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1. Introduction 

Despite of the last few decades of investigations concerning the pathophysiology of 
affective disorders and their efficient treatment, the number of patients suffering from the 
diseases is growing every year. Compared to the data from the 1950s the percentage of 
people diagnosed with monopolar depression increased by nearly 7 times, and now it is 
estimated that more than 15% of the population suffers from the illness (Healy, 1999). 
Depressive episodes deeply influence the familiar and professional life of the patients, 
thus become both a clinical and social problem. The costs connected with the treatment 
are not only due to medical care, but also involve indirect wastes related to long-term 
disturbances in normal functioning. Statistical analysis reveal that depressive episodes 
became the most costly group of central nervous system (CNS) disorders in Europe and in 
the USA (in the recent decade they reached about 105 billion Euro and 83 Billion USD, 
respectively) (Andlin-Sobocki et al., 2005; Greenberg et al., 2003). Moreover, the problem 
of depression and mood disorders is hard to overestimate as only 1 out of 4 cases is either 
recognized or adequately treated, and approx. 15% of depressed people commit suicide 
(Brody et al., 1998).  

The antidepressant pharmacotherapy presently used has been based on the modulation of 
monoaminergic neurotransmission (mainly noradrenergic and serotonergic). The 
accidentally discovered antidepressant activity of selective serotonin and noradrenalin 
reuptake inhibitors, as well as MAO inhibitors, laid at the grounds for the monoaminergic 
theory of depression (Kuhn, 1957; Loomer et al., 1957), which still dominates this field of 
research. The decreased level of monoamines in the depressed brain that was normalized 
after acute administration of antidepressant drugs (ADDs) became the main assumption of 
the hypothesis (Bunney et al., 1965; Lapin et al., 1969; Schildkraut, 1965). As the result of 
intensive studies, a number of antidepressant drugs were synthesized. However, most of 
them required chronic administration to evoke an antidepressant-like effect in humans. 
Therefore the increase in the serotonin and/or noradrenalin level in the brain observed 
immediately after the single administration of ADDs could not be responsible for the 
antidepressant effect observed only after several weeks of systemic treatment (for review 
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see: Castren, 2005; Oswald et al., 1972). Furthermore, in nearly 40% of patients the 
antidepressant therapy presently conducted is not effective, thus confirming the limited role 
of monoamines in depression. 

The further research concerning antidepressant therapy was focused on the adaptive changes 
observed after prolonged antidepressant treatment. The progress of research lead to the 
discovery of the new receptors, second messengers systems, protein kinases, transcription and 
trophic factors, genetic and epigenetic regulations (Duman et al., 1997; Nestler, 1998; Nestler et 
al., 2002; Shirayama et al., 2002; for recent review, see Millan, 2006). A number of new 
hypotheses were proposed, and the neurotrophic theory of the disease was probably the 
mostly recognized. It was based on the observed increase in the BDNF level after prolonged 
ADDs treatment (Altar, 1999; Nibuya et al., 1995), which was supposed to be involved in the 
hippocampal processes of plasticity and neurogenesis (Altar, 1999; Duman et al., 1997; Duman 
et al., 1998; Nestler, 1998; Duman et al., 2001; Warner-Schmidt & Duman, 2006).  

However, despite all of the research, there are no drugs that are active after a single 
administration in depressed patients. Therefore, the new insight into the mechanism of 
action of antidepressants, based on anything beyond monoaminergic neurotransmission, is 
highly desired. Excitatory glutamate and inhibitory GABA seem to be good candidates for 
our consideration. 

2. Amino acids neurotransmitters and depression 

It has to be realized that glutamate constitutes 50-60% of all neurotransmission in the brain 
and the remaining 40-50% is GABAergic (Storm-Mathiesen and Iversen, 1979; Winfield et 
al., 1980; Winfield et al., 1981). Therefore 90-99% of neurons (depending on the source) are 
GABAergic or glutamatergic, and less than 10% is left for all the others monoamines, 
neuropeptides and neuroendocrine neuromodulators. The fundamental aspect of the proper 
functioning of the CNS is keeping the excitatory/inhibitory physiological balance (Altamura 
et al., 1993; Linden and Schoepp, 2006; Yildiz-Yesiloglu et al., 2006). Any disruptions within 
this balance may lead to a brain dysfunction reflected as a mental disorder. Viewing the 
pathophysiology of depression through the GABA-Glu interaction may bring new solutions 
concerning its effective treatment. Schematic representation of the twisted GABA/Glu 
balance in affective disorders is shown on the Figure 1. 

The results of the preclinical and clinical investigations confirm that disrupted activity 
within these two amino acid neurotransmitters may lay at the grounds of depression. The 
other data shows that standard ADDs influence the inhibitory and excitatory 
neurotransmission, which contributes to their efficacy. Generally it can be concluded that 
antidepressant drug diminish glutamatergic neurotransmission (Tokarski et al. 2008) and 
increase GABAergic neurotransmission. Using these results as our basis it could be 
suggested that the direct pharmacological manipulation on GABA or Glu neurotransmission 
may become a faster and more efficient way to treat depression (Kendell et al., 2005).  

A number of important review papers concerning the role of GABA and/or glutamate have 
been published lately, such as Cryan & Slatery, 2010; Drago et al., 2011; Froestl, 2010; Ghose 
et al., 2011; Hashimoto, 2011; Mitchell & Baker, 2010; Sanacora et al., 2011. In this review we 
decided to focus on issues which were not covered in the above mentioned reviews, mainly 
on interactions between GABAergic and glutamatergic systems with the involvement of  
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Fig. 1. The schematic representation of the Glutamate/GABA disbalance in the brain as an 

example of the communicating tubes. In the physiological conditions both liquids constitute 

a self-regulating system establishing the activity of both neurotransmitters on the same 

level. The disruption within the system leads to twist in the harmony, and the loss of the 

self-regulating properties. The overactivation of the glutamate and the decreased activity of 

GABA being responsible for mood disorders.  

metabotropic receptors. This review is complementary to our recently published paper on 

the role of GABA and Glu interaction in anxiety (see Wieronska et at., 2011).  

3. The role of the glutamatergic system in the treatment of depression 

3.1 The role of the NMDA receptor in the mechanism of action of antidepressant 
drugs 

The discovery and characterization of glutamatergic receptors opened a new possibilities to 

investigate the role of the glutamatergic system in the treatment of depression. The 

influence of the ADDs on the activity of glutamatergic receptors was studied on the one 

hand, whilst on the other hand the potential antidepressant effects of the ligands of those 

receptors were also investigated. Selected data are collected in Table 1. 

The first reports on this subject concerned the NMDA receptor which belongs to the family 

of ionotropic receptor for the glutamate (together with AMPA and KA receptors). The 

receptor was described in details elsewhere (see: Danysz et al., 1998; Wieronska et al., 2011). 

The studies conducted in the 1990s revealed the antidepressant activity of the functional 

antagonists of the NMDA receptor, such as AP-7, MK-801, or ACPC in the forced swim test 

or tail suspension test (Trullas & Skolnick, 1990). The later studies carried out using those 

experimental procedures confirmed antidepressant activity of the other NMDA antagonists, 

such as CGP37849, CGP39551, memantine, eliprodil and zinc (Kroczka et al., 2001; Layer et 

al., 1995; Maj et al., 1992a; 1992b; Moryl et al., 1993; Przegalinski et al., 1997). 

Despite of the evident antidepressant-like activity of NMDA receptor antagonists in simple 

screening tests, it was also shown that the compounds were active in commonly known 

models of depression. And thus MK-801, CGP37849, CGP40116 and ACPC (Papp & Moryl,  
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Author Compound/dose Species Test 
Maj et al., 1992a MK-801 (0.3 mg/kg) rats Porsolt test 

Maj et al., 1992b CGP37849 (0.625-5 
mg/kg) 
CGP39551 

rats Porsolt test 

Moryl et al., 1993 Amantadine 
Memantine 
bifemelane 

rats Porsolt test 

Papp &Moryl, 1994 MK-801 (0.3 mg/kg) 
CGP37849 (5 mg/kg) 
CGP40116 (5 mg/kg) 

rats Chronic mild stress 

Papp&Moryl, 1995 ACPC (200) rats Chronic mild stress 

Layer et al., 1995 Eliprodil (20-40 mg/kg) mice Porsolt test 

Trullas &Skolnick, 
1990 

AP-7 
ACPC 
MK-801 
 

mice Porsolt test 
Tail suspension test 

Przegaliński et al., 
1997 

ACPC (200-400 mg/kg)
CGP37849 (0.625-5 
mg/kg) 

rats Porsolt test 

Muhonen et al., 2008 Memantine (20mg/day) human Clinical study 

Berman et al., 2000 Ketamine (0.5 mg/kg) human Clinical study 

Zarate et al., 2004, 
2005 

Riluzol (100-
200mg/day) 

human Clinical study 

Zarate et al., 2006 Ketamine (0.5 mg/kg) human Clinical study 

Nowak et al., 2003 Zinc (25mg/day) human Clinical study 

Eby&Eby, 2006 Magnesium aspartate 
(125-300 mg/day) 

human Clinical study 

Chouinard et al., 1990 Magnesium aspartate 
(40mg/day) 

human Clinical study 

Siwek et al., 2009 Zinc (25mg/day) human Clinical study 

Li et al., 2010  Ro 25-6981 (10 mg/kg) rats Chronic unpredictable 
stress 

Preskorn et al., 2008 CP-101, 606 human Clinical study 

Table 1. Collected data concerning the antidepressant-like activity of the NMDA receptor 
antagonists (see also description in the text). 

1994; Papp & Moryl, 1996) were active in chronic mild stress. Additionally, memantine and 
MK-801 were active in chronic unpredictable stress (Ossowska et al., 1997). Also, the 
antidepressant-like activity of MK-801 was evident in the olfactory bulbectomy model of 
depression (Redmond et al., 1997). Ro 25-6981, the subunit selective NR2B antagonist, was 
found to exhibit rapid (24h) antidepressant-like effect in the FST (Maeng, 2008; Li et al., 2010). 
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The role of the NMDA receptor in the mechanism of action of ADDs was confirmed in the 
variety of biochemical (Nowak et al., 1993, 1996, 1998), electrophysiological (Bobula et al., 
2003) and behavioural studies (Popik et al., 2000) in both rats and mice. All the results 
indicated a reduction of the NMDA receptor function after repeated administration of a 
variety of ADDs, as well as after electroconvulsive therapy. Receptor binding studies with 
the use of selective NMDA receptor binding sites radioligands revealed the decrease of 
glycine’s affinity to its binding site (GLYB) and to the abolishment of its ability to modulate 
glutamate binding sites in the NMDA receptor complex. The changes in mRNA synthesis 
and proteins of selected subunits of the NMDA receptor, and the changes in their mutual 
composition, were shown as being connected with the influence of the chronic ADDs 
administration on the NMDA receptor (Skolnick, 1999). 

3.2 Glutamatergic theory of depression 

The above noted results of the studies on the NMDA receptor have become the fundamental 
element of the glutamatergic theory of depression (Skolnick, 1999, 2009). The hypothesis 
was based on the results obtained in the studies on the role of trophic factors in depression 
(Duman, 1998; Skolnick, 1999). The brain-derived neurotrophic factor (BDNF) may decrease 
mRNAs for NR2A and NR2C NMDA receptor subunits, resulting in changes in their mutual 
composition and impartment in the NMDA receptor function in the matter resembling the 
effect of NMDA receptor antagonists (Brandoli et al., 1998). Therefore, the glutamatergic 
theory of depression states that the activation of BDNF, after ADDs administration, may 
lead to impartment of NMDA receptor function, which is commonly observed after 
administration of standard ADDs and NMDA receptor antagonists (Skolnick, 1999).  

3.3 Antidepressant effects of NMDA receptor antagonists-clinical studies 

The characteristic for ADDs behavioural effects obtained after administration of NMDA 
receptor antagonists in animal studies were confirmed in recent clinical trials. The 
antidepressant effect of memantine, a low-affinity, uncompetitive open channel NMDA 
receptor blocker, was observed in treatment-resistant patients with severe depression and 
comorbid alcohol dependence (Muhonen et al., 2008). However, another clinical study 
showed no antidepressant effect of memantine in patients suffering from major depression 
(Zarate et al., 2006). Thus, the clinical utility of memantine seems to be controversial.  

Much more promising results were obtained with another NMDA channel blocker, 
ketamine. During initial studies, the drug was administered to patients with severe, long 
term, treatment-resistant depression, two weeks after cessation of standard 
pharmacotherapy (Berman et al., 2000; Zarate et al., 2006). Ketamine at a dose of 0.5 mg/kg 
was administered through intravenous infusion and the 21-degree Hamilton scale was taken 
to estimate the mental health of the patients. A statistically significant effect of ketamine was 
evident 24 hours after injection. The effect was similar or even greater than the effect of 
standard antidepressants such as venlafaxine, buprion or fluoxetine administered for the 
time period of 8 weeks. The effect of ketamine was observed until seven days after a single 
administration (Zarate et al., 2006). Another clinical study showed, that a single infusion of 
ketamine induced a rapid resolution of suicidal ideation in treatment-resistant patients 
suffering from major depression (DiazGrananos et al., 2010). Moreover, a rapid 
antidepressant effect was observed after a single dose of ketamine in depressive patients 
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with a family history of alcohol dependence (Phelps et al., 2009) and in electroconvulsive 
therapy-resistant patients (Ibrahim et al., 2011).  

Another group of potential antidepressants are the divalent ions of zinc and magnesium, 
which are known to be NMDA receptor antagonists. The preliminary study by Nowak et al. 
(2003) showed the beneficial effects of zinc supplementation on standard antidepressant 
therapy with tricyclics and SSRIs in patients with unipolar depression. Then, a double blind, 
placebo- controlled study by Siwek et al. (2009) demonstrated that zinc supplementation 
enhanced the efficacy of imipramine and facilitated the treatment outcome in treatment-
resistant depression. Several clinical studies indicated beneficial effects of magnesium 
supplementation in depression and depression-related or comorbid disorders, such as: 
major depression (Eby & Eby, 2006), mania (Pavlinac et al., 1979), bipolar disorder 
(Chouinard et al., 1990), and depression in elderly diabetic patients suffering from 
hypomagnesemia (Barragan-Rodriguez et al., 2008).  

Clinical studies also showed the potential antidepressant activity of subtype-selective 
NMDA receptor modulators, which are supposed to be better and safer drugs than non-
selective antagonists. Firstly, promising preclinical results showed the potential 
antidepressant-like effect of a selective antagonist of the NR2B subunit, Ro 256981 (Maeng et 
al., 2008). Then, the clinical study of Preskorn et al. (Preskorn et al., 2008) confirmed the 
antidepressant effect of NR2B subunit-specific NMDA receptor antagonist, CP-101,606 in a 
placebo controlled, double-blind study in patients with a treatment-refractory major 
depressive disorder.  

This data strongly supports the hypothesis that glutamate receptors ligands may become 
more efficient antidepressants than the presently used pharmacotherapy.  

The effectiveness of NMDA receptor antagonists is consistent with the notion of increased 
glutamatergic transmission in depression. However, the problem of profound adverse 
effects connected with the use of ketamine or the other NMDA receptor antagonists still 
remains unsolved; therefore the introduction of those compounds to the clinic requires 
further extensive preclinical and clinical studies. 

3.4 Antidepressant effects of AMPA receptor ligands 

The other member of the ionotropic glutamate receptors family, AMPA, was shown as being 
engaged in the mechanisms of antidepressant effects, too. A variety of animal studies 
indicate the potential antidepressant activity of the positive allosteric modulators 
(potentiators) of that receptor. Such effects were shown for LY392098, which was active in 
the forced swim test in mice and rats and in the tail suspension test in mice (Li et al., 2001, 
2003). Furthermore, the compound induced an elevation of both the mRNA and BDNF 
protein level (Legutko et al., 2001), which stays in line with the trophic theory of disease. 
Another positive allosteric modulator of the AMPA receptor with antidepressant-like 
efficacy was LY451646. The potential antidepressant activity was shown in the forced swim 
test and in the tail suspension test (Bai et al., 2001). Moreover, LY451646 administration lead 
to the increase of neuronal proliferation in the hippocampus of the rat brain (Bai et al., 2003), 
and an increase of the level of BDNF mRNA and trkB, and to the enhancement of the BDNF 
protein synthesis (Maćkowiak et al., 2002). The potential antidepressant activity for AMPA 
potentiators in the preclinical studies was shown also for other compounds, such as CX546, 
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CX614, and LY404817 (Bai et al., 2001; Lauterborn et al., 2000). Additionally, the 
fundamental role of the AMPA receptor was also shown for ketamine activity, while the 
action of ketamine in the forced swim test and learned helplessness test was attenuated by 
AMPA antagonist, NBQX, indicating that AMPA activation is necessary for ketamine action 
in models of depression (Koike et al. 2011; Maeng et al. 2008). 

3.5 The role of mGlu receptors in the mechanism of action of antidepressant drugs 

The introduction of currently available NMDA receptor antagonists into the clinic is 
impossible because of the variety of profound adverse effects that can be triggered after 
their administration. Metabotropic glutamate receptors are a natural alternative target to 
influence the glutamatergic system. These receptors are responsible for the modulation, but 
not for the fast neuronal transmission (Nakanishi et al., 1992). The discovery of selective 
ligands of these receptors created a new possibilities in the therapy of variety of central 
nervous system disturbances, including psychiatric disorders.  

Until now 8 subtypes of metabotropic glutamate receptors have been cloned. They were 
named from 1-8, according to the sequence homology, pharmacology and the second 
messenger system they activate. There can be several splice variants of selected subtypes of 
the receptors created by alternative splicing (Pin and Duvoisin, 1995; Pin et al., 1999), which 
makes them an established family of 21 subtypes known. At present mGlu receptors are 
divided into three different groups according to the sequence homology, pharmacology and 
the second messenger system they activate. And as such group I consists of mGlu1 and 
mGlu5 receptor subtypes, mGlu2/3 receptors create the group II of mGlu receptors and the 
third group involve mGlu4, mGlu6, mGlu7 and mGlu8 receptors (Pin and Duvoisin, 1995; Pin 
et al., 1999; see: Wieronska et al., 2011). 

3.5.1 The role of group I mGlu receptors in the mechanism of action of antidepressant 
drugs 

Among all mGlu receptors, the greatest preclinical potential for possible antidepressant 
efficacy was shown for the ligands of the I group of mGlu receptors, especially the mGlu5 
subtype, which is localized in the brain structures known to be connected with emotional and 
motivational processes, such as the cortex, hippocampus and the amygdala (Romano et al., 
1995; for review see Wieronska et al., 2010). The involvement of the NMDA receptor in the 
action of both compounds plays a substantial role, as a lot of evidence indicates that mGlu5 
receptors are physically and functionally linked with the NMDA receptor complex. The 
Homer family of proteins functions as a bridge between group I mGlu receptors and IP3 
receptors, as well as with Shank proteins, which are a part of the NMDA receptor-associated 
PSD-95 complex (Brakeman et al., 1997; Lujan et al., 1996; Tu et al., 1999; Xiao et al., 1998). The 
activation of the mGlu5 receptor has been shown to potentiate NMDA receptor activity in the 
mechanism that requires G-protein activation (Attuci et al., 2001; Awad et al., 2000; Pisani et 
al., 2001), and antagonists of mGlu5 receptors have been reported to decrease NMDA receptor 
activation (Doherty et al., 2000). Therefore, the inhibition of mGlu5 receptors and antagonism 
towards the NMDA receptor evokes a similar effect in the brain. However, due to the indirect 
influence on the ion channel, side-effects typical for the channel blockers are not observed after 
MTEP or MPEP administration. The pathological changes within the receptor itself, and the 
malfunction of the mGlu5/NMDA complex, may contribute to altered transmission in the CNS 
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of depressed subjects. The observed decrease of the mGlu5 receptor in the PFC of patients with 
depressive symptomatology (Deschwanden et al., 2011) supports this speculation, indicating 
on the impartment in the function of the receptor. The concomitant decrease of the PSD-95 
enchoring protein (Feyissa et al., 2009) indicates on the dysfunction of the NMDA receptor, 
too. Although there is no experimental data on this subject, a hypothesis can be raised that 
mGlu5/NMDA receptors lose their colocalization in depressive illness and that MPEP/MTEP 
administration restores the functionality of the complex. 

It was shown that the blockade of mGlu5 receptors may exert the effect similar to NMDA 
receptor antagonists e.g attenuation of the NMDA receptor function (Doherty et al., 2000). 
Therefore, to begin with, attempts to investigate the potential antidepressant-like effect of 
the antagonists of mGlu5 receptors were undertaken. As shown in Table 2 the selective 
orthosteric antagonist for this receptor, MPEP (Gasparini et al., 1999) and its derivative 
MTEP (Cosford et al., 2003), were active in the forced swim test in both rats and mice, and in 
the tail suspension test in mice (Belozertseva et al., 2007; Li et al., 2006; Palucha et al., 2005; 
Pilc et al., 2002; Tatarczyńska et al., 2001). Moreover, in the olfactory bulbectomy model of 
depression it was shown that chronic administration of those substances evoked 
behavioural effects similar to those observed after the administration of ADDs 
administration (Palucha et al., 2005; Pilc et al., 2002; Wieronska et al., 2005). On the other 
hand repeated MPEP administration lead to an increase in the expression of BDNF mRNA  

 

Author Compound/dose Species Test 

Tatarczyńska et al., 
2001 

MPEP (1-20mg/kg)  mice Tail suspension  

Pilc et al., 2002; 
Wierońska et al., 2002 

MPEP (10 mg/kg) rats Olfactory bulbectomy 
model of depression 

Belozertsewa et al., 
2007 

MTEP (5 and 10 mg/kg) 
MTEP (25mg/kg) 
MPEP (10 mg/kg) 
EMQMCM (1.25-10 
mg/kg) 
EMQMCM (5 mg/kg)  

rats 
 
mice 
mice 
rats 
 
mice 

Porsolt test 
 
Tail suspension test 
Tail suspension test 
Porsolt test 
 
Tail suspension test 

Pałucha et al., 2005 MTEP (0.3-30 mg/kg) 
MTEP (1 mg/kg) 

mice  
rats 

Tail suspension test 
Olfactory bulbectomy 

Molina-Hernandez et 
al., 2008 

MTEP (5 and 10 mg/kg) 
EMQMC (1.5 and 2 
mg/kg) 

rats 
 
rats 

Porsolt test 
 
Porsolt test 
 
 

Li et al., 2006 MPEP (10-30 mg/kg) 
MTEP (3-30 mg/kg) 

mice 
mice 

Porsolt test 
Porsolt test 

Table 2. Collected data concerning the antidepressant-like activity of the group I mGlu 
receptors ligands. MPEP, MTEP-mGlu5 antagonists; EMQMC-mGlu1 antagonist. 
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in the hippocampus of the rat brain, which remains in line with the neurotrophic theory of 
depression (Legutko et al., 2006). Additional evidence suggesting the important role of the 

NMDA receptor in the underlying antidepressant mechanism of the mGlu5 receptor 
antagonist comes from the studies of Pomierny-Chamioło et al. showing, that the anti-

immobility action of MTEP in the Porsolt test was inhibited by NMDA administration 
(Pomierny-Chamioło et al., 2010).  

The antidepressant effects could be evoked not only after administration of mGlu5 receptor 
antagonists, but also after blockade of mGlu1 receptor subtype, the second representative of 

group I mGlu receptors, as its antagonist EMQMCM was effective in the tail suspension and 
forced swim test in mice (Belozertseva et al., 2007). The role of the first group of mGlu 

receptors in depression and in the mechanism of action of ADDs is confirmed by 
experiments illustrating the changes in both the reactivity and expression of the mGlu1 and 

mGlu5 receptors after chronic ADDs treatment in both rats and mice (Pilc et al., 1998; 
Smiałowska et al., 2002; Zahorodna et al., 1999).  

Unfortunatelly there is a limited amount of clinical data concerning antidepressant action of 
mGlu5 receptor antagonists. Fenobam, discovered in 1978 as a nonbenzodiazepine anxiolytic 

(Itil et al., 1978), was in 2005 described as an mGlu5 receptor antagonist with indication on 
anxiolytic activity (Porter et al., 2005). The antidepressant effects of fenobam were also 

reported (Lapierre & Oyewumi, 1982). The recent study of Berry-Kravis et al. show the 
positive results of fenobam administration in the treatment of fragile X syndrome, without 

any significant adverse reactions (Berry-Kravis et al., 2011), opening the possibility to 
evaluate the antidepressant potential of that agent or other new substances, such as 

ADX10059, which is effective in gastro-esophageal reflux disease (Zerbib et al.,2011) or in 
the treatment of migraine (Marin & Goadsby, 2010), with no major adverse effects. 

The mGlu5/NMDA receptor complexes were shown to be localized predominantly 
postsynaptically (Lujan et al. 1996) and in the hippocampus and prefrontal cortex known to 

be involved in depression those receptors are extensively expressed on GABAergic 
interneurons (van Hooft et al., 2000; Zhou et al., 1997). Similarly to the proposed earlier 

mechanism of anxiolytic-like action of MPEP or MTEP (Wieronska et al. 2011), the mGlu5 
antagonists would initiate a repertoire of changes between interneurons and pyramidal 

neurons to induce feedback inhibition of increased excitation in the brain. 

As shown on Fig. 2 the inhibition of GABAergic neurotransmission by mGlu5 receptor 

antagonists may occur at multiple sites: the inhibition of postsynaptic neurotransmission 
[Fig. 2 (1)] and the presynaptic inhibition of GABA release (Chu et al., 1998) [Fig.2 (2)] lead 

to the disinhibition of intermediate interneuron, which in turn inhibits the glutamatergic 

target neuronal element. The presynaptic localization of the mGlu5 receptor in the medial 
prefrontal cortex (mPFC) was described in rare cases (Romano et al., 1995), and the 

activation of those receptors facilitates the release of glutamate (Thomas et al., 2000). 
Therefore the blockade of mGlu5-mediated presynaptic neurotransmission could have an 

inhibitory effect on glutamatergic neurotransmission [Fig. 2 (3)]. The studies of Marek & 
Zhang from 2008 stay in line with such a hypothesis, by showing the inhibition of DHPG-

induced spontaneous EPSCs by MPEP (Marek & Zhang, 2008). As such, it can be supposed 
that the compound inhibits the activity of glutamate through pre- and postsynaptic binding 

sites at the interneurons and pyramidal neurons. 
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(2)
(1)

(3)

 

Fig. 2. The schematic representation of the mechanism of antidepressant-like action 
mediated by mGlu5 receptor antagonist(s) (see description in the text). Empty dots- GABA; 
black dots-Glu; (-)-inhibition; (+)-enhancement; the number of dots indicates the amount of 
neurotransmitter released 

3.5.2 The role of group II mGlu receptors in the mechanism of action of 
antidepressant drugs 

The investigations concerning the role of the II group of mGlu receptors was started with 
the orthosteric agonist of mGlu2/3 receptors, LY354740 (Helton et al., 1998). The compound 
was shown to be an effective anxiolytic, but not an antidepressant agent after peripheral 
administration in animal studies (Klodzinska et al., 1999). However, data on the 
antidepressant action of a novel mGlu2 receptor potentiator THIIC (Fell et al., 2011) was 
recently reported, creating a hope for the antidepressant-like action for subtype selective 
agonists/PAMs. 

As shown in Table 3 a number of experiments described the antidepressant-like activity of 

ligands of the mGlu2/3 receptors. The best known selective and brain penetrating ligands of 

mGlu2/3 receptors is MGS0039 (Nakazato et al., 2004). Another antagonist LY341495, is able 

to bind the third group of mGlu receptors too (Chung et al., 1997). Both compounds 

decreased the immobility time of animals in the Porsolt swim test or in the tail suspension 

test (Bespalov et al., 2008; Chaki et al., 2004). MGS0039 was shown to be active in the 

olfactory bulbectomy model of depression as well (Palucha-Poniewiera et al., 2010b). 

Moreover, the compound induced an increase in the neuronal proliferation in the rat 

hippocampus (Yoshimizu et al., 2004). The involvement of other than mGlu2/3 receptor 

subtypes in the action of LY341495 cannot be ruled out, either as the compound is a mixed 

antagonist of both group II and group III receptors. The mechanism of the antidepressant-

like action of both compounds was shown to be independent on the serotonergic system; the 

drugs were still active after the depletion of serotonin, and their action was not antagonized 

by serotonergic receptor antagonists ritanserin or WAY100635 (Pałucha-Poniewiera et al., 

2010b). However, the activity of the compounds was antagonized by NBQX, further 

supporting the role of the AMPA receptor in the antidepressant action of mGlu2/3 receptor 

ligands (Chaki et al., 2004; Karasawa et al., 2006; Kawashima et al., 2005; Palucha-

Poniewiera et al., 2010b). 

The possibility of involvement of the mGlu2/3 receptor in depression was confirmed recently 

in the study of Feyissa et al showing the elevated level of the receptor in the prefrontal 

cortex of depressed suicide victims (Feyissa et al., 2010). These results correspond with the  
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Author Compound/dose Species Test 

Bespalov et al., 2008 LY341495  
(0.3-3mg/kg) 

mice Porsolt test 

Chaki et al., 2004 MGS0039 (0.3-3 mg/kg) 
LY341495 (0.1-3 mg/kg) 

rats 
 
rats 

Porsolt test 
 
Porsolt test 

Karasawa et al., 2005 MGS0039 (0.3-3 mg/kg) mice Tail suspension test 

Yasuhara et al., 2006 7ao (MGS0039 prodrug, 
3-10 mg/kg) 

rats 
 
 
mice 

Porsolt test 
 
 
Tail suspension test 

Yoshimizu et al., 
2006 

MGS0039 (10mg/kg) rats Learned helplessness 

Pałucha-Poniewiera 
et al., 2010b 

MGS0039 (1-3 mg/kg) rats Olfactory bulbectomy 

Fell et al., 2011 THIIC (10 mg/kg) mice Porsolt test 

Table 3. Collected data concerning the antidepressant-like activity of the group II mGlu 
receptors ligands. MGS0039-mGlu2/3 antagonist; LY341495-mixed group II/III antagonist; 
THIIC-mGlu2 PAM. 

reports showing the antidepressant-like activity of the antagonists of the second group of 
mGlu receptors. 

The localization of mGlu2/3 receptors in the synaptic junction is both pre- and postsynaptic, 
and it seems that neither of them is predominant (Petralia et al., 1996). As presynaptic auto- or 
heteroreceptors, mGlu2/3 receptors are located at perisynaptic sites of the synapse, often along 
axon terminals. Such a localization enables on one hand for the pharmacological regulation of 
the neurotransmitter release and, on the other hand, to make the regulation of the postsynaptic 
neuronal element. The mGlu2/3 receptors are inhibitory in nature, being negatively coupled to 
adenylyl cyclase activity, therefore their blockade on postsynaptic membranes of 
glutamatergic pyramidal neurons may lead to an enhancement of glutamatergic transmission 
[Fig.3 (1)]. A similar effect would be observed after the inhibition of presynaptic autoreceptors, 
leading to an overflow of glutamate [Fig.3 (2)] and the activation of an inhibitory GABA-ergic 
neuron, which then inhibits the glutamatergic output element. Alternatively the blockade of 
the mGlu2/3 heteroreceptors by the ligands cannot be excluded in their overall action in the 
brain. The antagonism towards mGlu2/3 heteroreceptors localized on GABAergic nerve 
terminals would activate the release of inhibitory neurotransmission and thus contributing to 
the abolishment of the overexcitation and to the antidepressant-like effect of MGS0039, in a 
way similar to standard antidepressants, which were shown to elevate the level of inhibitory 
amino acid in the CNS [Fig. 3 (3)].  

The involvement of the glial element also seems to be important, either, as mGlu3 receptors are 
widely distributed on those non neuronal cells (Petralia et al., 1996). This part of action of the 
mGlu2/3 antagonist may be especially important in the depression, as astrocytes were shown to 
contribute to the pathophysiology of the illness (for review see: Wierońska & Pilc, 2009). 
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Fig. 3. The schematic representation of the mechanism of antidepressant-like action 
mediated by mGlu2/3 receptor antagonist(s) (see description in the text). Empty dots- 
GABA; black dots-Glu; (-)-inhibition; (+)-enhancement; the number of dots indicates the 
amount of neurotransmitter released 

3.5.3 The role of group III mGlu receptors in the mechanism of action of 
antidepressant drugs 

The third group of mGlu receptors is the largest and the least investigated. The lack of the 
selective and brain penetrating agents limited the investigations. Some results were 
obtained after the central administration of selected ligands such as ACPT-I and RS-PPG, 
which were shown to evoke a dose-dependent decrease in the immobility time after 
intrahippocampal administration (Palucha et al., 2004). However, the recent data obtained 
after peripheral administration of ACPT-I or LSP1-2111 did not indicate on any 
antidepressant-like efficacy (Stachowicz et al., 2009; Wieronska et al., 2010) of those 
preferential mGlu4/8 receptor agonists (Acher et al., 1997; Beurrier et al., 2009). The mGlu7 
receptor was studied more extensively with the use of its positive modulator, AMN082. It 
was shown that the drug possessed antidepressant-like activity in the forced swim test in 
rats and mice, and in the tail suspension test in mice (Palucha et al., 2007, Table 4). 
Furthermore, the mechanism of the antidepressant action of the compound was shown to be 
serotonin-dependent, as it was absent in pCPA-treated animals and was inhibited by 
WAY100635, 5-HT1A antagonist (Palucha-Poniewiera et al., 2010a). The involvement of 
mGlu7 receptors in depression and in the mechanism of action of ADDs was confirmed by 
experiments showing the changes in the expression of the mGlu7 receptor after standard 
antidepressant drugs, and in the olfactory bulbectomy model of depression (Wieronska et 
al., 2007, 2008). 

 

Author Compound/dose Species Test 

Pałucha et al., 2007 AMN082 (3-6 mg/kg) mice Tail suspension test 
Porsolt test 

Pałucha-Poniewiera 
et al., 2010 

AMN082 (5-10 mg/kg) rats Porsolt test 

Table 4. Collected data concerning the antidepressant-like activity of the group III mGlu 
receptors ligands. AMN082-mGlu7 positive modulator. 

+

mGlu2/3

MGS0039

(1)
MGS0039

(2)

mGlu2/3

MGS0039

(3)

mGlu2/3
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The receptor is expressed in the center of the synapse that is directly involved in the 
regulation of the neurotransmitter release, even in a very low concentrations of the 
neurotransmitter in the synaptic cleft at the site of the synaptic vesicle fusion (Shigemoto et 
al., 1996). The pyramidal neuron axon terminals expressing the mGlu7 receptor were 
observed to predominantly form synapses with GABAergic interneurons (Shigemoto et al., 
1996, 1997). Therefore, the final result of the pre-synaptic action of the activated mGlu7 
receptor is the modulation of the postsynaptic GABAergic target interneuron [Fig.4 (1)]. This 
inhibition would cause the disinhibition of the other interneurons, targeting the 
glutamatergic network. Interestingly, mGlu7 receptors are also expressed on some types of 
the interneuron population (e.g VIP positive) innervating mGlu1α-somatostatine 
postsynaptic interneurons [see: Fig.4 (2)] (Dalezios et al., 2002) and create a kind of GABA-
GABA synaptic junction. The depression of the GABA release could lead to a disinhibition 
of postsynaptic interneuron and increased GABA release on their terminals [Fig.4 (3)], 
inhibiting the input zone to the pyramidal cells.  

The pyramidal neurons expressing mGlu7 on their terminals can form synapses with 
dendrites of the pyramidal cells in the prefrontal cortex (Samogyi et al., 2003). Therefore, 
AMN082, acting at presynaptic mGlu7 receptors, may induce its antidepressant-like effect 
through the inhibition of the glutamate release [Fig. 4 (4)]. On the other hand, prefrontal 
pyramidal neurons have been shown as being inhibited by 5-HT via the activation of the 
inhibitory 5-HT1A receptors [Fig.4 (5)] (Amargós-Bosch et al., 2004). Therefore, a selective 
blockade of 5-HT1A receptors [Fig.4 (6)] may antagonize the inhibitory effects of 5-HT on 
pyramidal neurons, thus inducing an increased activity of these cells. This mechanism may 
account for a WAY100635-induced blockade of the antidepressant-like effect of AMN087 in 
the TST. This indicates that an interaction between group mGlu7 receptors and 5-HT1A 
receptors might be a general phenomenon involved in depression. 

 

AMN082

5-HT1A

5-HT

(1) (2)

(3)
(4)

(5)

(1) (2) (3)

(5) (4)

(6)

 
 

Fig. 4. Schematic representation of the mechanism of antidepressant-like action mediated by 
mGlu7 receptor positive allosteric modulator (see description in the text). Empty dots- 
GABA; black dots-Glu; (-)-inhibition; (+)-enhancement; the number of dots indicates the 
amount of neurotransmitter released 

The mechanism of action of AMN082 involves not only GABAergic and glutamatergic 
neurotransmission. A major metabolite of the compound, Met-1, demonstrated a 
physiologically relevant transporter binding affinity at the serotonin transporter (SERT), 
dopamine transporter (DAT), and norepinephrine transporter (Sukoff Rizzo et al., 2011). 
Despite the involvement of the other mechanisms in the action of the mGlu7 activator, the 
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modulation of the receptor is still crucial and, as in the studies with mGlu7 KO mice the 
antidepressant-like action of the ligand was shown to be receptor specific (Cryan et al., 2003; 
Palucha et al., 2007). 

4. The role of the GABAergic system in the treatment of depression 

γ-aminobutyric acid (GABA) is the main inhibitory amino acid in the brain and constitutes 

nearly 40% of all neurotransmission. In the properly functioning brain it stays in the 

physiological balance with excitatory glutamate. The aberrations within this balance may 

lead to mental and neurological disorders that could be treated alternatively by influencing 

the glutamatergic or GABAergic neurotransmission (Linden & Schoepp, 2006). 

Glutamatergic receptors ligands have been discussed widely in the previous chapters. 

However, the role of GABA cannot be omitted, as it constitutes a natural opposite force for 

the glutamate. Therefore it may be speculated, that influencing the GABAergic 

neurotransmission may lead to the normalization of glutamatergic activity. 

4.1 GABAergic theory of depression 

The GABAergic theory of depression is relatively young when compared to monoaminergic 

theory, and was raised in the 1990s. The first rationale for considering GABA in depression 

was justified with mixed GABAmimetics, acting on both GABAA and GABAB receptors. The 

first successful clinical trials were obtained with progabide in 1978 (Bartholini et al., 1978). 

The effect of the drug was described as similar to standard antidepressants (Bartholini et al., 

1978). Later on another GABAergic agent with similar efficacy as progabide, named 

fengabine, was also tested in double blind clinical studies, with positive results (Carpenter et 

al., 2006; Magni et al., 1989; Nielsen et al., 1990). 

Both compound were also active in standard animal models of depression, such as olfactory 
bulbectomy or learned helplessness (Lloyd et al., 1987 a, b).  

Biochemical studies confirmed the involvement of GABAergic mechanisms in mood 

disorders, as it was hypothesized that antidepressant drugs may act through increasing 

the GABAergic tone. The up-regulation of GABAB receptors appeared to be the 

fundamental facet of antidepressant drug action (Pilc &Lloyd, 1984). Parallel to these 

observations it was shown that the level of GABA was decreased in the plasma of 

depressed patients and the level of GAD67, enzyme synthesizing GABA from glutamate, 

was lowered in the brains of those patients. Recent studies confirmed the importance of 

both GABA receptors in depression, suggesting GABAB neurophysiological deficits to be 

related to the pathophysiology of major depressive disorder (Fatemi et al., 2005; Guidotti 

et al., 2000). 

4.2 The role of the GABAA receptor in the mechanism of action of antidepressant 
drugs 

The role of the GABAA receptor is evident in the field of anxiety disorders, and since the 
benzodiazepines, GABAA receptor positive modulators, are the mostly effective and the best 
known anxiolytic drugs. However as there is no convincing data that the drugs are effective 
in major depression yet, this issue will be not discussed here.  
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4.3 The role of the GABAB receptor in the mechanism of action of antidepressant 
drugs 

The involvement of the GABAB receptor in depression and antidepressant-like therapy seems 
to be more important than the previously mentioned GABAA ionotropic channel. The first 
report on this subject was released in 1984 (Pilc & Lloyd, 1984). Later on several other papers 
appeared, and stated that antidepressant drugs of all classes as well as electroconvulsive 
therapy caused the up-regulation of the GABAB receptor in the hippocampus and frontal 
cortex (Gray and Green, 1987; Lloyd et al., 1985; Pratt et al., 1993). By contrast, the down 
regulation of the receptor was described in animal models of depression, in particular in the 
olfactory bulbectomy and learned helplessness. Concomitantly, the GABA release was also 
shown to be decreased in those animals. However, GABAB binding sites are not changed in 
the brains of depressed suicide victims, when measured in the frontal and temporal cortex, 
and in the hippocampus (Arranz et al., 1992; Cross et al., 1988).  

It is commonly known that the GABAB receptor constitutes of two subunits (GABAB1 and 
GABAB2). The GABAB1 subunit is further represented by two spice variants GABAB1A and 
GABAB1B. More detailed studies concerning the influence of antidepressant drugs on the 
GABAB receptor complex revealed that those drugs selectively up-regulated the GABAB1A 
subunit in the hippocampus, having no effect on the other subunits (Sands et al., 2004). The 
elevation of GABAB receptors was also observed in the frontal cortex and spinal cord. 
Simultaneously the receptor affinity was not changed (Sands et al., 2004). 

The existence of GABAB has been known since 1981 (Hill & Bowery, 1981), but the receptor 
was cloned relatively recently, in 1997, as the last receptor from the family of major 
neurotransmitters (Kaupman et al., 1997).  

The first selective agonist of the GABAB receptor, baclofen, was shown to induce some 
antidepressant-like activities in animal models detecting the antidepressant-like activity of 
drugs, such as the olfactory bulbectomy (Delini-Stula & Vassout, 1978). The results were not 
confirmed in later studies, as no activity of baclofen was observed in the forced swim test 
nor behavioural despair test (Borsini et al., 1986). Moreover, the drug was shown to 
attenuate the effect of standard antidepressants, such as desipramine, mianserin or 
imipramine in some tests of antidepressant-like activity (Nakagawa et al. 1996a, b, c). The 
newer compounds potentiating the activity of GABA at the GABAB receptors (positive 
allosteric modulator) were shown not to display such an activity in the forced swim test or 
in the tail suspension test. The lack of this activity was observed for GS39783 and other 
GABAB positive allosteric modulators (Mombereau et al., 2004a, b; Slattery et al., 2005).  

The synthesis of the high-affinity phosphinic acid-derived antagonist of the GABAB receptor 
opened a new window in terms of GABA and depression (Froestl et al., 2004). The ligands 
were shown to possess a great antidepressant-like potential in animal models of depression 
(see Table 5). The first studies concerned CGP36742 in a learned helplessness model of 
depression (Nakagawa et al., 1996 a,b,c, 1999).  

Later on the second available antagonist, CGP51176 was shown to be active in the forced 
swim test (Bittiger et al., 1996; Nowak et al. 2006). Similar results were observed for other 
antagonists such as CGP56433A and CGP55845A (Slattery et al., 2005). Concomitantly the 
drugs had no effects on the spontaneous locomotor activity. These studies strongly support 
the notion about the antidepressant-like properties of GABAB receptor antagonists. The  
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Author Compound/dose Species Test 

Delini-
Stula&Vassout, 1978 

Baclofen (3-10mg/kg) rats Olfactory-bulb-

ablation induced 

muricide 

Nowak et al., 2006 CGP36742 (10-30mg/kg) 

CGP51176 (3-30mg/kg) 

mice 

rats 

Porsolt test 

Olfactory 

bulbectomy 

Chronic mild stress 

Nakagawa et al., 1999 CGP36742 (30-100mg/kg) rats Learned 

helplessness 

Slattery et al., 2005 CGP56433A (1-10mg/kg) 

CGP55845A (3-10mg/kg) 

rats Porsolt test 

Bartholini et al., 1978; 
Magni et al., 1989; 
Nielsen et al., 1990 

progabide, fengabide human Clinical study 

Table 5. Collected data concerning the antidepressant-like activity of the GABAB receptor 
ligands. 

studies keep in line with results obtained in the experiments with the use of GABAB 

knockout animals, as an antidepressant-like phenotype was observed in mice lacking either 

B1 or B2 subunit of GABAB receptor (Mombereau et al., 2004a, b, 2005). 

In 2006 the paper of Nowak et al. (Nowak et al., 2006) further confirmed the above 
mentioned studies showing positive results with CGP51176 and CGP36742 in the chronic 
mild stress model of depression and in the olfactory bulbectomy model of depression. These 
activity was observed after chronic treatment, but not acute administration. Moreover, the 
chronic treatment with CGP51176 induced an increase in GABAB receptor binding, similar 
to how it was observed after standard antidepressant drugs (Nowak et al., 2006). Therefore, 
GABAB receptor seems to be an interesting target in the search of novel antidepressants. 

The mechanism of action of GABAB ligands, especially GABAB antagonists, seems to also 
involve other neurotransmitters systems. The studies of Slattery et al. 2005 revealed that the 
pattern of action of CGP55845, the GABAB receptor antagonist, in the modified Porsolt swim 
test was similar to the one observed after selective serotonin reuptake inhibitors. This 
differed from tricyclic antidepressants because the drug decreased immobility time and 
increased swimming, having no activity on climbing behavior (Slattery et al., 2005). 
Concomitantly, the decrease in immobility elicited by CGP56433A was abolished after pCPA 
pretreatment, corresponding to an attenuation of the increase in swimming time (Slattery et 
al., 2005). As the pCPA pretreatment induces nearly 90% of serotonin depletion, it was 
evident that the action of the GABAB antagonist is serotonin-dependent. 

The mechanism of the antidepressant-like action of those compounds is mechanistically 
different from the one described for anxiolytic effects (Wieronska et al., 2011), as the 
anxiolysis is mediated through the stimulation of GABAB receptor, confirming the 
dissociation of the role of the GABAB receptors in depression and anxiety (Mombereau et al., 
2004, Pilc & Nowak, 2006), similar to how it was observed in the case of mGlu2/3 receptors.  
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GABAB receptors are expressed on nerve endings of pyramidal neurons exerting the inhibitory 

effect on glutamatergic transmission (Forti et al., 1997; Samulack et al., 1993), therefore their 

blockade will cause an overflow of glutamate [Fig. 5 (1)] leading to stimulation of the 

inhibitory GABAergic neuron. On the other hand the blockade of GABAergic autoreceptors 

will also lead to inhibition of the target glutamatergic neuron [Fig. 5 (2)]. 

GABAB

GABAB

CGP51176
CGP51176

(1)
(2)

 

Fig. 5. Schematic representation of the mechanism of antidepressant-like action mediated by 
GABAB receptor antagonist(s) (see description in the text). empty dots- GABA; black dots-
Glu; (-)-inhibition; (+)-enhancement; the number of dots indicates the amount of 
neurotransmitter released 

Similar to the action of AMN082 described above, the antidepressant-like mechanism of 
action of GABAB antagonists occurs via an interaction with the serotonergic system (Slattery 
et al., 2005). However, determining the kind of receptors that are involved in the action of 
the compounds is still open for the investigations. 

4.4 GABA receptors ligands and clinical studies 

The clinical studies were started with progabide and fengabide, described earlier. As they 
were mixed GABAA/GABAB mimetics, their action at particular receptor subtypes couldn’t 

be estimated. More specific ligands acting at GABAB receptors were studied later on. The 
efficacy of GABAB antagonist, baclofen, and GABAA agonist, diazepam, was shown to be 

equal to amitryptiline in the treatment of affective disturbances in alcoholic patients 
(Krupitsky et al., 1993). Other studies showed that baclofen worsens the symptoms of 

depression (Post et al., 1991). 

A study published in 2004 revealed the efficacy of SGS742 (CGP36742) in patients with mild 

cognitive impairment and opened the possibility for the compound to be investigated in 
humans (Froestl et al., 2004). 

5. Conclusion 

We described the mechanisms of the antidepressant-like efficacy of the ligands of 

metabotropic glutamatergic and GABAergic receptors in order to indicate, that the 

restoration of the GABA/Glu balance in the brain is an important part of their action. There 

are functional interactions between amino acids and monoamines (mainly serotonin), which 
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may account for the behavioral effects observed. The unique pharmacology of the 

metabotropic receptors, their localization in key circuits involved in the pathophysiology of 

depression, and the promise of the subtle modulation of glutamatergic and GABAergic 

neurotransmission by regulating the transmitter release and/or acting at the postsynaptic 

neurons make these receptors intriguing targets for the development of novel medication 

against depression. Our deliberations further reinforce the hypothesis of a disrupted 

excitatory/inhibitory balance in the pathophysiology of MDD and its restoration after 

successful antidepressant treatment. 
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