to be chosen by GA. In conclusion, a too narrow bandwidth may lead to a 

divergence and a too wide bandwidth may result in inefficiency. 

4. Further studies and concluding remarks 

The SZGA explained in the foregoing sections may be applied to more fields of interest, 

such as, the optimal design of ceramic pieces considering important factors like beauty, 

usage, stability, strength, lid, and exact volume. Prediction of a long -term performance of a 

rubber seal installed in an automotive engine is another possible application.  

The most dominant characteristics of SZGA are its accuracy up to the required significant 

digits, and its rapid convergence rate even in the later stage. However, users have to 

properly select the parameters, namely, the zooming factor, number of zooms, and number 

of sub-domain population. A useful reference can be found in Table 1, Fig. 3, Fig. 4, and Fig. 

5. The number of zooms can be determined by eq.(5) for a given upper limit of accuracy.  

The number of sub-domain population has been recommended as a fixed number until 

now, however, it may be varied as a function of the zooming step. 
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