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1. Introduction 

Perioperative organ protection refers to the set of strategies to lessen the intensity of the 

surgical and anesthetic stress. A better understanding of mechanisms involved in tissue 

hypoperfusion, ischemia-reperfusion phenomena, and the protection triggered by certain 

anesthetic techniques, drugs and adjuvants have been very useful in perioperative organ 

protection, especially in patients with comorbidities and / or undergoing high risk surgical 

procedures.  

2. Myocardial protection 

Among the methods used during cardiac anesthesia, the use of anesthetic drugs and 

techniques that increase tolerance to ischemia and contribute to protect myocardial function 

have been gaining importance in clinical practice and may influence the postoperative 

course. Myocardial ischemia triggers a cascade of cellular events that start mildly and 

become increasingly deleterious as the ischemic time passes. Although reperfusion is the 

end of the ischemic process and is essential for the restoration of normal cell function and 

survival, it may paradoxically amplify the damage secondary to ischemia and compromise 

postoperative outcome.  

Effects of Anesthetics drugs: For more than three decades, there is growing evidence that 

inhaled volatile anesthetics can protect the myocardium from ischemic reversible and 

irreversible injuries (1). The mechanisms by which these drugs promote cardioprotection 

are not fully known and it is suggested that the mechanism induced by inhaled 

anesthetics seems to mimic the ischemic preconditioning. Halogenated anesthetics reduce 

blood pressure, cause depression in myocardial contractility, coronary vasodilation, slow 

the conduction of electrical stimuli and attenuate the activity of the sympathetic nervous 

system, which contributes to decrease the myocardial oxygen consumption. However, 

mechanisms other than the adequacy of oxygen supply and consumption appear to be 

related to the cardioprotection conferred by inhaled anesthetics, such as the preservation 

of high energy phosphates(2). The modulation of calcium influx to the cardiomyocyte(3) 
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and the inhibition of the sodium - calcium pump, with increased expression of calcium 

channels induced by ischemia-reperfusion injury, are also related with the inhaled 

anesthetics (4). 

Some authors have suggested that concentrations around one minimum alveolar 

concentration (MAC) of various halogenated anesthetics produce similar effects on the 

intensity of myocardial protection(5). The inhaled anesthetics have shown consistent effects 

on myocardial protection in animal models of ischemia-reperfusion, and clinical studies 

have been conducted to verify these benefits in clinical practice.  

Myocardial protection during anesthesia aims to decrease the myocardial oxygen 

consumption, adapting it to the momentary tissue supply and / or cardiac cells become 

more resistant to ischemia, attenuating the magnitude of the injury induced by ischemia-

reperfusion and its deleterious immediate and late consequences, such as myocardial 

infarction (MI), arrhythmias, ventricular dysfunction, cardiogenic shock and increased 

perioperative mortality.  

The extent and severity of tissue injury after coronary occlusion is not determined at the 

onset of ischemia and may be modified by methods of myocardial protection. A great 

number of experimental studies have investigated the mechanisms of ischemia and 

modalities of myocardial protection, although only a few therapeutic interventions have 

been shown to be clinically effective. Despite advances in understanding the determinants 

of coronary blood flow, the relationship between supply and consumption of oxygen, and 

the cellular mechanisms triggered by ischemia, the incidence of perioperative MI is still 

high(6, 7).  

During ischemia, oxygen supply is below regional metabolic needs, resulting in depletion of 

cellular reserves of ATP. In this situation, there is a reduction in the efficiency of the ATP-

dependent sodium (Na+) potassium (K+) pump, increasing the levels of intracellular Na+. 

Hydrogen ion (H+) accumulates intracellularly as a result of decreased excretion of 

metabolic wastes, inhibition of NADH2 mitochondrial oxidation and ATP break down. The 

accumulation of intracellular H+ promotes an increase in exchange of H+ by Na+ in an 

attempt to keep cell pH in its normal range, increasing  the intracellular levels of Na+ even 

higher, causing increased levels of intracellular calcium (Ca2+) due to the exchange of Na+ 

by Ca2+(8, 9). High levels of intracellular Ca2+ promote activation of protein kinases with 

degradation of proteins and phospholipids culminating in a decrease of the maximum force 

generated by calcium-dependent myofilaments. After the onset of ischemia, the production 

of free radicals derived from neutrophils and mitochondria also contributes to the 

degradation of proteins and phospholipids, which are the main constituents of the cells 

structure and enzymes(10-12). 
The injury installed after the onset of ischemia appears to be amplified when coronary 
vessels are damaged and the endothelial cells are swollen, reducing the efficiency of gas 
exchange. The vascular smooth muscle cells and endothelial cells with abnormal function 
loose the ability to promote vasodilation and to pair the regional blood flow to the 
momentary needs. Neutrophils play a central role in the spread of cell injury. These cells 
are attracted by dysfunctional endothelial cells and migrate into the extravascular space, 
releasing free radicals, cytokines and pro-inflammatory substances, worsening the 
endothelial, smooth muscle and cardiomyocyte injuries (13). The aggregation of 
neutrophils and platelets causing microvascular obstruction contributes to the decoupling 
of the supply / demand relationship (11, 14). The time required for synthesis of damaged 
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proteins would explain the period required for recovery of myocardial function after 
ischemia-reperfusion injury (15, 16). In combination with high levels of intracellular 
calcium, there is a major increase in the production of oxygen free radicals due to 
reperfusion with oxygenated blood. Free radicals such as superoxide (O2-), hydroxyl 
(OH-) and hydrogen peroxide (H2O2) are extremely reactive and are able to damage all 
cellular components indistinctly, increasing the damage induced by ischemia. The clinical 
consequences can range from reversible myocardial dysfunction that persists after 
reperfusion, known as myocardial stunning, up to MI (10, 12). The development of micro-
perioperative ischemic areas is recognized as a problem that can lead to low cardiac 
output syndrome and death in surgical patients. The perioperative myocardial infarction 
can occur due to increased consumption of oxygen from the induction of anesthesia until 
postoperative recovery.   
The ischemic preconditioning is an endogenous adaptive and protective response against 

prolonged myocardial ischemia(17). Despite being initially promising to reduce the 

incidence and extent of MI, this method of myocardial protection may also decrease the 

incidence of reversible myocardial dysfunction and post-ischemic dysfunction of the 

coronary circulation(18). Several membrane receptors seems to be involved in the 

phenomenon of ischemic preconditioning including -1, , opioid and adenosine 

receptors(19).  

In cardiac surgery, the observed systemic inflammatory response is the result of direct 

surgical trauma, ischemia-reperfusion injury and extracorporeal circulation(20) and cardiac 

injury can be triggered by ischemia, reperfusion, and also by local effects of mediators of the 

inflammatory response. Additionally, the heart itself may release locally inflammatory 

mediators and oxygen free radicals that can contribute to the worsening of the cardiac 

function. Myocardial protection strategies during cardiac surgery aimed at limitation of the 

reperfusion injury and systemic inflammatory response are essential to reduce mortality, 

although many anesthetics may have cardioprotective actions, the diversity of proposed 

mechanisms for protection (e.g. attenuation of calcium influx, anti-inflammatory and anti-

oxidants effects, pre and post conditioning). A randomized study comparing the effects of 

total intravenous anesthesia (TIVA) and balanced anesthesia with desflurane or sevoflurane 

on the release of troponin T in the post operative period with 414 patients undergoing 

coronary artery bypass grafting with cardiopulmonary bypass observed that although the 

maximum postoperative troponin T did not differ between groups, the mortality rate after 

one year was 12.3% in the TIVA group, 3.3% in the sevoflurane group and 6.7% in the 

desflurane group(21).  

Clinical studies have suggested the cardioprotective effects of volatile anesthetics and the 

effects of these agents on the early and late morbidity and mortality requires further 

investigation. The administration of inhaled anesthetics in post-ischemic period can also 

be cardioprotective by attenuating the reperfusion damage. This mechanism may be 

useful in situations where the patients has already suffered or is suffering an ischemic 

event(22, 23). 

The contribution of endogenous opioids for organic adaptation to hypoxia and protection 
against ischemia-reperfusion injuries by opioid receptor agonists has been demonstrated 
experimentally in several animal models (24) (25). Morphine administered before 
occlusion of left anterior descending artery caused a decrease in the infarction zone from 
54% to 12% of the area at risk in rats(26). This reduction in the infarct area induced by 
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morphine was also observed in isolated heart models, in in situ hearts and in 
cardiomyocytes(27). It was also observed an improvement in ventricular contractility after 
ischemic episodes with morphine and fentanyl (28). Besides participating in the triggering 
of the cascade of ischemic preconditioning, opioids also seem to mediate the memory 
phase in some animal species and the opioid-induced cardioprotection appears to be 
modulated by the activation of cardiac receptors, independent of the action of these drugs 
on the central nervous system 40-41 . 
 It has been proposed that opioid-induced cardioprotection is processed by the activation of 

ATP-dependent potassium channels, possibly in the mitochondrial membrane(29). 

However, the intracellular pathway that makes the transduction triggered by the sigma 

receptor stimulation to the end effectors is still unclear. Other intracellular pathways of 

cardioprotection induced by opioids appear to be related to the activation of inhibitory G 

protein and protein kinase C1 (30). 

On the other hand, some studies suggest that propofol can attenuate the mechanical 

dysfunction after myocardial ischemia, improving functional and metabolic recovery(31). 

Propofol can decrease the concentration of free radicals and its deleterious effects(32) and it 

is also able to reduce the intracellular influx of calcium and attenuate neutrophil activity, 

interfering with critical phases of myocardial reperfusion(33). Although some degree of 

myocardial protection appears to be conferred by propofol when administered during the 

reperfusion phase in experimental models of isolated rat heart, the protective effect of 

propofol appears to be momentary and it is not considered an agent capable of inducing 

preconditioning or myocardial protection. Sevoflurane, but not propofol, seems to be able to 

preserve post-operative myocardial function with evidence of reduced myocardial cell 

injury after coronary artery bypass graft (CABG) (34). On the other hand, the continuous 

infusion of propofol at the dose of 120 mcg/kg/min, initiated 10 minutes before 

cardiopulmonary bypass (CPB), resulted in lower levels of troponin I and elevated the 

cardiac index when compared to isoflurane and lower doses of propofol(35). 

Despite the well-established role of ketamine as an anesthetic agent in congenital heart 

surgery and in patients with circulatory shock, this drug seems to block ischemic 

preconditioning and enhance myocardial injury. Ketamine reduces the production of 1, 4, 5-

triphosphate inositol and inhibits ATP-dependent potassium channels in the sarcoplasmic 

membrane(36). Barbiturates have also been classified as medications that can inhibit 

myocardial protection induced by ischemic preconditioning (37). 

Adjuvant drugs for myocardial protection: Several medications have been investigated 

preoperatively, intraoperatively or directly administered in the cardioplegic solution before 

the start of CPB. Beta-adrenergic antagonists can reduce myocardial oxygen consumption, 

reduce the sympathetic tone, and stabilize cell membranes. If there is no contraindications 

for its use, the administration of beta-adrenergic antagonists in the early hours after acute 

MI, modulating the intense adrenergic stimulation(38), can be beneficial in reducing 

mortality and complications(39).  

Regarding the 2 receptor agonists, clonidine seems to be less effective than high thoracic 

epidural anesthesia in reducing perioperative stress and troponin release in patients 

undergoing CABG (40). Additionally, experimental and small clinical trials showed 

encouraging results for the improvement of myocardial performance in patients undergoing 

cardiac surgery with the infusion of a solution containing glucose, insulin and potassium 

(GIK) (41). The mechanism by which GIK solution promotes cardioprotection seems to be 
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related to the restoration of the activity of the ATP-dependent potassium channels by 

insulin, since glucose decreases the activity of this channel and insulin infusion can decrease 

apoptosis induced by ischemia and reperfusion(42). However, despite the beneficial effects 

observed experimentally and in small studies, the benefit of GIK in high-risk patients 

undergoing CABG has not been demonstrated.(43).   

Thoracic Epidural Anesthesia: Thoracic epidural anesthesia with local anesthetics has been 

used as a technique capable of promoting perioperative analgesia and reduction of 

myocardial oxygen consumption by blocking the roots of the thoracic sympathetic fibers 

from T1 to T5, which provide sympathetic innervation to the heart. The cardioprotection 

conferred by thoracic epidural anesthesia is related to an improvement in the myocardial 

oxygen supply induced by the sympathetic blockade, which causes reduction of myocardial 

oxygen consumption secondary to bradycardia, reduction of the cardiac output, a decrease 

in systemic vascular resistance and an improvement in the regional perfusion by a post 

stenotic vasodilation of the segments of arteries partially obstructed. Some studies have 

shown that thoracic epidural anesthesia can attenuate the endocrine-metabolic response 

secondary to surgery, with reduction of release and in serum levels of catecholamines, 

which contributes to a decrease in oxygen consumption(44).This improvement in 

myocardial oxygen balance is demonstrated clinically by improvement in angina in patients 

with coronary artery disease (45).  

The efficiency of thoracic epidural analgesia allows lower doses of systemic opioids, 
thereby reducing the time of tracheal intubation and pulmonary morbidity in 

postoperative cardiac surgery(46). However, despite the beneficial effects of thoracic 
epidural anesthesia on myocardial oxygen balance, no direct mechanism to increase 

myocardial tolerance to ischemia and reperfusion has been described, and the additional 
risk of the procedure in patients under effects of heparin should be considered. In a meta-

analysis of 15 studies and 1178 patients the use of thoracic epidural anesthesia in CABG 
was not effective in reducing mortality (0.7% versus 0.3% general anesthesia) nor the 

incidence of myocardial infarction (2.3% versus 3.4% general anesthesia). On the other 
hand, a significant decrease in the incidence of arrhythmia (OR 0.52), pulmonary 

complications (OR 0.41) and duration of tracheal intubation was evidenced. Analgesia 
with spinal opioids showed no effect on mortality, incidence of myocardial infarction, 

arrhythmias, mortality and duration of intubation when compared with general 
anesthesia(47). In patients undergoing off-pump coronary artery bypass surgery, the 

addition of thoracic epidural to general anesthesia can reduce the incidence of 
postoperative arrhythmias and improves pain control and overall quality of recovery, 

allowing earlier extubation and hospital discharge(48). 
Myocardial protection during cardiopulmonary bypass: The technique of myocardial 
protection used for most CABG is the infusion of hypothermic cardioplegic solution, with 
blood or crystalloids. Early reports cardioplegia date from the 50’s, describing 
electrochemical cardiac arrest in diastole induced by potassium citrate solutions, allowing 
the cardiac surgery to be performed on a stopped and flaccid heart(49). However, this 
solution was associated with high incidence of myocardial necrosis. Cardioplegic solutions 
rich in potassium have been abandoned in the mid 70’s when it was found that myocardial 
necrosis was related to its high concentration and hypertonicity. Until the 80’s, the use of 
hypothermic crystalloid cardioplegic solution was the main technique for myocardial 
protection during cardiac surgery. From the 80’s, studies have shown that cardioplegic 
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solutions with potassium and blood promoted more efficient myocardial protection than the 
crystalloid solution. This was observed by a decrease in the release of CK-MB and in the 
incidence of perioperative infarction(50). Since then, cardioplegic solutions with blood and 
potassium have been the cornerstone of myocardial protection with a defined role in 
intraoperative heart protection. The technique for the infusion of cardioplegic solutions 
most commonly used is antegrade and intermittent infusion in the aorta, proximal to the 
heart, after aortic clamping, or directly into the coronary artery ostia, especially when there 
is associated aortic valve disease. Recently, it has been proposed the infusion of retrograde 
cardioplegic solutions in the coronary sinus. This technique assumes the possibility of 
maintaining uninterrupted infusion and distribution of the solution to regions irrigated by 
stenotic coronary vessels, improving the sub-endocardial protection(51). The optimal 
temperature for cardioplegia is controversial. Solutions at temperatures below 15°C seem to 
be more effective in reducing myocardial oxygen consumption, lactate production and 
markers of cellular hypoxia than solutions at room temperature. However, solutions with 
temperature around 27 º C seem to have better recovery of left ventricular function in the 
immediate postoperative period and lower incidence of arrhythmias, need for defibrillation 
and bleeding volumes (52). Another controversial issue is the time interval between 
infusions of cardioplegia, being 20 to 25 minutes the mean used by surgeons. Also, there are 
no consensuses neither on the optimal dose of cardioplegic solution to be infused nor about 
the addition of substrates such as l-arginine, anti-arrhythmics or beta-adrenergic 
antagonists. 
Therapeutic hypothermia has been another strategy to reduce myocardial injury secondary 
to ischemia during CPB. The mechanism by which hypothermia exerts its protective role in 
the myocardium is not completely understood. The classic explanation is a decrease in 
oxygen consumption induced by a reduction in the cellular metabolic activity and 
enzymatic reactions, which could limit the areas of myocardial ischemia in regions at risk. In 
humans cooled to 32 °C, the total body oxygen consumption is decreased by 45%, unrelated 
to changes in arterial oxygen saturation(53). The increase in the oxygen affinity to 
hemoglobin is compensated by increasing its blood solubility. As the temperature decreases, 
myocardial oxygen consumption decreases, being less than 1% at 12 º C(54). This 
cardioprotective effect is independent of hypothermia-induced bradycardia because it 
persists after heart rate normalization using a pacemaker(55). The decreased metabolic 
activity, however, does not seem to be the sole mechanism related to cardioprotection 
induced by hypothermia. There are evidences of reduction in lipid peroxidation, in free 
radical production, and lower values of extracellular 2, 3-dihydrobenzoic acid, an indicator 
of free radical production. Hypothermia helps in the preservation of cell’s ATP reserves 
during ischemia. Animal models of acute MI shows that the cardioprotective effects of 
hypothermia include: smaller infarct size, preservation of microvascular flow and 
maintenance of cardiac output. The intensity and duration of hypothermia are determined 
according to the surgical procedure to be performed. Despite the beneficial effects of 
hypothermia on organ protection, increasing the duration of hypothermia seems to have 
paradoxical effects, worsening ischemia-reperfusion myocardial injury. Deep hypothermia 
for prolonged periods may exacerbate intracellular calcium overload and induce the 
formation of peroxides and reactive oxygen species(56). Other undesirable side effects of 
hypothermia are electrolyte disturbances, which is related to coagulopathy and 
immunosuppression(57), increase in systemic vascular resistance, changes in metabolism 
and clearance of drugs.  
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3. Neurologic protection 

Neurological injuries after cardiac surgery involve a number of disorders that includes 
stroke, encephalopathy, and cognitive dysfunction(58). In a large multicenter prospective 
investigation, it was found that around 6.1% of patients had some type of postoperative 
neurological complication (59), half of them with type I neurological outcomes, involving 
death as a result of cerebral injury, nonfatal strokes, transient ischemic attack and stupor. 
The other half had type II neurological outcome with intellectual function deterioration or 
seizures(59). In another large study, when no stroke or encephalopathy was present, the 
hospital mortality was 1.4%, but patients with sustained cerebrovascular accident 
presented a mortality of 22%, whereas those with encephalopathy had a hospital 
mortality of 7.5%(60). 
The risk factors that are associated with neurological disorders after CPB include history of 
cardiac failure, diabetes, the presence of extracoronary vascular disease, difficult weaning 
from bypass; intraoperative mean arterial pressure levels of less than 40 mmHg, and a large 
drop in hemoglobin levels during surgery (61). 
Along with other mechanisms, embolism has been related to neurological disorders in 
postoperative period and, according to size, embolus can be divided into macro (greater 
than 200 micrometers) or microemboli (less than 200 micrometers)(62). The clinical 
manifestations depends on the size of emboli and, consequently, on vessel diameter that it 
occludes(62). Macroembolus might result in hemiplegia, while a solitary microembolus is 
unlikely to have an important clinical effect, excluding very susceptible tissues (i.e. 
retina)(62). The microembolus may have greater clinical manifestations when they are 
numerous, showing a diffuse lesion in the central nervous system(62). The types of emboli 
are constituted of gas bubbles (air or anesthetics, in particular nitrous oxide), biologic 
aggregates (thrombus, platelet aggregates, and fat), inorganic debris (fragments of polyvinyl 
chloride tubing, and atheroembolism) (62, 63). Another mechanism implied in postoperative 
neurological disorder is the excitotoxicity, which involves the damage of neurons induced 
by excessive stimulation with neurotransmitters, in special glutamate, causing acute neuron 
necrosis during and immediately after the exposure and delayed-onset apoptosis(64). 
Neuroprotective strategies include the prevention of:  hyperthermia (>37°C) during the 
rewarming phase; of rapid rewarming after hypothermic CPB; of hyperglycemia; and of 
introduction of emboli and fat globules by cardiotomy suction(60). Regarding the aorta, the 
minimization of its manipulation and epiaortic scanning to detect unrecognized aortic 
atheroma helps to reduce atheroembolism(60). Also, arterial line filters should be used(60). 
No class I recommendations to minimize neuronal excitotoxicity have been proposed yet. 
These strategies focus on micro and macroemboli reduction and prevention of 
hypoperfusion and ischemia(60). 
The potential neuroprotective action of volatile anesthetics is related to an increase in 

cerebral blood flow in ischemic regions, the suppression of seizures, reduced brain 

metabolism, inhibition of lactic acidosis and the release of excitatory neurotransmitters, 

preventing the pathological influx of Ca2+ and Na+, inhibition of lipid peroxidation, 

reducing the formation of free radicals and stimulation of anti-apoptotic processes. This 

diversity of cited neuroprotective mechanisms resulted from studies that used different 

anesthetic conditions and different models of cerebral ischemia and incorporated different 

controls of physiological variables including brain temperature and plasma glucose. 

Experimental studies of hemispheric ischemia, global or incomplete demonstrated that 
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volatile anesthetics can reduce the size of cerebral infarction and improves neurological 

recovery when administered before the ischemic test(65-69).  This neuroprotective effect 

appears to be partly related to the maximal suppression of cerebral metabolism of volatile 

anesthetics at concentrations above 2 CAM, concentration which corrects the imbalance 

between supply and oxygen consumption(67). The volatile agents also decrease the 

frequency and increase the time onset of ischemic depolarization(70) and partially inhibit 

the release of lactate dehydrogenase resulting from the activity of NMDA (N-methyl-D-

aspartate) and AMPA (alpha-amino-D-hydroxy-5-methyl-4-isoxazol-propionate) 

receptors(71).  

These experimental data are consistent with clinical observations, where patients 
anesthetized with sevoflurane were more tolerant to reductions in cerebral blood flow 
during carotid endarterectomy (72). Similarly, the incidence, extent, and duration of the 
episodes of cerebral oxygen deprivation seem to be lower in neurosurgical patients 
anesthetized with volatile anesthetics. 
Some intravenous anesthetics have been implicated to have neuroprotective properties. The 
effects of barbiturates on neuroprotection were at first attributed to the reduction in the 
cerebral metabolism, but recent studies have shown that this does not appear to be the sole 
mechanism involved(73). Although barbiturates are well-known to have neuroprotective 
properties, a review done with randomized or quasi randomized trials by Cochrane from 
December 1996 to April 1999 showed no evidences that barbiturates in severe head injury 
could improve outcomes(74). This review also concluded that barbiturates would cause a 
decrease in blood pressure that would offset the reduction in the intracranial pressure effect, 
and this could deteriorate the cerebral perfusion pressure(74). 
Propofol has been shown to have in vitro(75) and in vivo(76) neuroprotection properties, but 
this profile is still controversial(77, 78). For ketamine, the widely known concept that it 
causes an increase in the intracranial pressure is currently under review. In mechanically 
ventilated head-trauma patients sedated with propofol, doses up to 5mg/kg of ketamine 
did not alter cerebral hemodynamics nor increased the intracranial pressure(79). As with 
propofol, ketamine’s neuroprotective properties are still controversial. 
Controlled hypothermia has also neuroprotective properties, especially after CPR. Patients 
under controlled hypothermia presented with better neurologic outcomes and lower 
mortality rates after cardiac arrest than under mild to moderate hypothermia(80-82). Close 
monitoring should be made in patients during controlled hypothermia due to risks of 
coagulopathy and bleeding, mainly after percutaneous coronary interventions, arrhythmias 
and electrolytes disturbances(82, 83). The association of neuroprotective intravenous 
anesthetics and hypothermia can have an even higher neurologic protection. 
Considering the spinal cord, it is known that paraplegia is one of the most devastating 
complications of aortic surgery and an understanding of spinal cord perfusion has become 
important in the attempt to minimize the frequency of spinal cord injury(84). Monitorization 
of somatosensory-evoked potential, motor-evoked potential, strategies of spinal fluid 
drainage, distal perfusion, and specific surgical techniques in addition to the protection of 
hypothermia and anesthetic drugs can contribute to optimize the outcome. 

4. Pulmonary protection 

The changes in lung function have been reported since the first heart surgery with 

extracorporeal circulation(85), with a low incidence of respiratory distress syndrome and a 
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high incidence of atelectasis . During cardiac surgery with cardiopulmonary bypass, lungs 

are exposed to insults of mechanical ventilation(86), ischemia-reperfusion injury, 

hypothermia(87), blood transfusions(88, 89) and contact of blood with non endothelized 

circuit and membrane oxygenator. All of these situations triggers inflammatory reaction and 

cause lung injury. The resultant alterations in respiratory function observed on 

postoperative period can prolong mechanical ventilation. Despite major advances in 

surgical, anesthetic techniques, and equipment for cardiopulmonary bypass, pulmonary 

complications, which are expressed mainly in the postoperative period, remains a great 

challenge and are important causes of morbidity and mortality (90, 91). 

Although off-pump surgeries can reduce pulmonary changes, it doesn’t avoid completely 

postoperative respiratory changes. Many strategies can be used to minimize or prevent lung 

injury related to cardiopulmonary bypass, such as (87) reduction the length of 

cardiopulmonary bypass, the use of miniaturized CPB circuits, heparin-coated circuits and 

filters can be helpful. The adequate myocardial protection, as well abbreviation of 

pulmonary ischemia-reperfusion, is important in the prevention of postoperative lung 

dysfunction. Routine use of antifibrinolytic and corticosteroids have controversial effects in 

the postoperative respiratory outcome.  

5. Renal protection 

The sensibility of kidneys to ischemic insults can culminate in acute kidney injury (AKI), 

more common in large surgeries and where extensive bleeding is present, especially if 

associated with hemodynamic instability, and is an independent risk factor for hospital 

mortality(92). Although acute renal failure requiring renal replacement therapy after cardiac 

surgery is rare, it has a devastating impact on outcome(93). 

The incidence of postoperative AKI involves multifactorial mechanism, including 

hemodynamic, inflammatory and nephrotoxic factors(94). The risk factors for post-operative 

renal injury include increased intra-abdominal pressure, hyperglycemia, inadequate 

maintenance of the intravascular volume, the use of nephrotoxic drugs (i.e. radiologic 

contrast), duration of the CPB, and postoperative drugs(95). Also, the inflammatory 

response associated with the surgery, the formation oxygen-reactive species, and immune 

response can promote renal injury(96).  

Some strategies have been suggested to prevent AKI in perioperative setting. Hypovolemia 

is attributed as an important risk factor for AKI and fluid therapy is implicated in 

diminishing the incidence of renal dysfunction, although no controlled randomized trial has 

directly addressed this issue(96). Currently, restrictive fluid replacement, based on goals 

rather than pre-defined values appear to reduce morbidity following colorectal surgery. One 

strategy based therapy is associated with the use of esophageal Doppler, using corrected 

flow time in the descending aorta and stroke volume response to a fluid challenge(97, 98). 

Intraoperative intravascular volume loading to optimize stroke volume is associated with a 

more rapid postoperative recovery and a reduced hospital stay(98). The recommendation 

for fluid resuscitation is to avoid 10% hydroxyl-ethyl starch 250/0.5, strategies for patients 

with risk of contrast nephropathy (listed below), prophylactic volume expansion with 

crystalloids to prevent AKI, especially with known nephrotoxic drugs(99). Also, based on 

the  same Joannidis et al. recommendations, loop diuretics should not be used to prevent 

AKI(99). 
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Iodinated contrast has also been associated with AKI. Currently, N-Acetylcysteine and 
isotonic intravenous bicarbonate have been investigated, but the data supporting these 
interventions are controversial mainly due to methodological limitations(100). Atrial 
natriuretic peptide, statins and prostaglandin analogs are under study and there are some 
evidence of their benefit, but no large, adequately power study is present(100). Currently no 
grade IA recommendation exists regarding renal protection to iodinated contrasts. 
Prophylactic volume expansion without hydroxy-ethyl starch and sodium bicarbonate for 
emergency procedures appears to be beneficial in  patients at risk of contrast 
nephropathy(99).  
Pharmacological interventions, such as the use of fenoldopam, are currently under study, 
but large trials with adequate power are still needed in order to recommend the routine for 
prevention of renal failure. Atrial natriuretic peptide (ANP) is another drug implicated in 
renal protection, and low doses of ANP can provide better outcomes when used in low 
doses in the prevention of AKI and in the postsurgery management(96, 101). Inhalational 
and intravenous anesthetics can also have effects on renal protection(102). When comparing 
propofol and sevoflurane, propofol was associated with renal protection during an episode 
of ischemia and reperfusion in a swine model with lower levels of plasma creatinine(103). 
Also, lower neutrophil infiltrates, plasmatic cytokines, free radical production, lipid 
peroxidation and inducible nitric oxide synthase activity were found when propofol was 
used, suggesting a possible renal protection(103). 
In conclusion, only a few recommendations exist regarding renal protection. Most of them 
are common sense based, maintaining adequate blood pressure, fluid therapy and avoiding 
the use of nephrotoxic drugs(99, 102).  

6. Liver protection 

Hepatic injury in cardiac surgery is not frequent but is associated with significant morbidity 
and mortality. High index of suspicion postoperatively will lead to earlier treatment 
directed at eliminating or minimizing ongoing hepatic injury while preventing additional 
metabolic stress from ischemia, hemorrhage, or sepsis(93). Protection may be conferred by 
modulating the perfusion protocol during bypass and pharmacological interventions which 
modify the inflammatory response to surgery(104). 
The principle underlying the protective ischemic preconditioning is a limitation to the 
exposure of the liver to ischemia, thus allowing the activation of natural defense 
mechanisms against subsequent injury(105). Several mechanisms of injury determined by a 
period of ischemia followed by reperfusion are known. These mechanisms, involving 
cytokines and oxygen free radicals, determine both local and systemic injury(106) and the 
nitric oxide plays a crucial role in protection. This effect can last for a few days(107). The 
possibility of remote (inter organ) preconditioning is a recent observation in which brief 
ischemia of one organ has been shown to confer protection on distant organs, such as liver, 
without direct stress to the organ(108), but effective clinical use of this resource needs 
additional studies. 
Despite many advances in preoperative evaluation, technological, pharmacological, 
surgical, and anesthetic techniques, cardiac surgery continues to cause major organ 
derangement. There are many unanswered questions regarding perioperative organ 
protection and many promising therapies may continue to improve postoperative outcome. 
Considering the evolution of anesthetic and surgical techniques, patients are currently 
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submitted to surgery with severe diseases and extreme ages. Anesthesiologists are often 
faced with patients who have heart disease or hemodynamic instability. The combination of 
anesthetic and postoperative sedation with appropriate cardioprotective anesthetics agents 
may contribute to the prevention of organ dysfunction and contribute to the reduction of 
perioperative morbidity and mortality. 
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