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1. Introduction 

COPD remains a major public health problem. It is the fourth leading cause of chronic 
morbidity and mortality in the United States, and is projected to rank fifth in 2020 in burden 
of disease caused worldwide, according to a study published by the World Bank/World 
Health Organization. COPD is a preventable and treatable disease, with some significant 
extra-pulmonary effects that may contribute to the severity in individual patients. Its 
pulmonary component is characterized by airflow limitation that is not fully reversible. The 
airflow limitation is usually progressive and associated with an abnormal inflammatory 
response of the lung to noxious particles or gases. Smoking remains the major risk factor for 
this disease, but inhalation of other pollutants and genetic factors also play a role.  

Inhalation of cigarette smoke and other pollutants leads to a chronic inflammatory process 
in the small airways and the lung parenchyma, which includes an influx of macrophages, 
polymorphonuclear neutrophils (PMN), T lymphocytes (with CD8+ T cells exceeding the 
numbers of CD4+ T cells), and B lymphocytes (1-4). This inflammatory process over a 
prolonged period, leads to destruction of the alveolar walls leading to airspace enlargement, 
loss of lung elasticity, closure of small airways, and irreversible airflow obstruction. 
Pathological changes also include mucous metaplasia and mucus hyper-secretion. The small 
airways narrow due to the combined effect of mucus plugging, inflammation in the airways 
walls and lumen, and subepithelial fibrosis and can become obstructed (1). COPD is a 
complex disorder with many processes at play but there is strong evidence that proteinases 
make critical contributions to all the pathologic processes detected in the lungs of COPD 
patients. 

2. Classification of proteinases 

Proteinases are named for their action, i.e. to cleave the internal peptide bonds of 
polypeptides. In human biology they are classified into 4 groups based on the chemical 
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nature of their active site: serine, metallo-, cysteine, and aspartic proteinases. Serine 
proteinases and MMPs are the major players in extracellular proteolysis and are optimally 
active at neutral pH. Cysteine and aspartic proteinases work mainly in the cell in the 
breakdown of proteins in lysosomes. These are optimally active at acidic pH. These acid 
proteinases can potentially breakdown extracellular proteins if they can keep catalytic 
activity at neutral pH or are released into an environment having an acidic pH, such as 
the pericellular environment of activated macrophages (5,6). Proteinase inhibitors are 
generally specific to individual classes of proteinases. Proteinases of the serine, metallo- 
and cysteine proteinase classes have been shown to have activities that contribute to 
COPD pathogenesis.  

2.1 Serine proteinases 

Members of this group that are implicated in COPD include PMN-derived serine 
proteinases, urokinase-type plasminogen activator, granzymes, and plasmin. 

PMN-derived serine proteinases 

Neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (CG) make up this group. The 
proteinases are stored in an inactive form within granules in PMN (Figure 1) and pro-
inflammatory monocytes {8}. When the cells are stimulated by pro-inflammatory mediators 
they degranulate releasing the enzymes (7,8). These serine proteinases have a broad action 
against extracellular matrix (ECM) proteins (especially elastin) and non-ECM proteins (7). 
Figure 2 illustrates how the catalytic triad at the active site of NE (His41-Asp99-Ser173) cleaves 
the internal peptide bonds of proteins. 

 

Fig. 1. Structure of neutrophil: Proteinases are stored in an activated form in the azurophilic 
granules within the neutrophil 

Urokinase type plasminogen activator (uPA) 

This enzyme is expressed by PMN, monocytes, and macrophages. This enzyme is also 
stored in and released from the specific granules of PMN. The expression of uPA is 
regulated at the transcriptional level in mononuclear phagocytes by pro-inflammatory  
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Fig. 2. (a) Mechanism by which NE cleaves a target protein. The NE molecule has two 

complex carbohydrate side chains attached to Asn95 and Asn144. The catalytic site of the NE 
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molecule is an indentation of the molecule and is composed of the molecule and the triad 

His41-Asp88-Ser173, in which the -oxygen of serine becomes a powerful nucleophile able to 

attack a suitably located carbonyl group on the target substrate. The bond to be cleaved 

must fit into the active site pocket of the NE held there by charge interactions mediated by 

the residues forming the pocket. The peptide bond under attack is between two amino acid 

residues recognized by their side chains R1 and R2. (b) An acyl-enzyme intermediate 

molecule is formed between serine and the carbonyl group on the target protein. (c) The 

acyl-enzyme complex is hydrolysed with subsequent regeneration of active NE and 

cleavage of the protein. 

mediators (9,10). On release from cells, uPA binds to a specific receptor (uPA receptor) on 
phagocyte surfaces, where it functions as a cell-associated proteinase. The main action of 
uPA is to activate the serine proteinase, plasmin from its inactive form, plasminogen. 
Plasmin lyses blood clots by breaking down fibrin, but also cleaves and activates latent 
growth factors, latent pro-metalloproteinases (MMP), and protease-activated receptor-1 
(PAR-1) on macrophages, which drives macrophage MMP-12 production (11-14). Through 
this action, it plays an important role in ECM degradation and fibrotic processes in the 
lung.  

Granzymes (GRZ) 

These granule-associated enzymes are predominantly expressed by CD8+ T lymphocytes 

and are stored in the lytic granules (15). The main GRZ family members in human CD8+ T 

cells are GRZ A and B. Once activated by antigen, the CD8+ T cells commence rapid 

exocytosis of GRZ and perforin-containing granules. Release of perforin alters the properties 

of the cell membrane of the target cells, heralding the entry of GRZ into the target cell, and 

GRZ A and GRZ B then initiate caspase-independent and caspase-dependent apoptosis, 

respectively. 

For this group of proteinases there exists naturally occurring inhibitors. Serine proteinase 

inhibitors (Serpins) in plasma and interstitial fluids include ┙1-anti-trypsin (AAT), ┙1-

antichymotrypsin, plasminogen activator inhibitors, ┙2-plasmin inhibitor, and the universal 

inhibitor, ┙2-macroglobulin (┙2-M), which inhibits all four classes of enzymes (16). Secretory 

leukocyte proteinase inhibitor (SLPI) and elafin are inhibitors synthesized locally in the 

respiratory tract by epithelial cells. 

2.2 Metalloproteinases 

Included in this group of proteinases are the MMPs and the members of the ADAMs family. 

MMPs 

These proteinases have an NH2 terminal pro domain, an active site zinc atom, and a COOH 

terminal hemopexin domain that regulates the binding of the enzymes to their substrates. 

They are stored in a latent form as the inactive proenzymes or proMMPS, a state maintained 

by an interaction between the active site zinc atom and the cystein residue in the pro 

domain. Disruption of this interaction is required for activation of the proMMPs. This is 

facilitated by the actions of other proteinases and oxidants in the extracellular space (17,18)]. 

The intracellular serine proteinase, furin, is responsible for activation of some MMPs (19,20).  
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MMPs can be synthesized de novo by cells activated by pro-inflammatory mediators or 
growth factors. PMN, however, store preformed MMP-8, MMP-9, and MT6-MMP (MMP-25) 
in their cytoplasmic granules, and release the enzymes when they degranulate (7). 
Macrophages express MMPs-1, -3, -7, -9, -12, and -14 (21,22), and lung epithelial cells and 
fibroblasts produce MMPs-2, -9 and -14.  

MMPs are classified into 6 groups based upon a similar domain organization and substrate 
specificity: 1) the interstitial collagenases (MMPs-1, -8, and -13); 2) the gelatinases (MMPs-2 
and -9); 3) the stromelysins (MMPs-3, -10, and -11); 4) matrilysin (MMP-7); 5) metalloelastase 
(MMP-12); and 6) membrane-type MMPs (MT-MMPs), integral membrane proteinases with 
either a transmembrane domain or a glycosylphosphatidyl-inositol anchor to the cell 
membrane (23,24). The interstitial collagenases degrade interstitial collagens. The other 
subgroups have a broader range of substrates including denatured collagens (gelatins), 
basement membrane proteins, and pro-inflammatory mediators. MMPs-7, -9 and -12 also 
degrade elastin (7).  

ADAM 

This is a family of type I transmembrane proteinases, named ADAMs because they contain a 
disintegrin and a metalloproteinase domain (25). The metalloproteinase domain of ADAMs 
plays a role in regulation of inflammation, apoptosis and possibly fibrotic processes by 

shedding membrane-anchored cytokines such as protumor necrosis factor (TNF-), other 
cytokines, growth factors, apoptosis ligands and receptors for these molecules from cell 
surfaces (25-27). The disintegrin domain is involved in cell adhesion and migration which it 
accomplishes by binding to integrins (25).   

The inhibitors of the MMPs include the universal inhibitor, ┙2-M, and the four members of 

the tissue inhibitors of metalloproteinases family (TIMPs1-4), which are synthesized by 

connective tissue cells and leukocytes and form non-covalent complexes with MMPs (28,29). 

Although the inhibitors of ADAMs have not been fully elucidated, it is known that ADAM-

17 is inhibited by TIMP-3 but not TIMP-1 or -2 (30,31). 

2.3 Cysteine proteinases 

This group includes the cathepsins B, H, L, and S, which have been implicated in COPD. 

Cathepsin S and L are potent elastases in vitro (5,6) and contribute to macrophage-mediated 

ECM degradation. Inhibitors for this group, again include the universal inhibitor, ┙2-M, but 

also the cystatin superfamily and the kininogens (32). 

3. Evidence for activities for proteinases in COPD 

The proteinase/anti-proteinase hypothesis for the pathogenesis of COPD is not a new 
concept. It dates back to experimental work done over 50 years ago. The basis of the concept 
was 2 key observations. The first came from the keen observations by Laurell and Eriksson 
who noted that deficiency of AAT was associated with early onset, severe panlobular 
emphysema (33). AAT has since been shown to be the major inhibitor of NE in the lower 
respiratory tract. The second observation was made when instillation of papain (an enzyme 
with elastase activity) into rat lungs was shown to cause progressive airspace enlargement 
(34). Over the years, other elastolytic proteinases have been shown to cause airspace 
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enlargement when instilled into the lungs of animal models. The concept proposed that the 
imbalance between proteinases (especially elastases) and their inhibitors lead to pulmonary 
emphysema. Emphysema, however, does not account for all COPD patients and whereas 
AAT deficiency is a cause of COPD, AAT deficiency only accounts for approximately 2% of 
COPD. Other factors have now been implicated in airspace enlargement in COPD, including 
other classes of proteinases (MMPs and cysteine proteinases), oxidative stress, and apoptosis 
of lung structural cells. COPD is a clinically and pathologically heterogeneous disease and 
includes chronic inflammation in the alveolar space, airways, and lung interstitium; mucus 
hypersecretion; and subepithelial fibrosis in the small airways. Although the proteinase/ 
antiproteinase concept does not account for all of the complex pathologies that make up 
COPD it certainly has far-reaching effects, many of which have been investigated in in vitro 
studies, and studies of human samples from COPD patients and animal models of COPD  

4. Proteinase biology in cells relevant to COPD pathogenesis 

The role of proteinases in COPD has been studied at a cellular level with in vitro studies.  

Lung inflammation and airspace enlargement 

The serine proteinases, NE, CG, PR3, and GRZ, can promote lung inflammation in COPD 
patients, through their direct action stimulating the release of pro-inflammatory mediators 
from airway epithelial cells and macrophages in vitro (35,36) and many proteinases also 
have an indirect action proteolytically cleaving mediators to alter their biologic activities. 
The metalloproteinases, MMPs-8 and -9, cleave and activate various chemokines in vitro 
(37,38). ADAM-17 and several MMPs shed and activate membrane-associated, latent 
proTNF- from macrophage surfaces (25,27,39). NE, MMP-12, and MMP-9 cleave elastin, 
and MMPs cleave AAT, generating fragments of these two molecules that are chemotactic 
for inflammatory cells (40,41). Serine, metallo-, and cysteine proteinases acting together can 
degrade elastin, interstitial collagens, and basement membrane proteins in vitro (7). The 
degradation of these ECM proteins leads to the enlargement of lung airspaces.  

Airway pathologies 

The proteinases play a role in the characteristic airway pathologies of COPD, including 
increased mucus production, poor clearance of this mucus and resulting bacterial infections 
and further inflammation. NE, MMP-9, and ADAMs-10 and -17 increase epithelial cell 
expression of MUC5AC, a major mucin protein, by activating epithelial growth factor 
receptor (EGFR) through shedding of membranebound protransforming growth factor 

(TGF)-. The released soluble, active TGF-, activates the EGFR (42-44). The 3 major serine 
proteinases, NE, CG, and PR3 potently stimulate goblet cell degranulation (45). Tissue 
kallikrein is a serine proteinase expressed by inflammatory cells and submucosal glands, 
which also stimulates mucin synthesis in airway epithelium in vitro by shedding and 
activating pro-EGF, another EGFR ligand (46). NE damages epithelial cells (47) and inhibits 
ciliary beat frequency of lung epithelial cells (48).  

Plasmin, MMP-9, NE, and ADAMs may also induce sub-epithelial fibrosis in COPD 
airways, because they activate latent growth factors such as TGF-┚ (11,49,50) and insulin-
like growth factors in vitro (51,52). These growth factors are known to induce fibroblasts to 
produce and secrete interstitial collagens. It remains unclear whether these proteinases 
induce sub-epithelial fibrosis in the small airways of human COPD patients.  
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5. Mechanisms by which proteinases contribute to individual lung 
pathologies in COPD patients 

Most of the evidence for the mechanisms by which the proteinases act in the disease process 
of COPD comes from studies of clinical samples from human COPD patients and animal 
models of COPD. 

5.1 Human COPD samples 

Following on from the initial discovery that lack of inhibition of NE in patients with AAT 
deficiency was associated with emphysema, studies from Damiano et al further supported 
crucial activities for NE in pulmonary emphysema (53). They showed that the amount of NE 
bound to lung elastin is strongly correlated with the degree of emphysematous change and 
additional studies demonstrated stable binding of active forms of NE to elastin in vitro (54). 
Since then, additional studies have confirmed increased levels of NE in lung samples from 
COPD patients and demonstrated elevated levels of CG, PR3, uPA, and MMPs -1, -2, -8, -9, 
and -14 in various lung samples from smokers and COPD patients when compared to 
healthy subjects (53,55-65).  

Inflammatory cells are the main source of these proteinases in COPD but production of 
proteinases by lung structural cells and immune cells has also been demonstrated. For 
example, cigarette smoke increases MMP production by lung epithelial cells (64), and 
fibroblasts (66). T lymphocytes from blood and BAL samples from COPD patients have 
increased levels of GRZ and perforin compared to samples from asymptomatic smokers and 
nonsmokers (67). Elevated levels of GRZ B in BAL samples from COPD patients show a 
correlation with bronchial epithelial cell apoptosis, suggesting that GRZ B promotes 
epithelial cell death in the lung and contributes to airspace enlargement in COPD patients. 

5.2 Animal models of COPD 

Animal models of COPD provide the strongest evidence for the roles of proteinases in 
COPD. 

Acute cigarette smoke exposure models 

Exposing mice to smoke for up to 30 days leads to an influx of PMN and macrophages to the 
lung (68). This is due to direct effects of inhaled smoke on lung capillaries, leading to 
leakage of thrombin and plasmin into the alveolar space (69,70). These proteinases cleave 
and activate PAR-1 on macrophages, leading to an increased synthesis of MMP-12 by 
macrophages (13,14). MMP-12 is responsible for shedding pro-TNF-┙ from activated 
macrophages, likely leading to an increase in E-selectin expression on endothelial cells (39). 
This facilitates transendothelial migration of PMNs. The presence of these increased PMNs 
and macrophages, releasing serine proteinases, increases lung collagen and elastin 
breakdown. Delivering human AAT to mice acutely exposed to cigarette smoke prevents 
PMN influx and ECM destruction. This is probably due to AAT inhibiting both PMN serine 
proteinase-mediated ECM destruction and thrombin- or plasmin-induced increases in 
macrophage MMP-12 production (14,71). Further evidence for the role of MMP-12 comes 
from a study showing that the minor allele of a single-nucleotide polymorphism (SNP) in 
MMP-12, is associated with a positive effect on lung function in adults who smoke and also 
a reduced risk of COPD in adult smokers (72). 
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Chronic smoke exposure models 

When wild type (WT) mice are exposed to cigarette smoke for 3-6 months they develop 
pulmonary changes of airspace enlargement, inflammation and small airway subepithelial 
fibrosis, making this a good model to investigate the role of proteinases in COPD (73,74). 

Work with proteinase deficient mice has confirmed the role of MMP-12 and NE in chronic 

inflammation and airspace enlargement and MMP-9 and possibly MMP-12 in sub-epithelial 

fibrosis. MMP-12 deficient mice (MMP-12-/-mice) when chronically exposed to cigarette 

smoke show no increase in macrophages and no airspace enlargement, and so are 

completely protected from the changes seen in the wild type model (73). In the absence of 

MMP-12 mediated elastin degradation, the remaining elastin fragments attract monocytes 

(75). T lymphocytes also play a role in these processes with CD8+ T-cell-deficient (CD8-/-) 

showing a blunted response to smoke exposure and protection from emphysema (76). This 

is mediated by a CD8+ T cell product, interferon gamma (IFN-) inducible protein 10 (IP-10), 

which induces production of MMP-12 and degradation of the lung ECM. Carrying this 

through to the human disease, there has been demonstration of increased Th1 cells 

associated with increased levels of IP-10 and MMP-12 in lung tissue from human COPD 

patients (77).  

NE-/- mice are 60% protected from airspace enlargement and have decreased influx of PMN 
and monocytes into the lung compared to smoke-exposed WT mice [(78); Fig. 3]. NE likely 
contributes to airspace enlargement directly by degrading elastin and other ECM protein 
components of the alveolar walls (78).  

There is also a direct action of cigarette smoke on the pulmonary airways. When rodent 
airways are exposed acutely to cigarette smoke, increases in growth factor and collagen 
production are detectable within 2 hours, and before inflammation occurs in the airway 
walls (79). This suggests that smoke directly promotes small airway subepithelial fibrosis 
and that smoke-induced inflammation and proteinase production are unnecessary for this 
process. However, in guinea pigs chronically exposed to cigarette smoke for up to 6 months, 
inflammatory cell MMPs amplify this process, since delivering a synthetic dual inhibitor of 
MMPs-9 and -12 to these animals significantly reduces small airway fibrosis (80). The use of 
MMP inhibitors in human COPD patients remains to be explored.  

Transgenic murine models 

These models are used to investigate over-expression of various proteinases, in contrast to 

the study of a deficiency of a protein in the knock-out murine models. Transgenic mice over-

expressing MMP-1 in the lung develop enlarged airspaces (81), which may either reflect 

abnormal alveolar development or destruction of mature interstitial collagens by MMP-1. 

Adult transgenic mice over-expressing a Th1 cytokine (IFN-), a Th2 cytokine (IL-13), or a 

cytokine with Th1 and Th2 activities (IL-18) in airway epithelial cells spontaneously develop 

obvious lung inflammation, increased lung levels of MMPs and cysteine proteinases, and 

airspace enlargement (82-84). In mice over-expressing IL-13, the metalloproteinases MMPs -

9 and -12 play critical roles in promoting airspace enlargement, with MMP-12 also 

promoting inflammation and driving the increased expression of other MMPs in the lung 

(85). In transgenic mice over-expressing IFN-, cathepsin S stimulates lung epithelial 

apoptosis, lung inflammation, and airspace enlargement (86). 
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Alveolar septal cell apoptosis models of airspace enlargement 

In patients with COPD there is apoptosis of alveolar septal cells (87,88) and leukocytes (89,90), 
and apoptosis of the endothelial and epithelial cells that make up the alveolar walls. This leads 
to the development of emphysema. Septal cell apoptosis and airspace enlargement in the 
absence of overt lung inflammation can be induced rapidly in experimental animals by: 1) 
pharmacologic blockade of vascular endothelial growth factor receptors in rodents (91); and 2) 
transfection of murine alveolar epithelial cells with caspase-3, a pro-apoptotic cysteine 
proteinase (88). However, increased elastase activity due to acidic proteinases is detected in 
BAL samples after transfection of alveolar epithelial cells with caspase-3 (88). Thus, proteinases 

released from dying structural cells may degrade the lung ECM, thereby acting together with 
septal cell apoptosis to cause loss of alveolar units and airspace enlargement.  

6. Regulation of proteinases in the lung 

Proteinases are a significant factor in the pathogenesis of COPD, but do not act in isolation. 
They interact with other mediators and other pathways and are also regulated by inhibitors. 

Studies of the NE/ and MMP-12/ mice chronically exposed to cigarette smoke 
demonstrated interactions between these two classes of proteinases, with MMP-12 cleaving 
and inactivating AAT to increase NE-mediated lung injury, and NE cleaving and 
inactivating TIMP-1 to amplify MMP-12-mediated lung destruction (78). Proteinases also 
interact with reactive oxygen species (ROS), and ROS production is increased in the lungs of 
COPD patients. ROS are present in inhaled cigarette smoke itself, or are released by 
phagocytes activated by inhaled smoke. ROS are known to activate proMMPs in vitro and 
are thought to exacerbate lung inflammation and injury in COPD patients (92). Transgenic 
mice over-expressing the antioxidant enzyme Cu-Zn superoxide dismutase in the lung are 
protected from developing chronic lung inflammation, increased lung MMP levels, and 
emphysema in response to intratracheal instillation of porcine pancreatic elastase, or chronic 
exposure to cigarette smoke (93). However, mice deficient in a phagocyte-specific 
component of the NADPH oxidase, which generates superoxide anions (O2-), develop 
greater airspace enlargement in response to cigarette smoke than WT mice (94). This is due 
to ROS-mediated inactivation of MMPs via oxidative inactivation of residues in the catalytic 
domain of MMPs (95). Thus, phagocyte-derived O2- (and ROS derived from O2-) in COPD 
lungs may constrain rather than promote phagocyte MMP-mediated lung injury (94,96). It is 
noteworthy that clinical trials have failed to demonstrate protective effects of antioxidant 
supplementation in COPD patients, and this could be linked, in part, to antioxidants 
inducing reductions in ROS-mediated inactivation of MMPs (97). 

6.1 Inhibitors of proteinases 

Proteinase inhibitors are present in the extracellular matrix. To maintain their action, 
proteinases need to circumvent these inhibitors through inactivation of the proteinase 
inhibitor, evading them and / or overwhelming them.  

6.2 Inactivation of proteinase inhibitors 

Serpins can be cleaved and inactivated by MMPs (98-102), NE (103,104), cathepsin B (105), 
and bacterial proteinases (106). Serine proteinases cleave and inactivate TIMPs (107). 
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Proteolytic inactivation of AAT and TIMP-1 by MMP-12 and NE occurs in the cigarette 
smoke exposure model of emphysema in mice (78).  ROS present in cigarette smoke or 
released by leukocytes activated by smoke, inactivate ┙2-M, and AAT, and SLPI in vitro by 
converting the methionine at the active sites of these inhibitors to methionine sulfoxide. This 
reduces their capacity to inhibit serine proteinases (108-111). It is not clear if oxidative 
inactivation of proteinase inhibitors occurs in COPD patients. Some studies have detected 
oxidized AAT in lung samples from COPD patients but others have not (112-114). Also, ROS 
can inactivate proteinases as outlined above. It is difficult to know if previous work 
analyzing the oxidation state of proteinase inhibitors in lung samples from COPD patients 
actually includes events in cellular microenvironments. Adding to the complexity of 
studying this process is the fact that ROS are short-lived molecules and are active only at 
short distances from the cells generating them before they are muted by antioxidants. 

6.2.1 Evasion of inhibitors 

In another effort to preserve their function, proteinases can evade inhibitors by binding 
tightly to substrates, being released into sequestered microenvironments, or binding to cell 
surfaces.  

Tight binding of proteinases to substrates 

NE binds very stably to elastin in an active form, and AAT and SLPI have reduced activity 
against elastin-bound NE compared to soluble NE (54,115,116). In the lungs of humans with 
emphysema, NE is bound to interstitial elastin (53) and this lung elastin-bound NE likely 
retains catalytic activity and takes a major role in the destruction of elastin fibers in 
pulmonary emphysema (Fig. 4). MMPs-1, -2, and -9 bind to various ECM proteins, which 
may increase the retention, stability, and bioactivity of proteinases in the lung and aid their 
roles in extracellular proteolysis (117,118). 

Sequestered microenvironments 

Inflammatory cells can, via integrin-mediated adhesion to matrix or to cells, form small 
pockets of microenvironment. Large inhibitors such as AAT (119) and ┙2-M (120) cannot 
enter these sealed pockets (Fig. 4).  

Membrane binding of proteinases 

MT-MMP and ADAMs are integral membrane proteinases, and some members of these 
families are resistant to inhibition by physiologic inhibitors. ADAM-17, for example, is 
resistant to inhibition by TIMPs-1 and -2 but not TIMP-3 (31), and MT1-MMP is resistant to 
inhibition by TIMP-1 but not TIMP-2 (121). NE, CG, PR3, MMPs-8 and -9 (which lack 
transmembrane domains or glycosylphosphatidyl-inositol anchors) are also expressed on 
the surface of activated PMN (122-127). These surface-bound proteinases degrade lung ECM 
proteins and proteinase inhibitors and induce goblet cell degranulation (122,126-128). The 
membrane-bound element of these proteinases confers a resistance to their inhibitors when 
compared to the soluble variety (122-124,126,127). 

6.2.2 Overwhelming of inhibitors 

A more obvious way to overcome the inhibitors is for the proteinases to overwhelm them 
with sheer numbers. This can happen with release of massive quantities of enzymes from 
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large numbers of inflammatory cells, or when high concentrations are released from 
individual cells (quantum proteolysis). 

Brisk recruitment of inflammatory cells in the lung 

COPD exacerbations are characterized by an influx of inflammatory cells into the airways. 
These cells release active forms of NE, MMP-8, and MMP-9 (58,62,129,130). Macrophage 
clearance of the PMN recruited into the lung under normal circumstances would occur but 
in the case of the COPD lung this is hampered by a number of mechanisms. First, cigarette 
smoke impairs expression of recognition molecules for apoptotic PMN on the macrophage 
surface (131). Second, NE cleaves recognition molecules for apoptotic PMN from the 
macrophage surface (132). Third, when PMN ingest Hemophilus influenzae, which frequently 
colonizes the respiratory tract of COPD patients, PMN necrosis is rapidly induced (133).  

Quantum proteolysis and PiZZ AAT deficiency 

NE is present at millimolar concentrations in each azurophil granule of PMN, which is more 
than 100-fold higher than the concentration of AAT, its inhibitor, in plasma (134). The 
release of an azurophil granule into the extracellular space is thus accompanied by a 
transient burst of proteolytic activity as it greatly outnumbers the proteinase inhibitors. This 
activity fades as the granule contents diffuse, and the proteinase-inhibitor ratio falls below 
1:1 (134). In patients with an inherited deficiency of AAT, the proteinase activity lasts longer, 
leading to more destruction of the lung. Quantum bursts of NE-mediated proteolytic 
activity associated with PMN migrating on ECM proteins are 10-fold larger in area and 4-
fold longer in duration when PMN are bathed in serum from PiZZ patients compared to 
serum from healthy PiMM subjects (135), due to defective confinement of PMN-derived NE-
mediated ECM degradation. The PiZ AAT mutant proteins polymers formed in this disease 
are also chemotactic for PMN (136,137).  

7. Potential strengths and limitations of proteinase inhibitors and anti-
inflammatory drugs as new therapeutic strategies to limit proteinase-
mediated lung pathologies in COPD 

7.1 Proteinase inhibition 

Perhaps the most obvious role for intervention in this setting is to replace AAT in patients 
with COPD who have known severe, inherited AAT deficiency (AATD). Although we do 
not have conclusive randomized controlled trials, human clinical research has shown that 
AAT augmentation reduced exacerbation frequency and slows the rate of lung function 
decline in these patients (138). More recent work has attempted augmentation of AAT 
through gene therapy. This involves administration of recombinant adeno-associated virus 
(rAAV) vectors expressing human AAT (rAAV1-CB-hAAT) to patients with AATD (139). 
These studies are currently in phase 2 clinical trials and have shown increased expression of 
normal (PiM) AAT in serum occurs safely in patients for up to 90 days. Further optimization 
of the vector is likely to be required to generate sustained therapeutic AAT plasma levels. 
The concept of augmentation of AAT in COPD, outside the setting of AATD, is less clear. 

Secretory leukocyte peptidase inhibitor (SLPI) and elafin are naturally occurring 

antiproteinases with anti-NE activity whose roles in COPD are not fully eludicated but may 

have potential as future treatment options (140). A number of synthetic low molecular 
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weight inhibitors have been developed and are potential therapeutic agents for COPD. 

These include irreversible inhibitors such as the peptide chloromethyl ketones (141) and 

reversible inhibitors such as peptide boronic acids, peptide aldehydes (142), substituted 

tripeptide ketones (143), or ┚-lactams (144). One of the problems with the low-molecular-

weight reversible inhibitors is that they can release NE, allowing it to destroy tissue. 

Although the irreversible inhibitors such as chloromethyl ketone have been shown to 

function effectively in vivo in hamsters to reduce many of the effects of intratracheally 

administered NE, the toxicity of chloromethyl ketones prevents clinical use. 

Some support for potential use of these inhibitors comes from in vitro studies showing that 
low-molecular-weight, synthetic inhibitors of serine proteinases and MMPs effectively 
inhibit both soluble and membrane-bound proteinases (122,123,126,127), and studies of 
animal models of COPD showing that proteinase inhibitors effectively block both airspace 
enlargement and lung inflammation. In animals acutely exposed to cigarette smoke, 
delivery of synthetic or natural inhibitors of serine proteinases and synthetic inhibitors of 
MMPs blocks PMN influx into the lung and ECM destruction (68,145,146). In other animal 
work, a therapeutic effect demonstrated with daily oral delivery of synthetic MMP 
inhibitors to mice. This prevented airspace enlargement and macrophage accumulation in 
the lungs of mice exposed to cigarette smoke for 6 months (74). In additional experiments in 
which MMP inhibitor therapy was initiated after mice were exposed to cigarette smoke for 3 
months to initiate airspace enlargement, therapy prevented progression of airspace 
enlargement as smoking continued (74). These results suggested a role for proteinase 
inhibition in potentially preventing disease progression in human COPD patients. However, 
it remains unclear which proteinases should be targeted. The counter argument to these 
theories is that proteinases have been shown to have beneficial as well as deleterious roles in 
the lung (roles in innate host defense, dampening inflammation, and inhibiting tumor 
growth and metastasis), which may prove to limit the usefulness of their inhibition.  

7.2 Anti-inflammatory strategies 

Strategies to reduce the burden of lung inflammatory cells in COPD would thereby reduce 
the amount of proteinase that they are responsible for releasing. Inhibitors of 
phosphodiesterase E4, the major isoenzyme in inflammatory cells, decrease inflammatory 
cell migration, activation, and release of proteinases. Clinical trials of phosphodiesterase E4 
inhibitors in COPD have resulted in one selective PDE4 inhibitor, roflumilast (Daxas ®), 
being approved for use in humans and available in Canada and the European Union in 2011 
for the treatment of a specific population of patients with severe COPD (147). Other anti-

inflammatory approaches, such as inhibiting NF-B activation to reduce pro-inflammatory 
gene expression, could also potentially inhibit proteinase- and oxidant-mediated lung injury 
in COPD patients. 

8. Conclusions 

Proteinases have diverse activities in the pathogenesis of COPD. With over 40 years having 
elapsed, since the initial breakthroughs showed a role for these enzymes in this disease, 
much work has elucidated many further elements of the roles they play. It is clear that the 
proteinase-antiproteinase balance is not the sole cause of all the pathology seen, but it 
continues to be a major contributor and a potential target for future therapies. 
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9. Abbreviations 

ADAM. Proteinase a disintegrin and a metalloproteinase domain; cathepsin G (CG), chronic 
obstructive pulmonary disease (COPD), epithelial growth factor receptor (EGFR), 
extracellular matrix (ECM), granzymes (GRZ), inducible protein 10 (IP-10), interferon gamma 

(IFN-), membrane-type MMPs (MT-MMPs), metalloproteinase (MMP), neutrophil elastase 
(NE), polymorphonuclear neutrophils (PMN), protease-activated receptor-1 (PAR-1), 
proteinase 3 (PR3), reactive oxygen species (ROS), secretory leukocyte proteinase inhibitor 

(SLPI), serine proteinase inhibitors (Serpins), transforming growth factor (TGF)-, tumor 

necrosis factor (TNF-), urokinase-type plasminogen activator (uPA), wild type (WT), ┙1-
anti-trypsin (AAT), ┙2-macroglobulin (┙2-M) 
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